Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил. При этом следует отметить, что вектор, как элемент векторного пространства, не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы.
Векторные пространства являются предметом изучения линейной алгебры. Одна из главных характеристик векторного пространства — его размерность. Размерность представляет собой максимальное число линейно независимых элементов пространства, то есть, прибегая к грубой геометрической интерпретации, число направлений, невыразимых друг через друга посредством только операций сложения и умножения на скаляр. Векторное пространство можно наделить дополнительными структурами, например, нормой или скалярным произведением. Подобные пространства естественным образом появляются в математическом анализе, преимущественно в виде бесконечномерных функциональных пространств, где в качестве векторов выступают функции. Многие проблемы анализа требуют выяснить, сходится ли последовательность векторов к данному вектору. Рассмотрение таких вопросов возможно в векторных пространствах с дополнительной структурой, в большинстве случаев — подходящей топологией, что позволяет определить понятия близости и непрерывности. Такие топологические векторные пространства, в частности, банаховы и гильбертовы, допускают более глубокое изучение.
Первые труды, предвосхитившие введение понятия векторного пространства, относятся к XVII веку. Именно тогда своё развитие получили аналитическая геометрия, учения о матрицах, системах линейных уравнений, евклидовых векторах.
Источник: Википедия
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать
Карту слов. Я отлично
умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: странничать — это что-то нейтральное, положительное или отрицательное?
Примерами векторных пространств являются трёхмерное пространство и пространство многочленов над заданным полем.
Линейная алгебра – раздел математики, который изучает векторные пространства, линейные отображения, матрицы.
Векторное пространство развёртывается перед нами во времени.