1. Книги
  2. Книги о компьютерах
  3. Лэй Энстазия

DeepSeek – нейросетевые технологии генерации текста

Лэй Энстазия (2025)
Обложка книги

Книга посвящена инновационной языковой модели, которая меняет представление об искусственном интеллекте. DeepSeek сочетает обучение с подкреплением (RL) и технологию Retrieval-Augmented Generation (RAG), обеспечивая точность, адаптивность и доступ к актуальной информации в реальном времени. В книге рассматриваются уникальные особенности модели, такие как отказ от традиционного обучения с учителем, интеграция многоголовой скрытой внимательности (MLA) и дистилляция знаний для компактных устройств. Авторы подробно описывают её применение в науке, образовании, программировании, медицине и других сферах, акцентируя внимание на её экологичности, надежности и способности минимизировать ошибки. Особое внимание уделено перспективам развития модели, включая борьбу с галлюцинациями, повышение энергоэффективности и этические вызовы автоматизации. Книга станет незаменимым пособием для разработчиков, исследователей и всех, кто интересуется будущим искусственного интеллекта.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «DeepSeek – нейросетевые технологии генерации текста» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2. Технологическая основа DeepSeek

2.1. Архитектура модели

DeepSeek использует усовершенствованную архитектуру на основе многоголовой скрытой внимательности (MLA), что позволяет значительно повысить производительность модели. Основные аспекты MLA в DeepSeek:

Разделение внимания: Каждая"голова"фокусируется на разных аспектах данных — семантике, синтаксисе или контексте. Это улучшает способность модели улавливать глубокие связи внутри данных.

Параллельная обработка: MLA реализует одновременное вычисление для каждой головы, что сокращает время обработки и делает модель масштабируемой.

Инновации MLA: DeepSeek интегрирует оптимизацию вычислений за счет игнорирования несущественных данных (аналог сжатия контекста). Эта технология позволяет снизить затраты на обучение и уменьшить энергопотребление, оставаясь при этом конкурентоспособной.

В сравнении с классическими моделями, такими как GPT и BERT, DeepSeek демонстрирует:

Более низкие затраты на вычисления, благодаря улучшенной оптимизации MLA.

Способность к обучению на меньшем объеме данных без потери точности.

Лучшую адаптацию к задачам, требующим актуальной и контекстной информации.

2.2. Отказ от SFT

DeepSeek полностью пересмотрел традиционный подход обучения с учителем (Supervised Fine-Tuning, SFT). Это решение обусловлено недостатками SFT:

Жесткая привязка к исходным данным: Модели SFT зависимы от качества подготовленного набора данных. Ошибки или предвзятость могут существенно снижать качество обучения.

Ограниченные возможности обобщения: Модели SFT зачастую неспособны справляться с новыми задачами, которые не отражены в обучающей выборке.

Вместо этого DeepSeek делает ставку на обучение с подкреплением (RL):

Гибкость и адаптивность: Модель активно взаимодействует с окружающей средой, развивая навыки, основанные на результатах своих действий.

Развитие цепочек рассуждений (CoT): DeepSeek разбивает сложные задачи на этапы, оптимизируя каждый шаг для достижения лучшего результата.

Самообучение: Модель способна учиться на своих ошибках и корректировать поведение, что делает ее менее зависимой от начальных данных.

Этот переход позволил DeepSeek стать не просто инструментом, выполняющим команды, но и динамической системой, которая адаптируется к изменениям и новым вызовам.

2.3. Механизм RAG

Технология Retrieval-Augmented Generation (RAG) является ключевым элементом DeepSeek. В отличие от традиционных моделей, которые полагаются только на запомненные знания, RAG позволяет интегрировать актуальную информацию из внешних источников в процессе работы модели.

Основные преимущества RAG в DeepSeek:

Реальный доступ к данным: Модель может находить и использовать релевантные сведения из актуальных баз знаний, что снижает риск генерации устаревших или неверных ответов.

Улучшение контекстуальности: DeepSeek эффективно связывает вводимые данные пользователя с внешними источниками, адаптируя свои ответы под конкретную задачу.

Оптимизация запросов: С помощью RL DeepSeek обучается формировать максимально точные запросы к базам знаний, что ускоряет получение релевантных данных.

Примеры реализации RAG в DeepSeek:

Генерация научных текстов с использованием последних публикаций.

Автоматизация юридических анализов, включая поиск законов и судебных решений.

Обеспечение поддержки пользователей с доступом к обновленным техническим инструкциям.

Заключение главы

DeepSeek объединяет лучшие технологии в области языковых моделей — MLA для оптимизации обработки данных, RL для адаптивного обучения и RAG для интеграции актуальной информации. Эта комбинация делает модель универсальным инструментом, способным решать широкий спектр задач в реальном времени.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «DeepSeek – нейросетевые технологии генерации текста» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я