Связанные понятия
Алгоритм Ка́тхилла — Макки́ (англ. Cuthill–McKee) — алгоритм уменьшения ширины ленты разреженных симметричных матриц. Назван по именам разработчиков — Элизабет Катхилл и Джеймса Макки.
Алгоритм Тарьяна — алгоритм поиска компонент сильной связности в орграфе, работающий за линейное время.
Алгоритм Брона — Кербоша — метод ветвей и границ для поиска всех клик (а также максимальных по включению независимых множеств вершин) неориентированного графа. Разработан голландскими математиками Броном и Кербошем в 1973 году и до сих пор является одним из самых эффективных алгоритмов поиска клик.
Топологическая сортировка — упорядочивание вершин бесконтурного ориентированного графа согласно частичному порядку, заданному ребрами орграфа на множестве его вершин.
Итеративное сжатие — это алгоритмическая техника разработки фиксированно-параметрически разрешимых алгоритмов, в которой один элемент (такой как вершина графа) добавляется в задачу на каждом шаге и используется небольшое решение задачи перед добавлением элемента, чтобы найти небольшое решение задачи после добавления.
Алгоритм Флойда — Уоршелла — динамический алгоритм для нахождения кратчайших расстояний между всеми вершинами взвешенного ориентированного графа. Разработан в 1962 году Робертом Флойдом и Стивеном Уоршеллом. При этом алгоритм впервые разработал и опубликовал Бернард Рой (англ. Bernard Roy) в 1959 году.
Биполярная ориентация или st-ориентация неориентированного графа — это назначение ориентации каждому ребру (ориентации), что превращает граф в направленный ациклический граф с единственным источником s и единственном стоком t, а st-нумерация графа — это топологическая сортировка полученного ориентированного ациклического графа.
Граф — абстрактный математический объект, представляющий собой множество вершин графа и набор рёбер, то есть соединений между парами вершин.
Поиск в ширину (англ. breadth-first search, BFS) — метод обхода графа и поиска пути в графе. Поиск в ширину является одним из неинформированных алгоритмов поиска.
В теории графов
псевдолес — это неориентированный граф , в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
Алгоритм Данцига — алгоритм для нахождения кратчайших путей ко всем вершинам планарного направленного графа. Назван в честь американского математика Джорджа Данцига.
Жадная раскраска в теории графов — раскраска вершин неориентированного графа, созданная жадным алгоритмом, который проходит вершины графа в некоторой предопределённой последовательности и назначает каждой вершине первый доступный цвет. Жадные алгоритмы, в общем случае, не дают минимально возможное число цветов, однако они используются в математике в качестве техники доказательств других результатов, относящихся к раскраске, а также в компьютерных программах для получения раскраски с небольшим числом...
Путевая ширина известна также как интервальная толщина (на единицу меньше размера наибольшей клики интервального суперграфа графа G), величина вершинного разделения или вершинно-поисковое число.
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
Алгоритм сжатия цветков (англ. Blossom algorithm) — это алгоритм в теории графов для построения наибольших паросочетаний на графах. Алгоритм разработал Джек Эдмондс в 1961 году и опубликовал в 1965 году. Если дан граф G=(V, E) общего вида, алгоритм находит паросочетание M такое, что каждая вершина из V инцидентна не более чем одному ребру из M и M максимально. Паросочетание строится путём итеративного улучшения начального пустого паросочетания вдоль увеличивающих путей графа. В отличие от двудольного...
Алгоритм Прима — алгоритм построения минимального остовного дерева взвешенного связного неориентированного графа. Алгоритм впервые был открыт в 1930 году чешским математиком Войцехом Ярником, позже переоткрыт Робертом Примом в 1957 году, и, независимо от них, Э. Дейкстрой в 1959 году.
Алгори́тм Ка́ргера (англ. Karger's algorithm) — в информатике и теории графов является вероятностным алгоритмом, позволяющим найти минимальный разрез связного графа. Алгоритм изобретен Девидом Каргером и опубликован в 1993 году.
Задача о самом широком пути — это задача нахождения пути между двумя выбранными вершинами во взвешенном графе, максимизирующего вес минимального по весу ребра графа (если рассматривать вес ребра как ширину дороги, то задача стоит в выборе самой широкой дороги, связывающей две вершины). Задача о самом широком пути известна также как задача об узком месте или задача о пути с максимальной пропускной способностью. Можно приспособить алгоритмы кратчайшего пути для вычисления пропускной способности путём...
Алгоритм Косарайю (в честь американского учёного индийского происхождения Самбасивы Рао Косарайю) — алгоритм поиска областей сильной связности в ориентированном графе. Чтобы найти области сильной связности, сначала выполняется поиск в глубину (DFS) на обращении исходного графа (рёбра инвертированы), вычисляя вектор обратного порядка обхода. Затем мы используем обращение этого вектора, чтобы выполнить поиск в глубину на исходном графе (в очередной раз берём вершину с максимальным номером, полученным...
Модульное разложение — это разложение графа на подмножества вершин, называемых модулями. Модуль является обобщением компоненты связности графа. В отличие от компонент связности, однако, один модуль может быть собственным подмножеством другого. Модули, поэтому, ведут к рекурсивной (иерархической) декомпозиции графа, а не просто к разбиениям.
Алгоритм для дерева сочленений — это метод, используемый в машинном обучении для извлечения маргинализации в графах общего вида. В сущности, алгоритм осуществляет распространение доверия на модифицированном графе, называемом деревом сочленений. Основная посылка алгоритма — исключить циклы путём кластеризации их в узлы.
Геометрический остов (англ. geometric spanner) или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-Путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.
Зада́ча о кратча́йшем пути ́ — задача поиска самого короткого пути (цепи) между двумя точками (вершинами) на графе, в которой минимизируется сумма весов рёбер, составляющих путь.
Раскраска графов находит применение и во многих практических областях, а не только в теоретических задачах. Помимо классических типов проблем, различные ограничения могут также быть наложены на граф, на способ присвоения цветов или на сами цвета. Этот метод, например, используется в популярной головоломке Судоку. В этой области всё ещё ведутся активные исследования.
Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.
Куб Фибоначчи можно определить в терминах кодов Фибоначчи и расстояния Хэмминга, независимых множеств вершин в путях, или через дистрибутивные решётки.
В теории графов медианным графом называется неориентированный граф, в котором любые три вершины a, b, и c имеют единственную медиану — вершину m(a,b,c), которая принадлежит кратчайшим путям между каждой парой вершин a, b и c.
Подробнее: Медианный граф
Задача проверки планарности — это алгоритмическая задача проверки, является ли данный граф планарным (то есть, может ли он быть нарисован на плоскости без пересечения рёбер). Задача хорошо изучена в информатике и для неё было придумано много практических алгоритмов, многие из которых используют современные структуры данных. Большинство этих методов работают за время O(n) (линейное время), где n — число рёбер (или вершин) графа, что является асимптотически оптимальным алгоритмом. Вместо простого булевского...
Алгоритм Джонсона — позволяет найти кратчайшие пути между всеми парами вершин взвешенного ориентированного графа. Данный алгоритм работает, если в графе содержатся рёбра с положительным или отрицательным весом, но отсутствуют циклы с отрицательным весом.
Теорема Курселя — утверждение о том, что любое свойство графа, определяемое в логике графов второго порядка, может быть установлено за линейное время на графах с ограниченной древесной шириной. Результат впервые доказан Брюно Курселем в 1990 году и независимо переоткрыт Бори, Паркером и Товейем.
Шарнир ом в теории графов называется вершина графа, при удалении которой количество компонент связности возрастает. Для обозначения этого понятия также используются термины «разделяющая вершина» и «точка сочленения».
Задача коммивояжёра (англ. Travelling salesman problem, сокращённо TSP) — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и тому подобное) и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что...
Задача о гамильтоновом пути и задача о гамильтоновом цикле — это задачи определения, существует ли гамильтонов путь (путь в неориентированном или ориентированном графе, который проходит все вершины графа ровно один раз) или гамильтонов цикл в заданном графе (ориентированном или неориентированном). Обе задачи NP-полны.
Обобщённая задача коммивояжёра — задача комбинаторной оптимизации, являющаяся обобщением хорошо известной задачи коммивояжёра. Исходными данными для задачи является множество вершин, разбиение этого множества на так называемые кластеры, а также матрица стоимостей перехода из одной вершины в другую. Задача заключается в нахождении кратчайшего замкнутого пути, который бы посетил по одной вершине в каждом кластере (существует также модификация, когда путь должен посетить хотя бы по одной вершине в каждом...
Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом.
В теории графов и комбинаторной оптимизации двудольная размерность или число бикликового покрытия графа G = (V, E) — это минимальное число биклик (то есть полных двудольных подграфов), необходимых, чтобы покрыть всё рёбра E. Набор биклик, покрывающих все рёбра в G, называется бикликовым покрытием рёбер, или просто бикликовым покрытием. Двудольная размерность графа G часто обозначается символом d(G).
Подробнее: Двудольная размерность
Вырожденность известна также под именем k-ядерное число, ширина и зацепление, и, по существу, это то же самое, что и число раскраски или число Секереша — Вилфа. k-Вырожденные графы называются также k-индуктивными графами. Вырожденность графа может быть вычислена за линейное время с помощью алгоритма, который последовательно удаляет вершины с минимальной степенью. Компонента связности, оставшаяся после удаления всех вершин со степенью , меньшей k, называется k-ядром графа, и вырожденность графа равна...
Интервальный граф — граф пересечений мультимножества интервалов на прямой. Имеет по одной вершине для каждого интервала в множестве и по ребру между каждой парой вершин, если соответствующие интервалы пересекаются.
st-Планарный граф — это биполярная ориентация планарного графа, для которого как источник, так и сток ориентации находятся на внешней грани графа. То есть это ориентированный граф, нарисованный без пересечений на плоскости таким образом, что не имеется ориентированных циклов в графе, точно одна вершина графа не имеет входных дуг, точно одна вершина графа не имеет исходящих дуг, и обе эти две специальные вершины лежат на внешней грани графа.
В теории графов древесная декомпозиция — это отображение графа в дерево, которое может быть использовано для определения древесной ширины графа и ускорения решения определённых вычислительных задач на графах.
Теорема Галлаи – Хассе – Роя – Витавера — это вид двойственности между раскрасками вершин заданного неориентированного графа и ориентациями его рёбер. Теорема утверждает, что минимальное число красок, необходимых для правильной раскраски любого графа G, на единицу больше длины максимального пути в ориентации графа G, в которой эта длина пути минимальна. В ориентации, в которых путь максимальной длины имеет минимальную длину, всегда входит по меньшей мере одна ациклическая ориентация.
Алгори́тм Де́йкстры (англ. Dijkstra’s algorithm) — алгоритм на графах, изобретённый нидерландским учёным Эдсгером Дейкстрой в 1959 году. Находит кратчайшие пути от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его используют протоколы маршрутизации OSPF и IS-IS.
Максимальный разрез графа — это разрез, размер которого не меньше размера любого другого разреза. Задача определения максимального разреза для графа известна как задача о максимальном разрезе.
В теории графов
паросочетание или независимое множество рёбер в графе — это набор попарно несмежных рёбер.
В теории графов частичный куб — это подграф гиперкуба, сохраняющий расстояния (в терминах графов) — расстояние между любыми двумя вершинами подграфа, то же самое, что и в исходном графе. Эквивалентно, частичный куб — это граф, вершины которого можно пометить битовыми строками одинаковой длины, так что расстояние между двумя вершинами в графе равно расстоянию Хэмминга между этими двумя метками. Такая разметка называется разметкой Хэмминга и она представляет изометричное вложение частичного куба в...
Ориентированный граф (кратко орграф) — (мульти) граф, рёбрам которого присвоено направление. Направленные рёбра именуются также дугами, а в некоторых источниках и просто рёбрами. Граф, ни одному ребру которого не присвоено направление, называется неориентированным графом или неорграфом.
Многоугольник видимости или область видимости для точки p на плоскости среди препятствий — это (возможно неограниченная) многоугольная область всех точек плоскости, видимых из точки p. Многоугольник видимости можно определить для видимости из отрезка или многоугольника. Многоугольники видимости полезны в робототехнике, компьютерных играх и для определения позиций объектов, например, для определеиня наилучшего расположения охраны в картинных галереях.
Задача о самом длинном пути — это задача поиска простого пути максимальной длины в заданном графе. Путь называется простым, если в нём нет повторных вершин. Длина пути может быть измерена либо числом рёбер, либо (в случае взвешенных графов) суммой весов его рёбер. В отличие от задачи кратчайшего пути, которая может быть решена за полиномиальное время на графах без циклов с отрицательным весом, задача нахождения самого длинного пути является NP-трудной и не может быть решена за полиномиальное время...