1. Книги
  2. Книги о компьютерах
  3. Лэй Энстазия

DeepSeek – нейросетевые технологии генерации текста

Лэй Энстазия (2025)
Обложка книги

Книга посвящена инновационной языковой модели, которая меняет представление об искусственном интеллекте. DeepSeek сочетает обучение с подкреплением (RL) и технологию Retrieval-Augmented Generation (RAG), обеспечивая точность, адаптивность и доступ к актуальной информации в реальном времени. В книге рассматриваются уникальные особенности модели, такие как отказ от традиционного обучения с учителем, интеграция многоголовой скрытой внимательности (MLA) и дистилляция знаний для компактных устройств. Авторы подробно описывают её применение в науке, образовании, программировании, медицине и других сферах, акцентируя внимание на её экологичности, надежности и способности минимизировать ошибки. Особое внимание уделено перспективам развития модели, включая борьбу с галлюцинациями, повышение энергоэффективности и этические вызовы автоматизации. Книга станет незаменимым пособием для разработчиков, исследователей и всех, кто интересуется будущим искусственного интеллекта.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «DeepSeek – нейросетевые технологии генерации текста» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 1. Введение

1.1. Краткий обзор языковых моделей и их значения

Языковые модели стали фундаментом современного искусственного интеллекта (ИИ). Они используются в задачах обработки естественного языка (NLP), таких как машинный перевод, генерация текстов, анализ настроений и автоматическое резюмирование. С момента появления первых моделей на основе нейронных сетей, таких как Word2Vec и GloVe, прогресс в этой области был стремительным.

Трансформеры (Transformer) стали ключевым прорывом, положив начало новой эре языковых моделей. Модели, такие как BERT, GPT и T5, научились решать сложные задачи, учитывая контекст, долгосрочные зависимости и многослойные представления данных.

Появление таких моделей открыло новые возможности:

Улучшение автоматизации в бизнесе, науке и образовании.

Сокращение времени на обработку больших объемов информации.

Расширение доступа к технологиям, делающим сложные задачи доступными даже для небольших компаний.

Однако традиционные подходы, основанные на обучении с учителем (Supervised Fine-Tuning, SFT), показали свои ограничения.

1.2. Эволюция от SFT к RL и появление DeepSeek

Традиционное обучение с учителем предполагает использование заранее подготовленных данных, где модель учится ассоциировать входные данные с соответствующими ответами. Но этот подход имеет недостатки:

Ограниченная гибкость: Модели узко специализированы и плохо адаптируются к новым задачам.

Зависимость от качества данных: Ошибки или предвзятость в данных приводят к снижению точности модели.

Неспособность к обобщению: Модели, обученные на SFT, часто не способны справляться с невиданными ранее ситуациями.

DeepSeek стал революционным шагом благодаря использованию обучения с подкреплением (Reinforcement Learning, RL). В отличие от SFT, RL позволяет модели учиться, взаимодействуя с окружающей средой.

Основные преимущества RL:

Самообучение: Модель учится на своих ошибках, улучшая стратегию поведения.

Гибкость: RL помогает адаптироваться к изменениям и новым условиям.

Развитие цепочек рассуждений (Chain of Thought, CoT): Модель способна разбивать сложные задачи на этапы и находить оптимальные решения.

DeepSeek интегрировал RL на новом уровне, отказавшись от начального этапа SFT. Это позволило создать модель, которая не только решает задачи, но и эффективно адаптируется к новым вызовам.

1.3. Важность технологий RAG (Retrieval-Augmented Generation) для будущего моделей

Retrieval-Augmented Generation (RAG) — это подход, при котором языковая модель получает доступ к внешним источникам данных. Вместо того чтобы полагаться только на запомненные знания, модель активно запрашивает и использует актуальную информацию в реальном времени.

Технология RAG играет ключевую роль в будущей эволюции языковых моделей:

Повышение точности: Вместо запоминания устаревшей информации модель использует актуальные данные.

Масштабируемость: Объем знаний не ограничен параметрами модели.

Снижение риска галлюцинаций: Модель опирается на внешние источники, уменьшая вероятность генерации ошибочной информации.

DeepSeek успешно использует RAG, чтобы предложить пользователям наиболее точные и релевантные ответы, применяя RL для оптимизации запросов и выбора информации.

Заключение главы

Эта глава подводит читателя к пониманию, почему DeepSeek является не просто новым участником на рынке языковых моделей, но и значительным шагом вперед. Используя преимущества RL и RAG, DeepSeek задает новый стандарт для моделей следующего поколения.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «DeepSeek – нейросетевые технологии генерации текста» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я