Водородное топливо. Производство, хранение, использование

Юрий Степанович Почанин, 2022

В книге даны характеристики водорода и водородного топлива. Рассмотрены основные методы производства водорода, в том числе: паровая конверсия природного газа, обычная и плазменная газификация угля, термохимические циклы, основные способы электролиза, а также производство водорода с использованием ядерной энергетики, источников альтернативной энергетики и применения фотосинтеза Описаны принципы работы различных топливных элементов. Дана характеристика промышленных способов очистки водорода. При хранении водорода дан анализ наземных и подземных хранилищ газа, баллонного хранения газообразного и жидкого водорода. Большое внимание уделено хранению водорода материалами, способными адсорбировать водород, и легкими композитными материалами, химически связывающие водород. Отдельная глава посвящена использованию водородного топлива на транспорте и энергетике. Рассмотрены вопросы безопасности водородных технологий. Дано краткое состояние работ по использованию водорода в термоядерном синтезе.

Оглавление

  • ***

* * *

Приведённый ознакомительный фрагмент книги Водородное топливо. Производство, хранение, использование предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Введение

Применение водорода в качестве топлива началось еще в XIX веке, когда французский изобретатель Франсуа Исаака де Риваз в 1806 году разработал самый первый в мире ДВС, потребляющий водородное топливо. Так бы водород и служил бы человечеству в качестве основного топлива, но в 1870 году в ДВС стали применять бензин, сведя на нет первые опыты с водородным топливом.

Возможности использования водорода в энергетических целях известны давно, и интерес к ним проявлялся не один раз: в 1970‑е годы — в связи с нефтяными кризисами, в 1990‑е и 2000‑е годы — в связи с ростом озабоченности изменением климата. Это стимулировало соответствующие исследования и разработки (с акцентом на транспорт), но масштабного практического внедрения водородных технологий не происходило. Ситуация стала меняться по мере того, как всё больше стран начали стремиться к устойчивому развитию в области энергетики, к переходу в углеродно-нейтральное состояние, к поддержке энергетического перехода как концепции без углеродной энергетики будущего, осознав, при этом, что только на путях использования возобновляемых источников энергии этой цели не добиться.

Мировая промышленность уже достаточно давно занимается производством водорода, который используется для выпуска пластмасс, мыла, аммиака. Чистый водород в настоящее время применяется в основном в следующих областях:

–микро — и наноэлектроника — для создания новых уникальных процессов и изделий;

–производство чистых материалов — вольфрама, молибдена, редкоземельных металлов, кремния, ультрадисперсных порошков (тугоплавких и редкоземельных металлов, карбидов, нитридов, боридов,) монокристаллов, обладающих уникальными магнитными и электрическими свойствами, в том числе анизотропией;

–восстановительная металлургия — светлый отжиг хромоникелиевых сталей, сплавов, содержащих титан и алюминий, кремнийсодержащих трансформаторных сталей, производство и спекание порошковых материалов и изделий, цветных металлов и сплавов т.д.;

–химическая промышленность — производство чистых продуктов, в том числе монометров, синтез-газа, синтетических топлив (метанол, диметиловый эфир) и др.;

–телекоммуникация и связь — автономные экологически чистые источники питания на топливных элементах;

–водородная экономика — экологически чистые и высокоэффективные транспорт и автономные энергетические установки.

Потребности в чистом водороде для различных приложений варьируются от нескольких десятков нм3/ч (для микро — и наноэлектроники) до десятков миллионов нм3/ч (для водородной экономики).

Всеми существующими и перспективными промышленными способами производится либо водород технической чистоты (95–99,8 об. %), либо газовые смеси, содержащие от 30 до 95 об. % водорода.

Широкое применение водород получил в ракетно-космической промышленности, являясь наиболее оптимальным компонентом топлива с точки зрения энергетических показателей. Передовые мировые державы постепенно переводят на водород крупные предприятия, объекты промышленности, транспортные средства. Огромнейшим интересом водород пользуется в компаниях по производству автомобилей, которые на ежегодных выставках все чаще и чаще демонстрируют свои автомобили на водородном топливе.

Водородная энергетика — развивающаяся отрасль, основанная на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями.

На 2019 год в мире потребляется 65 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м3 газа. Почти все остальное получают из угля. Около 0,1% (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Структура мирового производства водорода представлена на рис.В.1, а структура потребления водорода — на рис.В.2.

Водород стал важнейшей составляющей политики перехода в углеродно-нейтральное состояние всех стран, объявивших о таких целях, многие правительства принимают водородные стратегии, одну за другой.

Рис. В.1. Структура мирового производства водорода

Рис.В.2. Структура потребления водорода

В одном из сценариев интеграции водородных технологий в энергокомплекс США, рассматриваемых лабораториями Министерства энергетики этой страны, к середине века водород возьмет на себя роль второго после электроэнергии всеобщего энергоносителя. На рис.В.3. представлены изменения в диаграмме (источник Lawrence Livermore National Laboratory, DOE USA) знергопотоков в США в 2040 г. В случае интеграции водородных технологий, красным отмечены сузившиеся потоки, черным — расширяющиеся в квадриллионах BTU (1 квадриллион BTU = 25,21 млн. т.н.э). Более 90% энергии для производства водорода обеспечит электроэнергия, при этом потребность в первичной энергии угля, газа и нефти упадет на 73%, 34% и 18% соответственно, а доля ВИЭ (в первую очередь за счет ветра) возрастет в 4–5 раз.

Рис. В.3. Предполагаемая диаграмма энергопотоков в США в 2040 г.

Россия имеет большой опыт в области разработки и освоения водородных энергетических технологий. Еще в 30‑е годы прошлого столетия в Советском Союзе в МВТУ им Н. Э. Баумана велось исследование влияния добавок водорода к бензину для автомобильных двигателей. Широким фронтом исследования и разработки в области водорода и водородных технологий велись в 1970‑е годы в рамках государственной программы «Водородная энергетика». В рамках этой программы была разработана концепция водородной энергетики. В период реформирования экономики страны этот задел был в значительной степени утрачен, а потенциал ослаблен. Новый этап развития водородной энергетики начался в России лишь в 2000‑е годы, когда значение этой тематики получило признание государства. В 2003 г. создана некоммерческая Национальная ассоциация водородной энергетики (НАВЭ). Задача ассоциации — стимулирование развития и применения водородных технологий и использования водорода в качестве энергоносителя, а также развития индустрии топливных элементов. Первые результаты получены в 2006 году, когда состоялся первый автопробег водородных автомобилей, в ноябре 2019 года — испытания в Санкт-Петербурге водородного трамвая, в мае 2020 года — в Московской области появилась первая водородная заправка. Ведутся разработки по использованию водорода на АЭС как накопителя энергии. Сегодня водород в России — это промышленный газ, который создается и используется, как правило, непосредственно на местах его потребления, в основном, при производстве аммиака, метанола, в нефтепереработке и т.п. Общий выпуск водорода в России составляет около 5 млн т в год. Необходимость разработки водородных технологий, включая технологии производства, водородных систем, аккумулирования энергии и покрытия неравномерностей графика нагрузки на объекты генерации, технологий хранения и транспортировки водорода упоминается в ряде стратегических документов.

В перспективе водород может стать универсальным экологически чистым энергоносителем, так как при его горении образуется только вода, а в атмосферу не выделяются такие загрязнители воздуха, как аэрозоли выхлопных газов или диоксид углерода, которые ответственны за усиление парникового эффекта. Все чаще водород стал использоваться в автономных источниках электроэнергии мощностью от одного до нескольких тысяч кВт: это портативные приборы и аккумуляторы, резервные генераторы, системы энергообеспечения небольших энергоустановок, цеховая транспортная техника, беспилотные аппараты, генераторы для постоянного снабжения теплом и электричеством частных домов. К 2050 г., согласно прогнозам, на водород придется около 18% от всего мирового энергопотребления. По прогнозам, потребление водорода к этому времени увеличится до 370 млн т в год, а к 2100 г. — до 800 млн т. Полагают, что благодаря переходу на водородную энергетику к 2050 г. эмиссия СО2 снизится на 60%, при этом спрос на водород может вырасти в 10 раз. США, страны ЕС, Великобритания, Япония, Китай, Южная Корея и Австралия уже имеют свои национальные стратегии и программы создания и развития водородной энергетики. В США объем бюджетных ассигнований на водородные проекты сейчас составляет 1,7 млрд долларов на пять лет (в несколько раз больше средств поступает от частных компаний), в Европейском Союзе — 2 млрд евро, в Японии — 4 млрд долларов на 20 лет.

Энергетическая стратегия России на период до 2035 г. (ЭС‑2035), принята в июне 2020 г., согласно которой является развитие производства и потребления водорода, вхождение Российской Федерации в число мировых лидеров по его производству и экспорту. По оценке Минэнерго, уже сегодня Россия обладает важными конкурентными преимуществами по развитию водородной энергетики: наличием значительного энергетического потенциала и ресурсной базы, недозагруженных генерирующих мощностей, географической близостью к потенциальным потребителям водорода, научным заделом в сфере производства, транспортировки и хранения водорода, а также наличием действующей транспортной инфраструктуры.

Составные части водородной энергетики, которые подлежат дальнейшему развитию:

1.Производство водорода из воды с использованием не возобновляемых (газ. нефть, уголь, атомная энергия) и возобновляемых источников энергии (солнце, ветер, биомасса, водные и терминальные источники и т. д).

2.Транспортировка и хранение водорода в крупных и мелких масштабах (увеличение безопасности и уменьшение стоимости).

3.Использование водорода в промышленности, на транспорте (наземном, воздушном, водном и подводном), в быту.

4.Водородное материаловедение и безопасность энергетических систем.

Глава 1. Характеристика водорода и водородного топлива

Водоро́д — химический элемент периодической системы Менделеева с обозначением H и атомным номером 1, самый лёгкий из элементов периодической таблицы. Водород — наиболее распространенный элемент во Вселенной, на долю водорода приходится около 92% всех атомов (8% составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1%). Водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца — 6000°С) и межзвёздного пространства, которое пронизано космическим излучением, этот элемент существует в виде отдельных атомов. В земной коре из каждых 100 атомов 15 приходится на водород. В плотной части земной коры (16 км), включая воду и атмосферу, содержится примерно 0,88% (масс.) или 15,4% (ат.) водорода. Солнце содержит 57% (масс. водорода и 40% гелия. При обычных температуре и давлении воздуха на Земле водород можно встретить в виде бесцветного двухатомного газа (H2). Однако, большая часть водорода на Земле содержится в органических соединениях (в связке с углеродом) и воде (H2O).

При стандартных температуре и давлении водород — бесцветный, не имеющий запаха и вкуса, не токсичный двухатомный газ с химической формулой H2, который в смеси с воздухом или кислородом горюч и крайне пожаро — и взрывоопасен, в 14,38 раза легче воздуха, при плотности его 0,089870 г/л.

Жидкий водород существует в очень узком интервале температур от − 252,76 до − 259,2°C, является бесцветной жидкостью, очень лёгкая (плотность при − 253°C — 0,0708 г/с м3) и текучая (вязкость при − 253°C — 13,8 спуаз). Критические параметры водорода очень низкие: температура − 240,2°C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. Жидкий водород примерно в 15 раз легче воды, он представляет собой прозрачную бесцветную легкоподвижную жидкость, которая не проводит электричество и обладает небольшим поверхностным натяжением. Жидкость водорода нетоксична, но пожаро — и взрывоопасна. Температура взрывного самовоспламенения в воздухе 577°C.

Твердый водород образуется при охлаждении водорода до 259ºС и представляет собой белую пенообразную или снегоподобную массу, плотность которой в 12 раз меньше плотности воды.

В 2017 году физики из США заявили о получении металлического водорода, в 2019 году французскими физиками были подтверждены условия существования водорода в металлической форме — при увеличении внешнего давления до 500 ГПа атомы водорода начинают проявлять металлические свойства. Металлический водород — метастабильный материал, представляющий компактное, эффективное и чистое топливо. При этом высвобождаемая энергия не требует окисления с кислородом, а выделяется при фазовом переходе из металлического состояния в газообразное. Плотность металлического водорода сравнима с плотностью воды, поэтому энергетическая емкость металлической водородной ячейки объёмом 1 литр (1 кг) составляет ~216 МДж энергии, что только в ~6,5 раза превышает энергоемкость того же объема жидкого углеводородного топлива при огромной энергоемкости процесса.

Водород обладает сильными восстановительными свойствами, он может отнимать кислород или галогены от многих металлов и металлоидов, но при 25ºС и 0,1 МПа его химическая активность невелика, и в этих условиях он медленно реагирует даже с кислородом, с металлоидами он более активен, чем с металлами. При повышенных температурах водород вступает в соединения со многими элементами. Реакционная способность водорода возрастает под действием света (ультрафиолетовые лучи), также под действием электрической искры и электрического разряда, кроме того, в присутствии катализаторов, под действием элементарных частиц атомного распада. Эта способность водорода в момент его выделения объясняется тем, что при этом реагируют не только молекулы, но и атомы водорода. Атомный водород уже при комнатной температуре соединяется с серой, фосфором, мышьяком, кроме того, при комнатной температуре он восстанавливает оксиды ряда металлов, а также вытесняет некоторые металлы (Cu, Pb, Ag и др.) из их солей.

Водород — универсальный энергоноситель, как топливо он имеет высокое содержание энергии на единицу массы. Массовая теплотворность способность водорода составляет 120 МДж/кг и является самой высокой среди традиционных химических видов топлива: природный газ — 48,5 МДж/кг, бензин — 45,5 МДж/кг, дизельное топливо — 42,6 МДж/кг, уголь — 29,4 МДж/кг. Однако, если сравнивать эти же виды топлива по объемной теплотворной способности, то водород при нормальных условиях будет обладать самой низкой величиной энерговыделения — 10 МДж/м3, это следствие низкой плотности водорода р=0,08987 г/л.

При соединении водорода с кислородом в электрохимическом генераторе (ЭХГ) происходит прямое преобразование химической энергии в электричество с высоким коэффициентом полезного действия.

В присутствии других окисляющих газов, например фтора или хлора, водород также взрывоопасен. Поскольку водород охотно формирует ковалентные связи с большинством неметаллов, большая часть водорода на Земле существует в молекулярных соединениях, таких как вода или органические вещества. Водород играет особенно важную роль в кислотно-основных реакциях. Растворим в этаноле и ряде металлов: железе, никеле, палладии, титане, платине, ниобии.

У водорода имеется три изотопа, которые имеют собственные названия:1H — протий, 2H — дейтерий и 3H — тритий (радиоактивен). Протий — единственный стабильный нуклид, не имеющий нейтронов в ядре (атом содержит один протон и один электрон, рис.1.1, а.

Рис.1.1. a) Протий б) Дейтерий в) Тритий

Протий составляет 99,9885 ± 0,0070% от общего числа атомов водорода во Вселенной и является наиболее распространённым нуклидом в природе среди изотопов всех химических элементов. Обычно, когда говорят о водороде, имеют в виду именно лёгкий водород — протий.

Дейте́рий-тяжёлый водород, обозначается символами D и 2H — стабильный изотоп водорода с атомной массой, равной 2. Ядро (дейтрон) состоит из одного протона и одного нейтрона, рис 1.1. б.

Три́тий — радиоактивный изотоп водорода. Обозначается T или 3H. Ядро трития состоит из протона и двух нейтронов, его называют тритоном, рис.1.1.в.

Протий и дейтерий стабильны. Содержание этих изотопов в природном водороде составляет 99,9885 ± 0,0070% и 0,0115 ± 0,0070% соответственно. Оно может незначительно меняться в зависимости от источника и способа получения водорода. Тритий нестабилен, претерпевает бета-распад с периодом 12,32 года, превращаясь в стабильный гелий-3. Тритий встречается в природе в следовых количествах, образуясь главным образом при взаимодействии космических лучей со стабильными ядрами, при захвате дейтерием тепловых нейтронов и при взаимодействии природного изотопа лития-6 с нейтронами, порождёнными космическими лучами.

В свободном состоянии водород встречается крайне редко, лишь в очень незначительном количестве (в виде простого вещества водород содержится в атмосфере в количестве 0,00005% по объему для сухого воздуха. Водород выделяется в свободном состоянии при извержении вулканов, находится в газообразных продуктах выделения фумарола, а также присутствует в виде включений в калийных солях, некоторых других минералах, в изверженных горных породах (гранит, гнейсы, базальты) и в некоторых природных и попутных газах ряда нефтяных месторождений, однако, в результате геологических процессов в атмосферу переходит гораздо меньше водорода, чем от биологических превращений.

Водород имеется в различных видах горючего, таблица 1.1.

Таблица 1.1. Примерное содержание водорода в различных видах горючего.

Значение водорода в химических процессах, происходящих на планете, почти так же велико, как и кислорода. При сжигании в чистом кислороде единственные продукты — высокотемпературное тепло и вода. При сгорании не образует никаких вредных веществ: нет сгоревших частиц и сажи, отсутствует тепловой выброс, исключено образование углекислого газа, что снижает вероятность увеличения парникового эффекта. Главным источником водорода на планете является вода. При ее разложении образуются молекула кислорода и две молекулы водорода. Кроме воды, источниками водорода могут быть газ, уголь, биомасса, причем как растений, так и отходов.

Эффективность водородной энергетики зависит от увеличения плотности и, соответственно, повышения энергоёмкости водорода. На рис.1.2. показана удельная энергоемкость водорода и различных топлив по массе и по объему. Энергосодержание 1 г водорода эквивалентно энергосодержанию около 3 г бензина. При использовании водорода в топливных элементах вследствие высокого КПД топливного элемента (в 1,5–3 раза больше, чем у двигателя внутреннего сгорания) эффективность водорода, как топлива оказывается еще выше (в 4–10 раз).

Но при переходе на водородное топливо неизбежно появление новых технических проблем, поскольку водород представляет собой искусственный энергоноситель, который должен быть получен из существующих в природе веществ, таблица 1.2.

Основные проблемы водородной энергетики заключаются в том, что получение вещества сопряжено с необходимостью расхода других энергоносителей (нефть, электроэнергия, газ), а также высокой угрозой образования взрывов. Специалисты стремятся устранить эти проблемные аспекты. Имея низкую вязкость, водород без проблем транспортируется по трубам. Его можно хранить в сжиженном, газообразном состоянии. Он довольно легок, имеет продолжительный срок хранения.

Рис.1.2. Удельная энергоемкость водорода и различных топлив

Современные технологии водородной энергетики позволяют получать качественный топливный материал с высоким коэффициентом теплоотдачи.

Недостатки водородного топлива:

–водород более взрывоопасен, чем, например, метан;

–объемная теплота сгорания водорода в три раза меньше, чем у природного газа;

–относительно высокая цена при промышленном получении водорода (два основных направления получения водорода — электролиз и плазмохимия.

При электролизе для получения одного кубометра водорода требуется 4–5 киловатт-часов электроэнергии. Это дорого. Например, производство такого же количества бензина обходится примерно втрое дешевле). И всё же преимуществ у водородного топлива гораздо больше, чем недостатков. Таким образом, водород является перспективной заменой используемым сейчас источникам энергии.

Главные направления использования водорода сегодня — в нефтепереработке и в химической промышленности (для производства различных товаров, в первую очередь — аммиака и метанола), рис. 1.3.

Таблица 1.2. Свойства водорода как энергоносителя

Энергетическое использование водорода, по данным ARENA, оценивается всего в 1–2% от общих объемов его потребления. Общий объем производства водорода в мире в настоящее время оценивается различными источниками в 55–65 млн тонн, причем совокупные среднегодовые темпы его роста за последние 20 лет невысоки — около 1,6%. Более 90% водорода производят на месте его потребления.

Резкое увеличение интереса к водороду как к горючему и энергоносителю, наблюдаемое в мире в последние десятилетия, определяется его следующими основными особенностями:

–запасы водорода практически не ограничены,

–водород — универсальный вид энергоресурса, он может использоваться в качестве горючего для производства электроэнергии в рабочих циклах различного типа и в качестве энергоносителя для транспортировки в газообразном, жидком и связанном состояниях,

–при помощи водорода возможна аккумуляция энергии,

–среди прочих видов органического топлива водород отличается наибольшей теплотворной способностью на единицу массы и наименьшим отрицательным воздействием на окружающую среду.

Для массового использования водорода в энергетике важно разработать экономически выгодные условия его получения и создать необходимую инфраструктуру, обеспечивающую доставку и хранение водорода. Он не является первичным источником энергии, как нефть или природный газ, но может быть использован в качестве энергоносителя.

Рис. 1.3. Направления использования водородa

В существующих реалиях «водородная энергетика», дополняющая традиционную энергетику, основанную на органическом топливе, рассматривается:

–как способ производства водорода с использованием не возобновляемых и возобновляемых источников энергии (органическое топливо, энергия АЭС, гидроэнергетика, энергия солнца, ветра, биомассы);

–надежное хранение и транспортировка водорода;

–использование водорода в энергетике, промышленности, на транспорте и в быту;

–обеспечение надежности и безопасности водородных энергетических систем.

Концепция «водородной энергетики» включает в себя решение целого комплекса проблем, рис.1.4.

Показанная технологическая цепочка водородной энергетики дает общее представление о масштабности и сложности решения проблемы.

Рис.1.4. Технологические цепочки водородной энергетики

Глава 2. Методы производства водорода

Водород можно получать на основе различных источников сырья, применяя для этого самые разнообразные технологии. Около 68% производимого в настоящее время водорода получают риформингом (конверсией) природного газа (метана, попутного нефтяного газа), 16% — риформингом нефти и жидких нефтепродуктов, 11% — газификацией угля и 5% — электролизом воды. В разработке находятся также новые способы получения водорода, включая биохимические методы, термохимическое расщепление воды энергией солнца, высокотемпературный электролиз и другие.

По способу производства водорода в Европейском Союзе принята классификация водорода по цвету, рис.2.1.

1. «Зеленый водород» — является самым экологичным, т. к. получают его с помощью электролиза, если электричество поступает от ВИЭ, таких как ветер, солнечная или гидроэнергия, выбросы СО2 отсутствуют.

2.«Желтый и оранжевый водород» — как и зеленый получают путем электролиза, однако, источником энергии являются атомные электростанции, энергия передается по сетям, выбросы СО2 отсутствуют, но метод не является абсолютно экологичным

3.«Бирюзовый водород» — получают разложением метана на водород и твердый углерод путем пиролиза. Дает относительно низкий уровень выброса углерода, который может быть, либо захоронен, либо использован в промышленности, и он не попадает в атмосферу.

4.«Голубой водород» — производится путем паровой конверсии метана и газификации угля, но при условии улавливания и хранения углерода, что дает примерно двукратное сокращение выбросов углерода.

5.«Серый водород» — производится путем паровой конверсии метана, пиролиза природного газа/угля и газификации угля.

Рис.2.1. Классификация водорода в Европейском Союзе

С помощью газификации бурого угля образуется синтез-газ — смесь углекислого газа (CO2), монооксида углерода (CO), водорода, метана и этилена. Очень неэкологичный процесс по сравнению с другими методами.

Производство серого водорода значительно отличается от производства зелёного водорода. В наши дни водород в основном производится за счет паровой конверсии метана (SMR, steam methane reforming) — из природного газа или после газификации угля. Этот отработанный в промышленных масштабах, дешевый процесс еще долго не будет иметь никаких конкурентов по себестоимости получаемого водорода (1–2 долл./кг в зависимости от цены газа и угля). Но в эпоху «энергетического перехода» не менее важной характеристикой процессов становится их углеродный след. Паровая конверсия метана приводит к эмиссии углекислого газа — 10 кг СО2/кг H2. Поэтому такой водород называют «серым» — в зависимости от сырья (газ или уголь) он либо сопоставим с обычным природным газом, либо в 2,5 раза хуже него по этому показателю. Очевидно, для декарбонизации экономики лучше использовать природный газ, чем «серый» водород — поэтому он не может быть частью водородной экономики будущего. Одна из альтернатив — производство «серого» водорода только в комбинации с технологиями по улавливанию и хранению углекислого газа (CCS — carbon capture and storage). Полученный таким образом водород называют «голубым» В отличие от SMR, технологии CCS еще далеки от полномасштабной коммерциализации. По данным Global CCS Institute, в 2018 году в мире насчитывалось лишь 18 крупных проектов с технологией улавливания СО2, еще 5 было в стадии строительства и 20 — в различных стадиях разработки.

В апреле 2019 года получил положительное заключение экологической экспертизы демонстрационный проект производства «голубого» водорода из бурого угля бассейна Латроб-Валли в Австралии с последующим экспортом водорода в Японию — Hydrogen Energy Supply Chain, развиваемый под управлением японской фирмы Kawasaki.

Голубой водород имеет хорошие перспективы в странах экспортерах ископаемого топлива, где цена его невелика — хотя коммерциализация технологии CCS потребует еще значительных усилий.

Вторая альтернатива «серому» водороду — «зеленый» водород, получаемый электролизом с помощью энергии с минимальным углеродным следом — в первую очередь, от ВИЭ. Не всякий водород, получаемый электролизом, можно называть «зеленым» — всё зависит от углеродного следа используемой для этого электроэнергии. Так, большинство известных установок в Германии пока используют электроэнергию из энергосистемы, а не исключительно от ВИЭ, поэтому из-за в целом довольно высокого ее углеродного следа получаемый водород является «серым». Подключение электролизера изолированно к ВИЭ может решить эту проблему — но в этом случае загрузка электролизера падает примерно вдвое: она не может быть выше коэффициента использования установленной мощности ВИЭ. Только «зеленый» водород, полученный от ВИЭ, является краеугольным камнем для водородной экономики в целом, вокруг него концентрируются исследования в большинстве водородных программ.

В то же время, энергокомпании с существенным портфелем АЭС тоже претендуют на свое место на глобальном рынке водорода. В апреле 2019 года французская EDF, владеющая 58 атомными энергоблоками, заявила о запуске дочернего бизнеса Hynamics, который сосредоточится на поставках и обслуживании электролизеров, а также заправке водородного транспорта. Полученный таким образом водород на базе электроэнергии АЭС также будет иметь минимальный углеродный след. Стоит отметить, что интерес к «зеленому» и «голубому» водороду явно растет. По данным МЭА, в течение последних семи лет в среднем в мире вводили в эксплуатацию около 10 МВт электролизеров ежегодно. Инвестиции в электролизеры растут — совокупная мощность установок может почти утроиться в ближайшие 2–3 года. Для полноценной коммерциализации нужно перейти через границу в 90 МВт/год.

Еще один способ уменьшить углеродный след — частично использовать в качестве сырья биомассу/биогаз.

Основные компоненты водородной энергетики представлены на рис.2.2.

Рис. 2.2. Основные компоненты водородной энергетики

Для получения водорода в данный момент существует множество различных путей из ряда известных источников. Среди источников получения водорода можно выделить природное топливо: метан, уголь, древесина, нефтепродукты, техногенные горючие газы. При взаимодействии топлива с парами воды или воздухом образуется синтез-газ — смесь СО и Н2, которого затем выделяется водород.

Другой источник — отходы сельскохозяйственного производства, из которых получают биогаз, а затем — синтез-газ. Промышленно-бытовые отходы тоже используются для производства синтез-газа, что способствует одновременно и решению экологических проблем, поскольку отходов много и их нужно утилизировать. В конечном счете образуются углекислый газ, водород и окись углерода.

Дальше идет каталитическая очистка, электрохимическая конверсия и т.д. Очень важным элементом при преобразовании газа, содержащего водород, является очистка газа. В конечном счете получается чистый водород. Водород можно получать также электролизом воды, то есть разложением ее под воздействием электрического тока, получаемого от различных источников энергии. В дальнейшем полученный водород поступает в системы хранения или транспортируется к потребителям.

Существует четыре основных источника промышленного производства водорода: природный газ, нефть, уголь и электролиз.

В последние годы особое внимание обращают еще на один важный природный источник метана — Мировой океан. Когда метан, поднимаясь из недр земли, встречается с водой, просочившейся сквозь трещины земной коры, он сразу остывает. При этом образуется вещество — гидрат метана. Это горючее вещество, его запасы превышают запасы нефти, угля и природного газа, вместе взятые.

В условиях истощения запасов привычных видов топлива оно может сыграть весьма положительную роль в энергетике, но его использование может привести к изменению климата.

Разнообразие источников получения водорода является одним из главных преимуществ водородной энергетики, так как повышает энергетическую безопасность и снижает зависимость от отдельных видов сырья.

Методы получения водорода подразделяются на физические, электрохимические и химические.

К физическим методам относятся те процессы, в которых исходное сырье (газовая смесь) уже содержит свободный водород и требуется тем или иным физическим путем освободить его от остальных компонентов.

В электрохимических методах выделение водорода из его химических соединений осуществляется разложением последних под действием электрического тока.

Химические методы являются наиболее распространенными способами получения водорода в целом и, в особенности для нефтеперерабатывающей и нефтехимической промышленности.

В настоящее время существует некоторые способы промышленного производства водорода:

паровая конверсия метана и природного газа;

газификация угля;

электролиз воды;

пиролиз;

частичное окисление;

биотехнологии.

Также в редких случаях используется реакция алюминия и щелочного раствора.

Паровая конверсия метана и электролиз — это базовые технологии, вокруг которых, по мнению большинства исследователей, будет развиваться сектор производства водорода. Среди других способов можно выделить риформинг плазмы; риформинг на основе ионных мембран; конверсию метана с усилением сорбентом; микроканальные реакторы; разложение (пиролиз) метана с выделением углерода в твердом виде; высокотемпературные газоохлаждаемые ядерные реакторы и т.д. Эти технологии пока находятся на еще более ранних стадиях коммерциализации.

2.1. Паровая конверсия природного газа

В настоящее время крупнотоннажное производство водорода и водородосодержащих продуктов осуществляется в мире в основном путем паровой конверсии метана, являющегося основным компонентом природного газа и содержащего 25% водорода.

Паровая конверсия метана (ПКМ) — получение чистого водорода из лёгких углеводородов (например, метана, пропан-бутановой фракции) путём парового риформинга (каталитической конверсии углеводородов в присутствии водяного пара). Реформирование газового пара является самым популярным и самым дешевым способом производства водорода.

Метан–основной компонент природного газа, его концентрация в нём достигает от 77 до 99%. Высокое содержание метана и в попутных нефтяных газах — от 31 до 91%. Метан представляет собой фактически большую молекулу водорода, которая состоит из одного атома углерода и 4-х атомов водорода. Чтобы отделить водород от углеродной основы в метане, требуются пар и тепловая энергия при температурах 750–850°С, что и происходит в химических паровых риформерах на каталитических поверхностях. Процесс заключается в нагревании газа в присутствии водяного пара, никелевого катализатора и при давлении 2 МПа (около 19 атмосфер). Результирующая эндотермическая реакция расщепляет молекулы метана и образует оксид углерода CO и водород H2. Затем газообразный оксид углерода можно пропустить с паром через оксид железа или других оксидов и подвергаются реакция конверсии водяного газа для получения дополнительных количеств H2. Обратной стороной этого процесса является то, что его основными побочными продуктами являются CO, CO2 и другие парниковые газы. При одной тонне произведенного водорода также будет производиться от 9 до 12 тонн CO2, парниковый газ, который может улавливаться.

Конверсия парового природного газа обычно происходит в два этапа. Первый этап осуществляется в трубах, заполненных никелевым катализатором, нанесенным на алюминиевую подложку, рис. 2.3.

Рис.2.3. Схема реактора паровой конверсии природного газа

На этом этапе расщепляется метан и водяной пар на водород и монооксид углерода (синтез-газ):

СН4+ Н2О ↔ СО + 3Н2–206 кДж/моль.

На втором этапе выход водорода увеличивается благодаря дополнительной реакции СО с водой при пониженных температурах в присутствии катализаторов

«Реакция сдвига» превращает монооксид углерода и воду в диоксид углерода и водород:

СО + Н2О ↔ СО2+ Н2+ 44 кДж/моль.

Эта реакция происходит при температурах 200–250°С. При осуществлении указанных реакций может быть извлечено около 96% водорода, а необходимая теплота процесса получается при сжигании части природного газа. Тепло, необходимое для процесса, подается через стенки труб, нагретых снаружи путем сжигания другой части природного газа.

Очистка продуктового водорода производится в блоке короткоцикловой адсорбции (КЦА).

В парокислородной конверсии вместе с горячим паром в активную зону реактора подаётся кислород. Реакции процесса аналогичные, однако, дополнительно происходит окисление метана кислородом:

CH4+O2 ↔ 2CO+3H2.

Реагирование веществ в парокислородной конверсии метана даёт общий результирующий тепловой эффект, равный нулю. Это делает установку дороже на 5–10 %.

Главное преимущество парокислородной конверсии по сравнению с ПКМ — передача теплоты напрямую, а не через стенку теплообменника. Сравнение характеристик ПКМ и парокислородной конверсии представлено в таблице 2.1.

Таблица 2.1. Сравнение характеристик ПКМ и парокислородной конверсии

В настоящий момент уже разработан высокоэффективный проточный мембранный аппарат для одновременного риформинга метана и окисления СО на никелевых и палладиевых катализаторах. Чистота водорода достигает 99,999 %, тогда как при конверсии природного газа — всего 76,2%.

Наиболее критическими параметрами в этом способе производства водорода являются выбор оптимальной температуры процесса и выбор материала катализатора, т. е. его состава, а также стабильность работы такого катализатора. Для этих целей используются следующие типы катализаторов.

1.Разложение метана в присутствии массивного металлического катализатора (Fe, Co, Ni) при Т = 650–720°С.

2. Разложение углеводородных газов на поверхности железосодержащего катализатора при Т = 850–900°С под давлением 1–35 атм.

3.Разложение метана или других углеводородов на поверхности брикетированной сажи с никелем или сажи с железом при температурах ниже точки разложения этих соединений.

4.Разложение метана на поверхности катализаторов Ni/Al2O3 или Ni/Mg при Т =500–550°С.

5.Разложение метана на поверхности катализаторов Ni-Cu/Al2O3 или Ni-Cu/Mg при Т = 560–650°С.

Схема процесса конверсии метана следующая, рис.2.4.

Процесс конверсии метана состоит из следующих стадий.

1. Природный газ с содержанием CH4–97% поступает в сатуратор (1), где нагревается до 80°C и насыщается водяным паром, затем поступает в теплообменник (2).

2. В теплообменнике (2) газ нагревается до 500°C отходящими конверторными газами, смешивается с кислородом или воздухом и подаётся в конвертор (3).

Рис.2.4. Схема процесса конверсии метана

3. В конверторе (3) сначала идут экзотермические реакции:

CH4+ ½O2CO + 2H2+ Q

CH4+ 2O2CO2+ 2H2O + Q

и температура повышается до 1000°C. Затем протекают эндотермические реакции:

CH4+ H2OCO + 3H2 — Q

CH4+ CO22CO + 2H2 — Q

Конвертированный газ содержит H2–51–54%, N2(если подавали воздух) — 20%, CO — 20%, CO2–7%, CH4–0,5%.

4. Затем газ увлажняется в увлажнителе (4), охлаждается до 400–500°C в теплообменнике (2) и поступает в конвертор CO (5).

5. В конверторе CO (5) газ проходит ряд тарелок с катализатором, охлаждаясь между ними конденсатом.

6. Далее проходит через теплообменник (6).

7. И в промывной башне (7) очищается от твёрдой части и от CO, CO2, O2 методом последовательной конденсации.

В итоге получается либо чистый водород в случае использования для конверсии метана чистого кислорода, либо азото-водородная смесь, если используют в качестве окислителя воздух.

Технология получения водорода обычно включает очистку сырья от серосодержащих соединений, каталитическую конверсию углеводорода (УВ) с водяным паром и 4-хстадийную очистку конвертированного газа от оксидов углерода. Такую схему можно назвать классической, рис.2.5.

Рис.2.5. Блок-схема производства водорода и азотоводородной смеси конверсией легких углеводородов

Конкретным сырьем могут служить любые УВ газы (природные, попутные), нафта и т.п. Для получения 1 т водорода требуется 5–6,6 тыс. м3 природного газа.

Обессеривание сырья — удаление газообразных сернистых соединений, поскольку они являются сильными каталитическими ядами. Это стадия подготовки сырья для производства водорода и АВ смеси.

2.1.1. Пиролиз метана

Пиролиз метана — это умеренно эндотермический процесс разложения природного газа (органического сырья). Пиролиз метана является альтернативным подходом к получению водорода из природного газа без образования CO2 в ходе реакции: CH4→ C↓ + 2H2↑

Пиролиз — это процесс разложения метана на водород и чистый углерод, но только не в виде газа, а в твёрдом состоянии. Соответственно, углекислый газ не выбрасывается в атмосферу, а складируется в твёрдом состоянии. Данный метод не требует улавливания и подземного хранения, поэтому может применяться в качестве промышленного материала для производства углеродных материалов.

При пиролизе метана образуется водород, который может быть использован в энергетике, транспортном секторе, в промышленных/химических процессах, и для снижения выбросов загрязняющих веществ и парниковых газов, а также углерода в твердой форме.

Пиролиз метана относится к целому ряду процессов (по аналогии с конверсией метана), которые могут быть разделены на 4 больших класса — термический пиролиз, каталитический пиролиз, плазменный пиролиз, а также отдельно может быть выделен пиролиз в расплавах металлов.

В настоящее время процессы получения водорода пиролизом метана не выведены на промышленный уровень, но научные исследования ведутся по всем четырем направлениям. В то время, как компании BASF, Thyssenkrupp и Linde сосредоточились на процессе термического пиролиза, американская компания Monolith занимается плазменным пиролизом. Другой подход применяют IASS и KIT — использование жидкого металла в качестве теплоносителя. Напротив, австралийский процесс HAZER® компании Hazer Group основан на каталитическом пиролизе метана.

Для термического разложения метана необходимы высокие температуры (выше 1000°C). Использование катализатора помогает увеличить скорость реакции и таким образом снижает температуру, требуемую для конверсии природного газа. Технологической особенностью такого процесса является периодическое восстановление катализатора, что сопровождается выбросами диоксида углерода и повышает «углеродный след» получения водорода.

Плазменный пиролиз — это способ разложения метана в плазме (например, сверхвысокочастотного разряда). В этом случае в качестве источника энергии используется электроэнергия (сетевая или возобновляемая) и, соответственно, процесс не сопровождается «прямыми» выбросами диоксида углерода. Существенным преимуществом пиролиза метана является меньший удельный расход электроэнергии (оценивается менее 20 кВтч на килограмм водорода в сравнении, например, с электролизом воды.

При температурах выше 600°С происходит глубокое разрушение углеродной цепи алканов с образованием этилена (600–900°С), ацетилена (-1000°С) или сажи и водорода (1100–1600°С). Изменения продуктов реакции в зависимости от температуры отчетливо видны при пиролизе метана.

Деструкция метана при температурах выше 1200°С происходит очень глубоко с разрушением всех связей С — Н, что приводит к образованию сажи (углерода) и водорода.

При частичном окислении метан и другие углеводороды в природном газе вступают в реакцию с ограниченным количеством кислорода (как правило, из воздуха), которого недостаточно для полного окисления углеводородов до углекислого газа и воды. При меньшем, чем стехиометрическое количество кислорода, продукты реакции содержат в основном водород и монооксид углерода (и азот, если реакция проводится с воздухом, а не с чистым кислородом), а также относительно небольшое количество диоксида углерода и других соединений. Затем, в реакции переноса воды-газа, окись углерода реагирует с водой для того, чтобы сформировать углекислый газ и больше водорода.

Производство водорода из природного газа или других углеводородов достигается также частичным окислением. Смесь топливо-воздух или топливо-кислород частично сгорает, что приводит к обогащению водородом синтез-газа. Водород и монооксид углерода получают в результате реакции конверсии водяного газа. Двуокись углерода может подаваться совместно для снижения отношения водорода к монооксиду углерода.

Частичное окисление является экзотермическим процессом, оно выделяет тепло. Этот процесс, как правило, намного быстрее, чем паровая конверсия, и требует меньшего объема реактора. Как видно из химических реакций парциального окисления, этот процесс изначально производит на единицу вводимого топлива меньше водорода, чем получается при паровой конверсии того же топлива.

Парциальное окисление реакции метана:

CH4+ ½O2→ CO + 2H2 (+ тепло)

Водогазовая сдвиговая реакция:

CO + H2O → CO2+ H2 (+ небольшое количество тепла)

В частичное окисление реакция происходит, когда субстехиометрический топливно-воздушная смесь или топливо-кислород частично сгорел в реакторе риформинга или частичного окисления. Различают частичное термическое окисление (TPOX) и каталитическое частичное окисление (CPOX).

Получение водорода в условиях промышленности связано с процессом выделения его из природного газа, вернее, из его основного компонента метана. Его смешивают с кислородом и паром воды. Выделение водорода происходит при высоких температурах. При нагревании смеси указанных газов до 800–900°C происходит реакция в присутствии катализатора, которая схематически может быть представлена в виде уравнения:

2CH4+ O2+ 2H2O → 2CO2+ 6H2

Затем полученную газовую смесь разделяют. Выделенный при этом водород очищается и используется или на месте получения, или транспортируется в нужное место под повышенным давлением в стальных баллонах.

Не менее важным способом получения водорода в промышленности является его выделение из газов переработки нефти или из коксового газа. Благодаря глубокому охлаждению, свойственному данному методу, все газы сжижаются, кроме водорода.

2.1.2. Производство метано-водородной смеси технологией адиабатической конверсией метана

Разработанная в России новая технология адиабатической конверсии метана существенно упрощает промышленный процесс получения метано-водородной смеси (МВС), поскольку не требует производства кислорода, энерго — и капиталозатратного электролиза воды, происходит при более низких температурах (до 680°С) и построена на отработанных в крупнотоннажной химии технологических решениях, режимах и катализаторах. Адиабатическим процессом называется процесс, идущий без теплообмена с окружающей средой

Принципиальная схема получения метано-водородной смеси по технологии адиабатической конверсии метана (АКМ) изображена на рис.2.6.

Рис.2.6. Принципиальная схема получения метано-водородной смеси

Природный газ, очищенный от сернистых соединений, поступает в узел смешения с водяным паром. Водяной пар поступает из котла-утилизатора. Природный газ с водяными парами при температуре примерно 450°С поступают в огневой подогреватель. На выходной линии огневого подогревателя температура смеси составляет примерно 680°С. С такой температурой смесь поступает в адиабатический реактор. В реакторе, благодаря адиабатической конверсии метана, получаем метано-водородную смесь и водяные пары с температурой примерно 590°С. Так как в адиабатическом реакторе часть воды тратится для получения водорода, производится постоянная подпитка воды в систему. Перед тем как попасть в систему вода проходит через фильтр. Все расходные показатели по природному газу, метано-водородной смеси, водяному пару и воде показаны на схеме.

В данной установке при подаче на вход природного газа в количестве 1000 нм3/ч, а на выходе из установки получают метано-водородную смесь в количестве 1792 нм3/ч, а компонентный состав входного природного газа и выходной метано-водородной смеси показан в таблице 2.2.

Таблица 2.2. Компонентный состав входного природного газа и выходной метано-водородной смеси

Входящий продукт (природный газ) в основном состоит из метана (99%). Выходящий продукт является смесью трех компонентов: водяного пара — 67,7% (об.), водорода — 13,6% (об.) и метана — 15%. Повышенное содержание по сравнению с входящим продуктом имеют: диоксид углерода — 3,3% и оксид углерода — 0,233%. Однако при использовании МВС в качестве топливного газа выбросы СО2 и СО уменьшаются в полтора раза. Расчеты специалистов показали, что содержание водорода в МВС может изменяться от 0 до 44–48% как путем изменения температуры нагрева парогазовой смеси, так и путем разбавления товарной МВС природным газом.

Метано-водородное топливо может быть преобразовано в дальнейшем в синтез-газ для применения в процессах газохимии (GTL), либо из него может быть выделен водород как целевой продукт для различных отраслей с помощью методов PSA (короткоцикловой адсорбции) или мембранных крупнотоннажных технологий, освоенных в мировой практике.

2.2. Газификация угля

Газификация угля — процесс высокотемпературного взаимодействия угля с парами воды, кислородом, диоксидом углерода или их смесями, с целью получения горючих газов: Н2, СО, СH4. Они могут использоваться как топливо и как сырье для химической промышленности. Газифицироваться могут практически все виды газообразных, жидких и твердых топлив. Выбор сырья для процесса обычно бывает обусловлен экономическими соображениями, а иногда — направлением дальнейшей переработки образующейся газовой смеси.

Существуют различные типы процессов газификации углей. Наиболее эффективным и отработанным в промышленном масштабе, является процесс газификации угля под давлением, позволяющий получать как средне калорийный бытовой газ, так и газ для последующего синтеза. Существуют различные технологии газификации углей, отличающихся организацией процесса взаимодействия топлива и окислителя. Например, газификация с неподвижным или псевдоожиженным слоем или же со с путным потоком пылевидного топлива. Газификация проводится в специальных аппаратах — газогенераторах, которые также отличаются друг от друга в зависимости от типа процесса. При использовании воздушного дутья получается низкокалорийный газ (до 7 МДж/м3), в случае кислородного дутья — средне калорийный газ (до 17 МДж/м3). В то время как генераторы с воздушным дутьём работают при атмосферном давлении, генераторы с кислородным дутьём работают преимущественно при повышенных давлениях, что приводит к увеличению выхода метана.

Газификацией твердого топлива с парокислородным дутьем происходит под высоким давлением при температуре около 1500°С и последующим метанированием. На рис.2.7 схематически показаны реакционные зоны газификатора. В нижней части реактора непосредственно над колосниковой решеткой, через которую непрерывно поступает газифицирующий компонент (перегретый пар и кислород), находится зона горения (окислительная зона) с основными реакциями образования СО2. Над ней расположена первичная восстановительная зона (зона теплопоглощения) с основными реакциями раскалённого углерода и водяного пара, в которой генерируется Н2. Еще выше находится вторичная восстановительная зона (зона прогрева топлива) с основными реакциями образования СО, СО2 и Н2.

Рис.2.7. Реакционные зоны в газогенераторе

Образовавшийся в окислительной и восстановительных зонах диоксид углерода (при недостатке кислорода) восстанавливается новыми порциями углерода в оксид углерода СО. При взаимодействии СО и Н2 может образовываться метан, который в процессе подвергается термическому распаду СО + 3Н2 = СН4 + Н2О + 203,7 МДж/кмоль, СН4 = С + 2Н2–71,1 МДж/кмоль.

В верхней части реактора имеется газовое пространство с газ выпускным отверстием. Ниже располагается зона выделения летучих или зона полукоксования. Сочетание всех этих основных реакций определяет состав образующегося газа, который изменяется по высоте газификатора. Таким образом, генераторный газ обычно получают продуванием смеси воздуха или кислорода с паром через слой угля, организуя неполное сгорание топлива.

При анализе реакционных зон (без учёта зольной зоны над колосниками) в противоточной установке можно выделить три основные зоны. В нижней зоне происходит окисление угля до СО2 (окислительная зона), в средней зоне СО2 восстанавливается до СО (восстановительная зона). Эти зоны вместе называются зоной газификации, из которой выходят горячие газы с температурой 800–900°С. Они нагревают уголь, который подвергается пиролизу в вышележащей зоне. Эту зону принято называть зоной пиролиза (зоной выделения летучих), или зоной полукоксования. Выходящие из этой зоны газы подогревают уголь в зоне сушки. Вместе эти две зоны образуют зону подготовки топлива. В газификаторе протекают как экзотермические, так и эндотермические реакции. При этом отношение СО/СО2 зависит от различных факторов: избытка воздуха, температуры процесса и способа контактирования части топлива с окислителем и других.

В таблице 2.3 приведены характеристики продуктов термического разложения при различных температурах.

Таблица 2.3. Характеристики продуктов термического разложения (коксования) углей

Паровоздушная газификация крупнокускового топлива для получения отопительного газа осуществляется в стационарных газификаторах прямого процесса с непрерывным процессом в плотном слое, как в установках атмосферного давления с гидравлическим затвором и твердым шлакоудалением, так и в установках под давлением (процесс Лурги).

Паровоздушная газификация мелкозернистых топлив осуществляется в кипящем слое. Газификация пылевидного топлива на паровоздушном дутье практически осуществляется путем неполного сгорания в прямоточном факеле.

Видно, что в разных температурных режимах процесса газификации можно получать различные продукты, которые могут быть отобраны из газификатора после прохождения их через зоны постепенно снижающихся температур при противотоке топлива и газов (прямой процесс) или после пропускания их через зоны повышающихся температур при параллельном токе топлива и газов (обратный процесс).

Коксование — разновидность сухой перегонки (пиролиза) каменного угля без доступа воздуха, с целью получения кокса, горючих газов и сырья для химической промышленности.

Под процессом полукоксования понимают термическую переработку угля при 500–600°С, среднетемпературное коксование — при 700–800°С, высокотемпературное коксование — при 950°С и выше.

В настоящее время существует более 70 типов газогенераторных процессов, часть которых используется в промышленных масштабах. Это объясняется прежде всего различием физических и химических свойств угля из разных месторождений: по элементарному составу, происхождению, содержанию летучих веществ, содержанию и составу золы, влажности, соотношению Н/С в угольной массе, спекаемости углей, их термической стойкости. Не менее существенным является и различие во фракционном составе добываемых углей: крупнокусковой уголь, угольная мелочь, топливная пыль. Наконец, различаются требования к получаемому конечному продукту:

–генераторный (энергетический) газ с теплотой сгорания 3800–4600 кДж/нм3;

–синтез-газ (технологический) для химической технологии с теплотой сгорания 10 900–12 600 кДж/нм3;

–восстановительный газ (для металлургических и машиностроительных производств) с теплотой сгорания 12 600–16 800 кДж/нм3;

–городской газ (отопительный) с теплотой сгорания 16 800–21 000кДж/нм3;

–синтетический природный (богатый) газ для транспортировки на дальние расстояния — 25 000–38 000кДж/нм3.

При всем своем многообразии процессы газификации делят на два основных класса.

1. Автотермические процессы газификации, в которых тепло, необходимое для проведения эндотермических процессов, для нагрева газифицируемого материала и газифицирующих средств до температуры газификации (900–1200°С), производят за счет сжигания в кислороде части газифицируемого топлива до диоксида углерода.

2. Аллотермические процессы газификации, в которых сжигание и газификация разделены, и тепло для обеспечения прохождения процесса газификации подводится через теплопередающую стенку внутри единого газогенераторного объема или при помощи автономно нагретого теплоносителя, который вводится в газифицируемую среду.

Типичные составы газов, получаемых в автотермических и аллотермических процессах представлен в таблице 2.4.

Таблица 2.4. Типичные составы газов, получаемых в автотермических и аллотермических процессах

Как автотермические, так и аллотермические процессы газификации в зависимости от зернистости топлива могут протекать в плотном и «кипящем» слоях (крупнокусковое топливо), в аэрозольном потоке (топливная пыль). Эти принципы проведения гетерогенных процессов, разработанные в газогенераторной технике, получили широкое применение в химической технологии при проведении, например, гетерогенных каталитических процессов.

Для всех этих производств характерны большие единичные мощности агрегатов и отсутствие ограничений по потокам энергии. Общий вид промышленной установки газификации угля представлен на рис.2.8.

Рис.2.8. Установка газификации угля

Параметры, определяющие активность и скорость процессов газификации:

–тип газифицирующего агента: воздух, водяной пар, кислород;

–температура и давление процесса: Т=850–2000°С, р=0,1–10МПа;

–способ образования минерального остатка и его удаление: высокотемпературный процесс (1300–1400°С, зольная часть угля из генератора выводится в виде жидкого шлака, конечный продукт газификации-смесь СО+Н2; низкотемпературный или среднетемпературный процесс (1200–1250°С), зольная часть угля из генератора выводится в сухом виде;

–способ подачи газифицирующего агента: оксогазификация и гидрогазификация;

–способ отвода тепла в реакционную зону: автотермическое, аллотермическое.

К настоящему времени освоены различные модификации промышленных процессов газификации углей, наиболее распространенными из которых являются процессы Лурги (стационарный слой кускового угля), Винклера (кипящий слой угольных частиц), Копперс–Тотцека (пылеугольный поток) и их различные модификации. На опытно-промышленном уровне сейчас отрабатывается около 20 технологий газификации угля нового поколения.

2.2.1. Процесс Лурги

Газогенераторы Лурги являются одним из старейших типов газогенераторов, которые до сих пор широко используется в мире. Они работают на всем спектре углей, от антрацита до бурых углей. На рис.2.9 представлена принципиальная схема газогенератора.

Рис.2.9. Схема газогенератора Лурги

Уголь находится в реакционном объеме газогенератора примерно 1 час пока окислитель и пар протекают через решетку и слой угля. На рис. 2.10 показано как уголь и газы движутся навстречу друг другу.

Рис.2.10. Противоточное движение газ/твердое топливо

Это делает устройство газогенераторов Лурги энергоэффективной технологией газификации. Наибольшие температуры (от 615 до 760°С) достигаются сразу над решеткой, где и происходит газификация кокса. Горячие газы поднимаются вверх и поступают в камеру охлаждения, которая расположена выше зоны газификации. В средней части слоя, поднимающиеся горячие газы пиролизуют уголь, в результате чего образуются пиролизные смолы и кокс. В верхней части слоя (самый холодный участок) уголь нагревается и сушится перед поступлением в зону пиролиза. Синтез-газ и смолы выходят из реактора при температуре 370–590°С. По сравнению с другими процессами газификации, рабочие температуры в газогенераторах Лурги относительно низкие, в связи с чем не требуется их футеровка.

Вследствие того, что слой должен быть свободно движущимся, в газогенераторах такого типа могут использоваться только неспекающиеся марки углей. Высокодисперсное топливо в данной технологии не используется, т.к. мелкие частицы локально затыкают межпоровое пространство между большими кусками угля, ухудшая тем самым газодинамические свойства слоя. Средний фракционный размер используемого топлива составляет ~30 мм, что является недостатком данной технологии, т.к. требует дополнительной операции сортировки (просеивание) поступающего угля. Газогенераторы Лурги производят значительное количество смол (в зависимости от марки угля до 30% органической массы), затрудняющих их эксплуатацию, в частности это приводит к ограничению срока службы шлюзовой камеры, что является еще одним недостатком. Покидающие реактор горячие газы охлаждаются циркулирующим потоком воды. Жидкость после охладителя, состоящая из большого количества смол и надсмольной воды, используется для дальнейшего производства органических жидкостей. Надсмольная вода содержит водорастворимые соединения смол, включая фенол и крезоловую кислоту (смесь изомеров метилфенолов).

Увеличение давления позволяет существенно повысить теплоту сгорания получаемого газа за счет протекания реакций метанирования. Эти реакции экзотермичны, благодаря чему при давлении 2,8–3 МПа можно сократить потребность в кислороде на 30–35%. Кроме того, одновременно возрастает производительность газогенератора (пропорционально давлению) и повышается КПД газификации.

Этот технологический процесс доказал свою коммерческую успешность, а получаемая продукция особенно хорошо подходит для использования в производстве синтетического природного газа или восстановлении железной руды (ГБЖ).

Недостатки метода Лурги:

–жесткие ограничения по размерам частиц — не менее 5 мм (так как при большом содержании мелочи снижается производительность аппарата);

–наряду с газификацией происходит термическое разложение топлива с образованием продуктов полукоксования, которые необходимо извлекать из газа и перерабатывать;

–низкая степень разложения водяного пара (30–40%), вследствие чего остальное его количество при охлаждении газа конденсируется с образованием химически загрязненной воды, требующей тщательной очистки.

2.2.2. Процесс Копперса-Тотцека

В процессе Копперса-Тотцека твердые топлива газифицируют кислородом и водяным паром при нормальном давлении в режиме прямотока (т.е. сырье и газифицирующий агент движутся в одном направлении). На рис.2.11 представлена общая схема газификаторов такого типа. Первая промышленная установка была введена в эксплуатацию в 1952 году в Финляндии. Эта технология позволяет перерабатывать любой уголь, причем его фракционный состав не должен превышать 0.1 мм. Температура размягчения золы имеет непринципиальное значение, так как данная технология основана на жидком шлакоудалении. Пылевидный уголь (верхний предел зольности по экономическим соображениям составляет около 40% на сухую массу угля, а влажность — 6–8% для бурых и 1–2% для каменных углей) потоком азота подается в расходные бункера, откуда шнеком направляется в форсунки, захватывается потоком кислорода и водяного пара и распыляется в камеру.

Рис.2.11. Схема газификатора Копперса-Тотцека

Соотношение потоков на 0,05–0,5 кг пара. При этом подача пара организована таким образом, чтобы он «обволакивал» пылеугольный факел снаружи, тем самым предохраняя футеровку от зашлаковывания, эрозии, а также действия высоких температур. В реакционной камере достигается высокая степень превращения органической части угля с образованием смеси газов. Состав сырого газа изменяется в следующих пределах (% об.): СО — 55–66, Н2 — 21–32, С02 — 7–12, N2 — около 1, H2S — 0,5–1, СН4 — 0,1. Теплота сгорания газа составляет 10–12 МДж/м3. При использовании низко реакционного топлива (например, кокса) содержание СО2 повышается, а Н2 снижается, при высоко реакционном топливе, наблюдается противоположный эффект. Полученный газ вначале проходит котел-утилизатор, вырабатывающий пар высокого давления, затем осуществляется его очистка. После обработки в скрубберах Вентури содержание пыли составляет около 5–15 мг/м3. В случае необходимости оно может быть снижено до 0,25 мг/м3 при пропускании газа через электрофильтр. Затем газ охлаждается и подвергается обессериванию традиционными методами.

Температуры газификации составляет обычно 1500–1700°С, в следствии чего достигается высокая степень конверсии углерода, при этом почти все органические вещества угля превращаются в газообразные продукты, в которых практически отсутствуют пиролизные смолы. Это существенно упрощает очистку продукт-газа. Еще одним достоинством данного метода является возможность переработки практически любых топлив независимо от их спекаемости.

Различные конструкции реакторов данного типа позволяют проводить процесс во вращающемся или вихревом потоке, в потоке, направленном вверх или вниз, а также с переменным направлением. При любом варианте топливо сначала реагирует с кислородом, при этом достигается максимальная температура, а затем накопленный потенциал тепла расходуется в эндотермических реакциях газификации.

Для получения водорода процесс Копперса-Тотцека достаточно эффективен. Одним из недостатков процесса является необходимость в использовании дорогостоящих мельниц для тонкого размола топлива, а также повышенный расход кислорода по сравнению с другими методами газификации. Главной проблемой при эксплуатации данных газогенераторов является необходимость в обеспечении бесперебойной подачи пылевидного топлива, так как из-за малого времени его пребывания в реакционной зоне незначительные перерывы в питании могут привести к появлению свободного кислорода в камере и других частях, что может привести к взрывоопасной ситуации. Необходимо подчеркнуть, что именно этот способ сейчас наиболее распространен в мире.

2.2.3. Процесс Винклера

Газогенераторы Винклера, коммерциализованные в 1926 году, являются первым промышленным применением технологии газификации в кипящем слое. Газогенераторы Винклера работают при давлении близком к атмосферному, в режиме кипящего псевдоожиженного слоя. Уголь измельчают до размеров менее 8 мм. Как показано на рис.2.12 уголь поступает в бункер, а затем шнековым питателем подается в объем газогенератора, где создается кипящий слой.

Рис.2.12. Схема газогенераторов Винклера

Поскольку слой находится практически при атмосферном давлении, могут использоваться относительно простые системы подачи угля. Подаваемый в газогенератор газифицирующий агент, состоящий из пара, а также воздуха или кислорода, разбит на два потока. Газ, подаваемый через колосник, ожижает слой и реагирует с ним. Частицы угля в результате горения уменьшаются в размере и становятся более легкими. Примерно 30% золы проваливаются сквозь колосник и образуют «донную» золу. Оставшиеся 70% золы улавливаются гидроциклоном и возвращаются в газогенератор, увеличивая тем самым тепловую емкость и инерцию слоя, а также для повторной конверсии остатков углерода в ней.

К преимуществу технологий кипящего слоя можно отнести возможность введения дополнительных реагентов, помимо угля и инертного материала. В частности, введение в кипящий слой соединений кальция (обычно известняк или доломит) позволяет связывать серу, находящуюся в угле. Преимуществом этих газогенераторов является возможность использования более широких фракций угля, включая мелочь, которая выносится из слоя и газифицируется в надслойном пространстве. Основной же проблемой данных газогенераторов является то, что унесенная зола содержит значительное количество непрореагировавшего углерода. Температура кипящего слоя составляет примерно 1000–1100°С, что чуть ниже температуры размягчения золы. Для максимализации конверсии углерода рабочая температура слоя находится близко к этой лимитирующей температуре. Тепло отводится через верхнюю часть газификатора. Газогенераторы Винклера ранее широко использовались, но недолго, в настоящее время практически нигде не используются из-за низкой степени конверсии углерода.

В 1970–80гг. был разработан высокотемпературный газогенератор Винклера. Главным отличием от оригинальной конструкции явилась возможность работы под давлением (примерно 1 МПа). Увеличение давления позволило повысить степень конверсии углерода. Работа под давлением повлекла изменения в системе подачи угля, рис. 2.13.

Рис.2.13. Схема высокотемпературного генератора Винклера

Уголь при атмосферном давлении загружается в бункер. Далее в одной из двух шлюзовых камер сбрасывается давление и в нее поступает уголь из бункера. Затем входной клапан закрывается и в камеру нагнетается давление, после чего открывается нижний клапан и уголь проваливается на линию, где пневматически транспортируется на фильтр.

Газ после фильтра повторно идет в компрессор, а уголь поступает в загрузочный бак. Питание газогенератора происходит за счет дозирующего клапана, расположенного на дне загрузочного бака. Использование двух шлюзовых камер позволяет данным газогенераторам работать в непрерывном режиме.

Процесс имеет существенные достоинства:

–возможность непрерывной подачи топлива в газогенератор;

–интенсивную теплопередачу и хорошее перемешивание, обеспечивающее изотермический режим в реакционной зоне;

–простоту регулирования температуры и высокую производительность аппарата

Наиболее предпочтительными топливами для газификации по этому методу являются бурые и реакционноспособные каменные угли, буроугольный кокс или полукокс. Усовершенствование процесса Винклера возможно путем повышения температуры и давления процесса.

У процесса есть следующие недостатки:

–большой унос с газом непрореагировавшего топлива, которое трудно возвратить на газификацию,

–пониженные температуры в зоне реакции, лимитируемые выводом золы в сухом виде;

–невозможность переработки спекающихся каменных углей из-за слипания их частиц нарушается режим работы газогенератора;

–сложная система загрузки топлива.

Для сравнения процессов, рассмотренных выше в таблице 2.5, приведены основные их показатели.

Таблица 2.5. Основные показатели процессов газификации твердых топлив

Наряду с рассмотренными выше методами газификации угля, которые можно сейчас уже назвать классическими, начиная с середины прошлого столетия в разных странах интенсивно разрабатываются более прогрессивные методы. В ряде случаев они представляют собой усовершенствованные варианты рассмотренных процессов.

2.2.4. Железо-паровой процесс

Одним из процессов, основанном на использовании многоступенчатой газификации является железо-паровой процесс производства водорода. Процесс основан на том, что активные металлы вытесняют водород из воды, например, натрий и кальций разлагают воду при обычных условиях, магний — при нагревании, цинк — при накаливании с водяным паром, железо — при нагревании около 700°С. На первой ступени газификации используемый кокс газифицируется с помощью паровоздушного дутья, в результате чего получается газ, содержащий СО, Н2 и N2. Наличие азота не является недостатком, так как промежуточные процессы позволяют от него избавиться. Полученный газ используется для восстановления окисла железа Fe3O4 до FeO в соответствии с реакциями:

Fe3O4 + СО = 3FeO + СО2;

Fe3O4 + Н2 = 3FeO + Н2О.

Образовавшиеся в результате этих реакций СО2, Н2О и N2 после утилизации теплоты выбрасываются в атмосферу. Если исходное дутье имеет повышенное давление, то наиболее целесообразно использовать эти газы в газотурбинной установке. При этом КПД процесса получения водорода достигает 63%, из которых 18% приходится на вырабатываемую электроэнергию.

На следующей стадии полученная окись железа FeO направляется в окислитель, где при более низкой температуре одна из двух прежних реакций происходит в обратном направлении:

3FeO + Н2О = Fe3O4 + Н2

При обычных для этого процесса температурах равновесие реакции таково, что ее продукты содержат около 37% водорода (остальное — в основном водяной пар, который удаляется конденсацией).

Железо-паровой процесс обладает рядом существенных недостатков сравнительно с конверсионным: он требует большего расхода водяного газа и дает водород со значительным содержанием примесей.

2.2.5. Процесс СО2-акцептор

Все рассмотренные выше методы газификации основываются на автотермическом проведении реакции. Поэтому газифицирующая газовая смесь содержит водяной пар и кислород (или воздух), соотношение которых определяет конечную температуру процесса газификации. При этом для получения газа с более высокой теплотой сгорания и для уменьшения затрат на очистку от азота предпочитают использовать не паровоздушное, а парокислородное дутье. Это существенно удорожает процесс за счет включения в него установки для разделения воздуха. Однако, есть и другая возможность получить недостающую теплоту для эндотермической реакции угля с водяным паром. Среди схем с аллотермическим подводом теплоты, реализующих эту возможность, представляют интерес схемы, в которых недостающая теплота образуется за счет побочной химической реакции с участием дополнительно вводимого в зону реакции реагента. В качестве примера такого способа следует упомянуть метод СО2-акцептор, разработанный в США. Здесь теплота вводится в зону газификации за счет реакции СаО с двуокисью углерода с образованием доломита:

СаО + СО2 = СаСО3.

При этой реакции выделяется около 176,8 кДж/моль. Этого количества теплоты достаточно, чтобы осуществить газификацию угля только водяным паром. Схема газификации по методу СО2-акцептор представлена на рис. 2.14. Процесс газификации происходит в кипящем слое при давлении 1–2 МПа. Отсортированный и высушенный уголь подается через шлюз вначале в камеру термического разложения, где при температуре 800–850°C происходит пиролиз исходного угля продуктами газификации. Поэтому получающийся газ содержит продукты пиролиза, хотя при указанной температуре в среде водяного пара они частично разлагаются. Часть образовавшегося полукокса поступает в собственно кипящий слой газификатора. В верхнюю часть слоя поступает регенерированный доломит с температурой около 1025°C.

В нижнюю часть слоя подается паровое дутье. Образующаяся в результате реакции с водяным паром двуокись углерода вступает в реакцию с СаО, образуя доломит и поставляя теплоту для эндотермической реакции угля с водяным паром. Более крупные и тяжелые частицы СаСО3 постепенно опускаются в нижнюю часть слоя. Непрореагировавший уголь и зола уносятся газами вверх, а СаСО3 выводится из газификатора и направляется на регенерацию.

Рис.2.14. Схема газификации по методу СО2-акцептор:

1-зона подготовки угля, 2-загрузочный шлюз, 3-зона термического разложения, 4-газификатор с кипящим слоем, 5-система котел-утилизатор + водяной скрубер, 6-аппарат для очистки газа, 7-реактор метанирования, 8-регенератор с кипящим слоем

Регенерация представляет собой эндотермический процесс, происходящий при температуре около 1025°C:

СаСО3 = СаО + СО2.

В регенераторе также организуется кипящий слой. Здесь теплоту для реакции регенерации поставляет сжигание в воздухе части полукокса, выводимого из камеры термического разложения. Регенерированный доломит возвращается в газификатор, а дымовые газы из регенератора вместе с золой направляются на утилизацию теплоты, в частности на производство водяного пара в котле-утилизаторе.

Недостатком процесса СО2-акцептор является сравнительно низкая температура газификации, лимитируемая термической стойкостью доломита (~850°C). Из-за этого в газе, как уже отмечалось, остаются продукты пиролиза и требуются специальная очистка как газов, так и воды. Газ, получаемый по этому методу, содержит (по объему): 16% СО, 11% СО2, 56% Н2, 15% СН4 (прочие компоненты — около 2 %). Таким образом, содержание водорода достаточно велико, но велико и содержание метана, связанное с высоким давлением.

Сравнительный состав синтез-газа, полученный различными методами показан в таблице 2.6.

Таблица 2.6. Сравнительный состав синтез-газа

Таким образом, в конечном итоге теплоту для эндотермической реакции газификации угля водяным паром поставляет горение того же угля, но так как продукты сгорания не смешиваются с продуктами газификации, может быть использовано дешевое воздушное дутье.

Для выделения водорода из синтез-газа используются разнообразные методы: адсорбция, абсорбция, диффузии через мембраны, электрохимическая конверсия, глубокое охлаждение, катализ.

2.3. Плазменная газификация угля

Находит применение плазменная парокислородная газификация угля, который относится к классу процессов с внутренним подводом тепла. Данный метод позволяет удерживать постоянную температуру процесса порядка 1500–2000°C во всем объеме газогенератора. Высокая рабочая температура обеспечивает получение синтез-газа, который не содержит окислителей таких, как СО2 и Н2О.

Процесс заключается в том, что измельченный уголь в смеси с кислородом перемешивается плазменной струей водяного пара в плазмотроне, а затем попадают в газогенератор, где при температурах 1500°C и выше получают синтез-газ с достаточно высоким содержанием водорода и оксида углерода и незначительным содержанием СО2, Н2О и N2. КПД такого газогенератора достигает 80–90%.

В плазменных газификаторах также используются плазменные фурмы для газификации твердого топлива. Этот тип газификаторов зачастую используют для уничтожения сложно-газифицируемых бытовых и коммунальных отходов, а также отходов медицинской деятельности. Главная отличительная особенность плазменной технологии газификации заключается в значительной интенсификации процесса деструкции отходов, который протекает за весьма короткий промежуток времени за счет передачи энергии обрабатываемым материалам излучением и конвекцией. На рис. 2.15 представлена схема плазменного газификатора.

Рис. 2.15. Плазменный газификатор

Твердое топливо загружается с боковой стороны газификатора, плазменные фурмы расположены по направлению движущегося слоя. Вблизи фурм температура может достигать значений 3000°С. Расплавленный метал и шлак выгружаются из нижней части реактора. Организация выгрузки шлака является привлекательной для переработки твердых коммунальных отходов, т.к. токсичные металлы в шлаке практически не извлекаемы. Газ поднимается в верхнюю часть газификатора и попадает в расширенную надслоевую зону, которая позволяет крупным твердым частичкам снова попасть в слой. Газ покидает газификатор при температуре 900–1000°С, что достаточно для деструкции пиролизных смол.

Теплота сгорания синтез-газа составляет примерно 80% от теплоты сгорания исходного топлива. Синтез газ может быть использован для генерации электроэнергии. Электричество для работы плазменных фурм составляет от 2 до 5% энергии поступающего сырья.

Существует множество технологий с различными конструкциями газогенераторов, но все они являются «синтезом» основных и не имеют столь широкого применения. Это основные, хорошо освоенные и изученные методы промышленного получения водорода. Однако все они дороги в сравнении с традиционной энергетикой.

Производство синтез-газа, в состав которого входят: водород, метан, окислы углерода и прочие газы — может быть также основано на переработке биомассы и промышленно-бытовых отходов, что одновременно способствует решению экологических проблем. Например, переработать отходы жизнедеятельности рогатого скота, да и вообще любого другого сельскохозяйственного животного.

При термохимической обработке биомассы её нагревают без доступа кислорода до температуры 500–800°C, в результате чего образуются водород, метан и оксид углерода.

2.4. Термохимические циклы получения водорода

Термохимические циклы объединяют исключительно источники тепла (термо) с химическими реакциями для разделения воды на водород и кислород. Термин «цикл» используется потому, что, помимо воды, водорода и кислорода, химические соединения, используемые в этих процессах, непрерывно рециркулируются. Если электричество частично используется в качестве входа, результирующий термохимический цикл определяется как гибридный.

Более высокая температура увеличивает скорость реакции и уменьшает количество этапов, необходимых для процесса.

Тепловая энергия вводится в термохимический цикл через одну или более эндотермических высокотемпературных химических реакций. Для отвода энергии на выходе цикла используется одна или более экзотермических низкотемпературных реакций. Все реагенты, кроме воды, восстанавливаются и вновь поступают в цикл. Таким образом, термохимические и комбинированные циклы по получению водорода — это многостадийное разложение воды с помощью различных химических реакций. В сущности, термохимические циклы — это связывание воды, отщепление водорода и кислорода, регенерация реагентов:

Реагенты X и Y, а в многостадийных способах используются и дополнительные вещества, определяют название циклов: галоидные, на основе металлов и их оксидов, на основе различных соединений углерода и циклы на основе серы.

В термохимических и комбинированных циклах с точки зрения экономики и экологии наиболее конкурентно способны циклы, в которых используются дешевые и легкодоступные реагенты: оксиды железа, серы, углерода, хлориды железа.

По массообмену методы делятся на замкнутые и разомкнутые, у первых в ходе реакций расходуется только вода, тепло и электроэнергия (если цикл комбинированный), у вторых, кроме перечисленных, расходуются реагенты (X, Y и др.), которые, из экономической целесообразности, являются промышленными отходами: сероводород, сернистый ангидрид, различные сульфиды, не полностью окислившиеся металлы.

Все современные промышленные методы получения водорода являются разомкнутыми термохимическими циклами. Их характерная особенность заключается в том, что энергию, необходимую для разложения воды на водород и кислород, получают путем сжигания органического горючего; процесс получения водорода из воды сопровождается реакцией связывания кислорода углеродом горючего с образованием диоксида углерода.

Рассмотрим несколько циклов, используемых для получения водорода.

1. Цикл «йод — сера» (IS) трехступенчатый термохимический цикл, используемый для производства водорода и состоит из трех химических реакций, чистым реагентом которых является вода, а чистыми продуктами — водород и кислород. Схема цикла IS представлен на рис 2.16. Все остальные химические вещества могут повторно использоваться в цикле.

Три реакции, которые производят водород, следующие:

1. I2+ SO2+ 2H2O + нагрев до 120°C → 2HI+ H2SO4 — Реакция Бунзена. Затем HI отделяют дистилляцией или гравитационным разделением.

2. H2SO4+ нагрев до 830°C →SO2+H2O+1/2O2.

Воду, SO2 и остаточную H2SO4 необходимо отделить от кислорода путем конденсации.

3. 2HI + нагрев до 450°C → I2+H2.

Рис. 2.16. Схема термохимического цикла «йод — сера»

Йод и любая сопутствующая вода или SO2 отделяются путем конденсации, а водород остается в виде газа.

Чистая реакция: 2H2O → 2H2+ O2

Серная кислота разлагается при температуре до 830°C, высвобождая кислород и возвращая в оборот диоксид серы. Йодид водорода разлагается при температуре от 350 до 450°C, высвобождая водород и возвращая в оборот йод. Конечный результат реакции — разложение воды на водород и кислород. На входе процесса требуются только вода и высокотемпературная тепловая энергия, а на выходе образуются водород, кислород и низкотемпературная тепловая энергия.

Соединения серы и йода восстанавливаются и повторно используются, поэтому процесс рассматривается как цикл. Этот процесс IS представляет собой химический тепловой двигатель. Тепло входит в цикл в высокотемпературных эндотермических химических реакциях 2 и 3, а выходит из цикла в низкотемпературной экзотермической реакции 1.

Преимущества цикла:

–все вещества (жидкости, газы) повторно используются, поэтому хорошо подходят для непрерывной работы;

–высокий коэффициент использования тепла (около 50%);

–подходит для использования с солнечными, ядерными и гибридными источниками тепла;

–технически более отработанный процесс, чем конкурирующие термохимические процессы.

Недостатки:

–требуются очень высокие температуры (минимум 850°C);

–коррозионные реагенты, используемые в качестве посредников (йод, диоксид серы, иодоводородная кислота, серная кислота); следовательно, для изготовления технологического оборудования необходимы коррозионностойкие материалы.

Испытательные установки лабораторного масштаба для цикла IS с низким давлением успешно демонстрировались в Японском институте атомной энергии. Подготовку к лабораторным испытаниям при прототипных условиях по давлению и температуре в настоящее время совместно проводят GA, SNL и CEA-Saclay, рис.2.17.

Рис.2.17. Схема термохимического процесса разделения воды «йод — сера»

Цикл IS требует высоких температур, но предлагает высокую эффективность преобразования тепловой энергии в водород). Главное преимущество состоит в том, что масштаб химических реакций определяется объемом, а не площадью электродов, как это имеет место при электролизе.

Цикл может выполняться с любым источником очень высоких температур, примерно 950°C, например, с помощью концентрации солнечной энергии (система CSP) и считается хорошо подходящим для производства водорода высокотемпературными ядерными реакторами.

Таким образом, крупномасштабное производство водорода в ядерной энергетике должно обеспечить существенную экономию. Детальное изучение проекта указывает, что цикл IS, соединенный с модульным гелиевым реактором, мог бы производить водород по стоимости 1,50–2,00 долл./кг, что почти сравнимо со стоимостью производства водорода из природного газа.

2. Цикл «медь — хлор» (Cu–Cl) является четырехступенчатым термохимическим циклом для производства водорода. Представляет собой гибридный процесс, в котором используются этапы термохимии и электролиза. Его максимальная температура составляет около 530°C.

Цикл Cu — Cl включает четыре химические реакции:

1.2. Cu + 2HCl (г)→ 2 CuCl (ж)+ Н2 (г) (430–475°С)

2.2. CuCl2+H2O (г) → Cu2OCl2 + 2 HCl (г) (400°C)

3.2. Cu2OCl2→ 4CuCl+ O2 (г) (500°C)

4. 2. CuCl → CuCl2 (водн.) + Cu (электролиз при температуре окружающей среды)

Чистая реакция: 2H2O → 2H2+ O2

Преимуществами цикла медь-хлор являются более низкие рабочие температуры, возможность использования низкопотенциального отходящего тепла для повышения энергоэффективности и потенциально более дешевые материалы. По сравнению с другими термохимическими циклами, процесс Cu–Cl требует относительно низких температур до 500°C.

Еще одним важным достоинством этого цикла является относительно низкое напряжение (следовательно, низкий расход электроэнергии), необходимое для электрохимической стадии (от 0,6 до 1,0 В). Общий КПД цикла Cu — Cl составляет чуть более 43%, исключая дополнительные потенциальные выгоды от использования отходящего тепла в цикле.

Недостатком цикла является то, что работа с твердыми частицами в процессе, где есть агрессивные рабочие жидкости, представляет собой проблему для разработки инженерного оборудования.

Процесс Cu–Cl может быть связан с ядерными установками или другими источниками тепла, такими как солнечная энергия и промышленные отходы тепла, чтобы потенциально достичь более высокого КПД, меньшего воздействия на окружающую среду и более низких затрат на производство водорода по сравнению с любой другой традиционной технологией.

Процесс Cu–Cl — один из важнейших термохимических циклов, разрабатываемых Международным форумом «Поколение IV». Целью форума, куда входят более десятка стран по всему миру, является разработка ядерных реакторов следующего поколения для высокоэффективного производства как электроэнергии, так и водорода.

3. Гибридный цикл серы, также известный как HyS-цикл, является двухступенчатым процессом разделения воды, используемый в производстве водорода. Цикл основан на окислении и восстановлении серы и классифицируется как гибридный термохимический цикл, потому что на одной из двух стадий использует электрохимическую (вместо термохимической) реакцию. Оставшийся термохимический этап используется совместно с серо-йодным циклом.

Две реакции в цикле HyS следующие:

1. H2SO4 (водн.) → H2O (г) + SO2 (г) + ½ O2 (г) (термохимический, T> 800°C)

2. SO2 (водн.) + 2H2O (ж)→H2SO4 (водн.) + H2 (г) (электрохимический T= 80–120°C)

Чистая реакция: H2O (ж)→ H2 (г)+ ½ O2 (г)

Схема гибридного серного цикла представлен на рис. 2.18.

Рис. 2.18. Гибридный серный цикл

Недавняя работа Национальной лаборатории Savannah River (SRNL) привела к усовершенствованию процесса в HyS-цикле. Был проведен анализ технологической схемы HyS-системы, объединенной с охлаждаемым гелием ядерным реактором. Расчетная чистая тепловая эффективность установки составила 48,8% при температуре на входе в процесс, равной 900°C. Разработка деполяризованного SО2-электролизёра, соответствующего заданным рабочим параметрам, имеющего долгий срок эксплуатации и эффективного по затратам, является основной целью продолжающихся исследований. Разработка дешевого электролизёра — ключевой фактор в получении эффективного по затратам HyS-цикла.

Предварительный экономический анализ, показывает, что HyS-цикл в комбинации с охлаждаемым гелием газовым реактором мог бы производить водород при затратах ~1,60 долл./кг, что примерно соответствует затратам процесса IS. Дополнительные доходы от продажи побочного продукта (кислорода), могут уменьшить издержки.

Технические проблемы включают оптимизацию эксплуатационных режимов (температура, давление, кислотная концентрация), материалы для строительства, проект ячейки (в том числе, выбор мембраны и нагрузки электрокатализатора), а также долговечность и рабочие характеристики.

Глава 3. Промышленные способы очистки водорода

В чистом водороде нуждаются химическая и нефтехимическая промышленность (производство мономеров), энергетика (создание автономных стационарных и мобильных источников энергии для питания топливных элементов), восстановительная металлургия (отжиг сталей специального назначения, легирование порошков, получение прецизионных сплавов), полупроводниковая, микро и наноэлектронная, пищевая, медицинская отрасли (производство особо чистых материалов, веществ и изделий).

При производстве водорода, получают продуктовый водородный газ, который включает побочные продукты: углекислый газ, угарный газ, метан, вода, аргон, азот и кислород. В остаточных газовых потоках от химических или нефтехимических процессов присутствуют различные примеси: углеводороды, метанол, сероводород и аммиак. Все эти примеси должны быть удалены прежде, чем он будет использован в технологии. Соответственно, очистка водорода от различных примесей становится главным этапом на пути получения высококачественного продукта,

Всеми существующими и перспективными промышленными способами производится либо водород технической чистоты (95–99,8 об. %), либо газовые смеси, содержащие от 30 до 95 об. % водорода. В любом случае необходима дополнительная очистка чистого водорода.

В промышленности реализованы несколько способов очистки водорода из углеродосодержащего сырья (т.н. водородсодержащий газ — ВСГ). Основные из них: короткоцикловая адсорбция (КЦА), очистка полимерными мембранами, криогенный способ и очистка неорганическими мембранами (Рd сплавами).

3.1. Способ короткоцикловой адсорбции

В технологии короткоцикловой адсорбции применяется принцип физического связывания примесей, содержащихся в обогащенных водородом газах, с помощью индивидуально подобранных адсорбирующих материалов. Поскольку силы связывания для таких примесей зависят от давления, КЦА работает в чередующемся цикле адсорбции при высоких давлениях и десорбции при низких давлениях. Для достижения непрерывного потока продукта водорода по меньшей мере один адсорбер работает, а остальные находятся на разных стадиях регенерации.

Работа блока КЦА стала широко популярной в химической и нефтеперерабатывающей промышленности благодаря своей универсальности и способности адаптироваться к конкретным применениям. Например, отходящий газ нефтепереработки может быть очищен в системе КЦА, что позволяет нефтеперерабатывающим заводам извлекать чистый водород из потоков, содержащих легкие углеводороды.

Основным преимуществом КЦА является его способность адсорбировать такие соединения, как сероводород, углеводороды, оксиды углерода и воду.

КЦА работает по принципу, согласно которому при повышенном парциальном давлении адсорбенты могут удерживать больший объем газообразных компонентов, некоторые из которых сильнее, чем другие. Сила адсорбции обычно увеличивается с молекулярной массой каждого компонента, и водород обладает самой слабой силой адсорбции этих компонентов. Это позволяет адсорбировать более тяжелые компоненты, в то время как очищенный водород проходит через адсорбент.

В качестве сырья для установок КЦА выступает водородсодержащий газ с концентрацией водорода порядка 75–80%об. Продуктами являются водород с концентрацией выше 99,5%об., а также отдувочный газ с содержанием водорода 10–40% об.

Адсорбенты для систем КЦА обычно являются очень пористыми материалами, выбранными из-за их большой удельной поверхности. Типичными адсорбентами являются: активированный уголь, силикагель, оксид алюминия, полимеры, цеолиты.

Наибольшее значение для очистки водорода имеет адсорбция на цеолитах, размер пор которых соизмерим с размерами молекул. Через поры проходят, не задерживаясь, только молекулы, имеющие размер меньше размера пор цеолита; более крупные молекулы остаются на их поверхности. Водород по сравнению с другими газами имеет наименьший размер молекул и на цеолитах не задерживается. На поглощение вещества цеолитом еще большее влияние, чем размер, может иметь форма молекулы, ненасыщенный характер молекул.

Цеолиты — большая группа близких по составу и свойствам минералов, водные алюмосиликаты кальция и натрия из подкласса каркасных силикатов, со стеклянным или перламутровым блеском, известных своей способностью отдавать и вновь поглощать воду в зависимости от температуры и влажности. Другим важным свойством цеолитов является способность к ионному обмену — они способны избирательно выделять и вновь впитывать различные вещества, а также обменивать катионы. Цеолиты бывают природные и синтетические. Наиболее распространённые представители группы цеолитов: натролит, шабазит, гейландит, стильбит (десмин), морденит, томсонит, ломонтит, клиноптилолит.

Кристаллическая структура цеолитов природных и искусственных образована тетраэдрическими группами SiO2/4 и AlO2/4, объединёнными общими вершинами в трёхмерный каркас, пронизанный полостями и каналами (окнами) размером 2–15 ангстремов. Открытая каркасно-полостная структура цеолитов [AlSi]O4−имеет отрицательный заряд, компенсирующийся противоионами (катионами металлов, аммония, алкиламмония и др. ионов, введённых по механизму ионного обмена) и легко дегидратирующимися молекулами воды.

Выделяют следующие свойства цеолитов, благодаря которым их широко применяют:

адсорбционные — способность поглощать и отдавать различные вещества,

ионообменные — способность обменивать катионы,

каталитические — способность ускорять химические реакции.

Каждый вид цеолитов характеризуется определённым размером окон, поэтому молекулы других веществ поглощаются и пропускаются (при фильтрации) цеолитами избирательно. Это явление называют молекулярно-ситовым эффектом.

Синтетические цеолиты, используемые для разделения газов, имеют форму шариков, таблеток или гранул размером 1–5 мм, их получают прессованием порошка цеолита с добавкой связующего материала. В такой грануле наряду с кристаллами цеолита с молекулярным размером пор имеются зазоры между кристаллами, образующие структуру более крупных пор.

Конец ознакомительного фрагмента.

Оглавление

  • ***

* * *

Приведённый ознакомительный фрагмент книги Водородное топливо. Производство, хранение, использование предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я