В эту книгу вошли девять лекций по естественной теологии, которые астрофизик Карл Саган читал в 1985 году в Университете Глазго, в Шотландии, и которые были отредактированы и изданы уже после смерти ученого. Рассматривая картину мира, принятую в рамках иудео-христиано-мусульманских традиций, доказательства бытия Бога и представления о религиозном опыте, Саган призывает к «осведомленному поклонению». Он рассматривает религиозные доказательства существования Бога, много внимания уделяет вопросам зарождения жизни, существованию разумной жизни за пределами Солнечной системы и угрозе самоуничтожения человечества. Попутно рассказывая о том, как формировалось и изменялось представление человека об окружающем мире, и предлагает слушателям мысль, что наука не является контрбожественным инструментом, а как раз наоборот позволяет нам лучше понять, что происходит вокруг. Лекции дополнены избранными вопросами от аудитории и ответами Карла Сагана, порой переходящие в увлекательные дискуссии.
Приведённый ознакомительный фрагмент книги «Наука в поисках Бога» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Лекция вторая
Мы проиграем в храбрости Копернику
Все мы вырастаем с ощущением некой личной связи со Вселенной. А еще у нас имеется естественная тяга проецировать собственное знание, особенно знание о себе самих, свои собственные ощущения, на окружающих. Это давно уже банальность и для психологии, и для психиатрии. То же самое происходит у нас и с восприятием окружающего мира. Антропологи и историки религии иногда называют это явление анимизмом и приписывают так называемым первобытным племенам (которые пока не дошли до оружия массового уничтожения). Предполагается, что у каждого дерева и ручья имеется свой дух в качестве движущего начала, или, как выразился первый ученый Фалес в одном из немногих дошедших до нас фрагментов сочинений, «все полно богов». Это естественное представление. Однако оно характерно не только для анимистов, которых на планете сейчас насчитывается не один миллион. К этому склонны в том числе и физики — кроме, пожалуй, случаев, когда природа сама противится такой точки зрения. Самое обычное дело, скажем, в молекулярно-кинетической теории воображать каждую из мельчайших молекул воздуха, сталкивающихся перед нашим носом, в виде, допустим, бильярдного шара. Строго говоря, это не совсем проекция, поскольку физики не приписывают затем молекуле свойства бильярдного шара, но тем не менее они тоже берут некое знакомое обыденное явление и проецируют на другую область. Молекулы или астероиды у физиков нередко именуются «ребятами». Молекулу или астероид гораздо проще представить, если уподобить чему-то привычному и знакомому. Я думаю, теперь видно, насколько мы до сих пор привержены этому древнему образу мыслей.
Однако бесконечно проецировать не получится, потому что рано или поздно упрешься в стенку. Например, в теории относительности или квантовой механике мы вступаем в область, совершенно чуждую нашему повседневному опыту, и законы природы вдруг оказываются на удивление непривычными. Наш повседневный опыт никак не предполагает, что в процессе моего перемещения в пространстве мои наручные часы слегка замедлят ход, мое тело сократится в длину по оси движения и увеличится моя масса. Тогда как для специальной теории относительности это непременное следствие, а со здравым смыслом оно не согласуется просто потому, что мы не привыкли путешествовать с околосветовыми скоростями. Когда-нибудь, может быть, у нас эта привычка появится, и тогда Лоренцевы преобразования[8] окажутся естественными, интуитивными. Но пока этого не случилось.
Существование космического предела скорости — скорости света, быстрее которой не может двигаться ни одно физическое тело, тоже кажется контринтуитивным, хотя его вполне можно доказать, как это сделал Эйнштейн, с помощью поразительно простого и незамысловатого анализа того, что мы подразумеваем под пространством, временем, синхронностью и так далее.
Или, скажем, если я сообщу, что моя рука может находиться вот в таком положении или вот в таком, но законы природы не позволяют ей занимать промежуточное, вы, исходя из жизненного опыта, скорее всего, сочтете это абсурдом. Однако на субатомном уровне происходит квантование и энергии, и положения в пространстве, и движения. Нам это кажется контринтуитивным, поскольку в обыденной жизни мы не проникаем на микроскопический уровень, где правят квантовые эффекты.
Таким образом, история науки, особенно физики, — это отчасти борьба между естественной тягой проецировать повседневный опыт на всю Вселенную и сопротивлением этой человеческой тяге со стороны Вселенной.
Кроме этой тяги, у человека имеется еще одна склонность — к психологическим или социальным проекциям на окружающий мир. В данном случае человек проецирует идею привилегированности. С тех пор как появилась цивилизация, в обществе существуют привилегированные классы. Одни сословия угнетают другие и стараются сохранить существующую иерархию власти. Дети привилегированного сословия растут с убеждением, что унаследуют это привилегированное положение, не прилагая для этого никаких специальных усилий. При рождении все мы считаем себя вселенной и не проводим границ между собой и окружающими. У маленьких детей это ощущение очень устойчиво. По мере взросления мы обнаруживаем, что существуют и другие относительно независимые люди и мы лишь одни из многих. И все же, по крайней мере в ряде социальных ситуаций, мы ставим себя во главу угла. Разумеется, прочие социальные группы эту точку зрения не разделяют. Однако учеными, особенно в древности, как правило, становились именно обладатели статуса и привилегий, поэтому они естественным образом проецировали свое отношение на всю Вселенную.
Так, например, Аристотель убедительно — не сразу и опровергнешь — доказывал, что движутся небеса, а не Земля, что Земля неподвижна, а Солнце, Луна, планеты, звезды восходят и заходят, совершая ежедневный оборот вокруг Земли. В остальном, помимо этого вращения, небеса считались незыблемыми. На Земле же, хоть и неподвижной, сосредоточивались все Вселенские метаморфозы.
Там, наверху, находилась совершенная, неизменная материя, особый род небесной материи. Здесь, внизу, существовало четыре вещества, четыре воображаемые стихии — земля, вода, огонь и воздух, и к ним добавлялась пятая, из которой состояли небеса. Так возникло слово «квинтэссенция» — «пятое вещество». Этот лингвистический артефакт, отражающий былое мировоззрение, по-прежнему присутствует в Большом Оксфордском словаре. Но там и не такое найдется.
И вот в XV в. Николай Коперник выступил с иной точкой зрения. Он заявил, что вращается Земля, а звезды, по сути, неподвижны. Кроме того он предположил, что очевидное движение планет на фоне более далеких звезд объясняется вращением планет и Земли не только вокруг своей оси, но и вокруг Солнца. То есть Землю развенчали. Помните еще один лингвистический артефакт — «Земля» как обозначение всего мира? И это представление восходит к докоперниковским временам, равно как и вполне естественно звучащие для нас выражения «солнце восходит» и «солнце заходит».
Коперник, кстати, считал свою идею настолько опасной, что не публиковал ее, пока не очутился на смертном одре, и даже тогда сочинение было издано с возмутительным предисловием Озиандера, опасавшегося обнародовать нечто настолько крамольное и радикальное. Озиандер писал: «На самом деле Коперник подобных убеждений не имеет. Это всего лишь вычислительный прием. И да не усмотрит здесь никто противоречия доктрине». Это был важный момент.
Взгляды Аристотеля средневековая церковь принимала целиком и полностью — немалую роль здесь сыграл Фома Аквинский, — поэтому во времена Коперника всерьез отрицать геоцентричность Вселенной означало наносить религиозное оскорбление. Понятно почему: если Коперник прав, то Земля будет разжалована из единственных и всеобъемлющих, станет одной из многих, рядовой.
А следом возникает еще более тревожное предположение: звезды — это далекие «солнца», вокруг них тоже обращаются планеты. И, в конце концов, все мы сами видим тысячи звезд невооруженным глазом. Земля внезапно теряет статус центра не только Солнечной системы, но и какой бы то ни было системы в принципе. Да, был период, когда мы претендовали на центральное положение в Млечном Пути. Если уж мы не являемся центром своей Солнечной системы, то, может, хотя бы сама система выступает центром галактики? Решительное опровержение мы получили только в 1920-х гг. — это чтобы понятно было, сколько времени понадобилось галактической астрономии на усвоение идей Коперника.
Можно было еще тешить себя надеждой, что хотя бы наша галактика центральна по отношению ко всем остальным галактикам — всем этим миллиардам остальных галактик. Но, согласно современным представлениям, центра у Вселенной не существует в принципе, по крайней мере в обычном трехмерном пространстве, поэтому центрального положения мы не занимаем нигде.
Так что тех, кто желал отвести нам некую центральную космическую роль, — хотя бы нашей планете, или хотя бы Солнечной системе, или хотя бы нашей галактике — раз за разом постигало разочарование. Вселенная не отвечает нашим честолюбивым ожиданиям. Последние пять веков мы только и слышим скрежет каблуков, которыми упираются до последнего те, кто не желает признавать обнаруженную учеными периферийность нашего положения. Католическая церковь угрожала Галилею пытками, если он и дальше будет упорствовать в своей ереси и утверждать, будто вращается Земля, а не Солнце и остальные небесные тела. Вопрос был нешуточный.
Тогда же был брошен вызов еще одной аристотелевской догме. Заключалась она в том, что, кроме хрустальных сфер, на которых закреплены планеты, в небесах ничто не движется и не меняется. В 1572 г. в созвездии Кассиопеи произошел взрыв сверхновой — прежде невидимая звезда вдруг засияла так ярко, что ее стало возможно разглядеть невооруженным глазом. И ее заметил датский астроном Тихо Браге. Если небеса неизменны, откуда вдруг возникла звезда? Внезапно, то есть за неделю или меньше, из невидимки превратилась в легко различимую, чтобы потом несколько месяцев сиять в одной и той же точке и лишь затем угаснуть. Так не должно быть.
Через каких-нибудь несколько лет в 1577 г. случилось пришествие кометы, и Тихо Браге, десятилетия спустя после Коперника, организовал наблюдение за этой кометой в разных странах мира. Задача заключалась в том, чтобы разобраться: летит комета здесь, в земной атмосфере, как утверждал Аристотель, или высоко вверху среди планет. Причислять кометы к метеорологическим явлениям Аристотеля отчасти побуждало то самое убеждение в неизменности небес.
Браге исходил из того, что комету, летящую вблизи Земли, два удаленных друг от друга наблюдателя должны увидеть на разном звездном фоне. Это явление называется параллакс, и его легко можно увидеть, поочередно глядя на палец вытянутой руки сперва одним глазом, затем другим. Палец будет смещаться то в одну сторону, то в другую.
Соответственно, если комета находится очень далеко, рассуждал Браге, двум наблюдателям, смотрящим с разных точек, она явится почти в одном и том же месте небосклона. Насколько далеко она находится, можно вычислить по смещению между крайними точками — то есть по величине параллакса. И Браге определил, что она явно где-то дальше Луны, то есть среди планет, а не здесь, внизу, где вершится погода. Еще одно неприятное открытие для канонизированного Аристотелева учения.
Развитие науки наносило один удар за другим по человеческому тщеславию. В их числе, например, открытие, что Земля гораздо старше, чем предполагалось. Человеческая история насчитывает лишь несколько тысячелетий, и возраст мира многим представлялся сравнимым с возрастом человечества. Не было представления об эволюции, об огромных пластах времени. А затем, с накоплением геологических и палеонтологических данных, стало крайне затруднительно объяснять, как появились те или иные геологические формы или ископаемые останки ныне не существующих растений и животных, если возраст Земли исчисляется лишь несколькими тысячелетиями, которые отмерила ей наша проекция. Эта битва не утихла до сих пор. В Соединенных Штатах, в частности, есть так называемые креационисты, самые радикальные из которых утверждают, что Земля существует меньше 10 000 лет. Чем меньше возраст Земли, тем больше относительная роль человека в ее истории. Если Земля появилась, как нам доподлинно известно, 4,5 млрд лет назад, а человеческий вид — максимум несколько миллионов лет назад, возможно меньше, то по геологическим меркам мы присутствуем здесь лишь мгновение, меньше одной тысячной от истории Земли, а значит, во времени, как и в пространстве, нас разжаловали из главных персонажей в эпизодические.
Неменьшим разочарованием обернулось и открытие эволюции как таковой, поскольку прежде можно было надеяться, что человек отделен от остальной природы, что нам отведена особая роль, не такая, как, например, петуниям. Но труды Дарвина дали нам понять, что в эволюционном отношении мы, скорее всего, состоим в родстве со всеми остальными животными и растениями планеты. И многих людей такая идея по-прежнему оскорбляет до глубины души.
У этого оскорбления — тут я могу только предполагать — глубокие психологические корни. Отчасти, как мне представляется, оно проистекает из нежелания признать наиболее инстинктивные аспекты человеческой природы. Но я считаю, что признать их необходимо, если мы хотим выжить. Закрывать на них глаза, воображать на текущем этапе все человечество рациональными деятелями в нашу ядерную эпоху крайне опасно. Мне кажется, что неловкость, которую испытывают некоторые рядом с обезьяньей клеткой в зоопарке, — тревожный знак.
Затем, в начале XX в., был нанесен очередной оскорбительный удар — на этот раз связанный со специальной теорией относительности. Один из ключевых пунктов которой заключается в том, что не существует привилегированных систем отсчета, что мы не выделяемся ни положением, ни состоянием движения. Ни нашу скорость, ни ускорение нельзя считать абсолютом, и именно в случае отсутствия особой системы отсчета у нас появляется возможность познать Вселенную.
При этом у нас имеются все основания считать особенным свое положение во времени. Вселенная изменилась — сейчас она совсем не такая, как в первую микросекунду после Большого взрыва. Поэтому никто не утверждает, будто в нашей эпохе нет ничего особенного с точки зрения эволюции самой Вселенной, но в том, что касается положения, скорости, ускорения, мы ничем особенным не выделяемся. К этому выводу пришел молодой человек, протестовавший против привилегий в социальной сфере. Если почитать автобиографические труды Эйнштейна, думаю, не останется сомнений в том, что его протест связан с отрицанием привилегий в фундаментальной физике.
Что ж, если нам не досталось особого положения, скорости, ускорения и раз уж происхождением мы не отличаемся от других растений и животных, может, мы хотя бы разумом превосходим всех остальных обитателей Вселенной, может быть, в этом наша уникальность. Так что теперь предметом битвы — коперниканской битвы, ведущейся в несколько завуалированной форме, стал вопрос о внеземном разуме. Это ни в коем случае не означает, что такой разум обязательно существует. Вполне может быть, что озарение Коперника — принцип заурядности, назовем его так, — подтвердился во всем, кроме внеземной жизни, и мы действительно уникальны. К этому я еще вернусь, но мне кажется, что и этот спор имеет отношение к незаконченной коперниканской революции.
Существует еще одно поле боя, на котором идет атака на коперникову проницательность. Почвой для него служит один из классических доводов в пользу существования бога, то есть бога по западному канону, а именно телеологический.
Заключается данный довод в следующем: представьте, что вам, совершенно ничего не понимающему в часовых механизмах, попадаются изящно сработанные карманные часы. Вы открываете крышку, слышите мерное тиканье, видите все эти шестеренки, рычажки, полированную латунь и все прочее, явно не природного происхождения. А значит, существование такого сложного механизма, само существование часов предполагает существование часовщика. Теперь возьмем какой-нибудь организм — попроще, например бактерию. И вот мы смотрим на нее и видим гораздо более сложную механику, чем в карманных часах. У бактерии намного больше движущихся частей, ее устройство требует владения гораздо более обширным набором сведений, чем может содержать инструкция по изготовлению карманных часов. И тем не менее бактерий в мире полно. Они повсюду, их количество огромно. Разве возможно, что это существо, гораздо более сложное, чем часы, возникло случайным образом из какого-то столкновения атомов? Не будет ли вернее предположить, что у этих «часов» тоже имеется «часовщик»? Это один из примеров телеологического довода, который можно подвести под любую составляющую природы. Кроме, пожалуй, полного хаоса.
Дарвин, однако, с помощью теории естественного отбора показал, что есть и другой путь, когда грандиозный порядок выстраивается из менее упорядоченного природного мира без посредничества Часовщика с большой буквы. Это путь естественного отбора.
Согласно концепции естественного отбора, существует наследуемый генетический материал, в котором случаются спонтанные изменения. Эти изменения выражаются во внешнем виде и функциях организма, при этом сами организмы воспроизводятся в гораздо большем количестве, чем способна прокормить окружающая среда. В результате среди различных «экспериментальных образцов» природы происходит отбор по репродуктивному успеху тех организмов, которые, по чистой случайности, оказываются лучше приспособлены к тому, чтобы оставить потомство.
Так вот, один из существенных для этой концепции факторов — необходимость достаточного количества времени. Если Вселенная существует считанные тысячелетия, дарвиновская эволюция — абсурд. Времени не хватит. Если же Земле несколько тысяч миллионов лет, то срок получается огромный, и можно по крайней мере увидеть в этом процессе — что и делает вся современная биология — источник всей сложности и красоты органического мира.
Телеологический аргумент применяется и к другим областям окружающего мира. Приведу два примера. Первый — представления Исаака Ньютона о порядке внутри Солнечной системы, второй — весьма любопытный, хотя и ошибочный, на мой взгляд, подход к законам природы, выдвинутый недавно и называемый антропным принципом.
Одна из многочисленных выдающихся заслуг Ньютона заключается в том, что из нескольких простых и отнюдь не произвольных законов природы он с высокой точностью вывел траектории движения планет Солнечной системы. К методу Ньютона ученые прибегают по сей день. Именно ньютоновская физика повсеместно используется в моей области, в отправке космических кораблей к этим самым планетам, о чем, возможно, вы хотите сказать, думал Ньютон, хотя на самом деле он даже и не мечтал об этом. Однако он предвидел, по крайней мере, запуск физических тел на орбиту Земли.
Ньютон обнаружил, что у Солнечной системы имеется отчетливая плоскость орбит. Первым это предположил еще Коперник, однако Ньютон подробно показал, как она устроена. Планеты обращаются по своим орбитам вокруг Солнца, и все они движутся вблизи плоскости эклиптики, называемой также зодиакальной (поскольку она проходит через зодиакальные созвездия). Поэтому планеты, Солнце и Луна перемещаются по созвездиям зодиака. «Почему все такое упорядоченное? — спрашивал Ньютон. — Почему все планеты в одной плоскости? Почему все они обращаются вокруг Солнца в одном направлении?» Ведь нет такого, чтобы Меркурий двигался в одну сторону, а Венера в другую. Направление движения у всех планет одно. И, насколько ему было в то время известно, вращаются они тоже в одну сторону. Планеты отличались поразительным постоянством, тогда как известные во времена Ньютона кометы двигались хаотически. Их орбиты пролегали под всеми мыслимыми углами к плоскости эклиптики. Какие-то обращались вокруг Солнца в прямом направлении, какие-то в обратном, ретроградном. И с наклонением у них творился такой же беспорядок.
Ньютон полагал, что распределение кометных орбит — это природное состояние и планеты двигались бы точно так же, если бы не стороннее вмешательство. Он считал, что изначальные условия для планет задал Господь, заставив их все двигаться вокруг Солнца в одном направлении, в одной плоскости и с сопоставимым направлением вращения.
Вывод, прямо скажем, не самый убедительный. Необыкновенная прозорливость Ньютона проявилась во множестве областей, но в этом вопросе она его подвела.
В общих чертах решение этой проблемы наметили — независимо друг от друга, насколько нам известно, — Иммануил Кант и Пьер-Симон, маркиз де Лаплас.
И Ньютон, и Лаплас, и Кант жили уже после изобретения телескопа и, соответственно, открытия у Сатурна системы потрясающих колец, часть которых вы видите на этом снимке. Это плоскость, состоящая из мелких частиц. Убедительно продемонстрировать, что она действительно состоит из частиц и это не монолит, первым удалось шотландскому физику Джеймсу Клерку Максвеллу.
Вот кольца Сатурна с меньшего расстояния. Мы видим огромное число этих колец и разрыв между ними — так называемую щель Кассини.
Илл. 15. Сатурн, снятый общим планом
Газовый гигант Сатурн отбрасывает тень на свой невероятный пояс из вращающихся колец. Самый заметный разрыв между кольцами называется щелью Кассини — в честь франко-итальянского астронома XVII в. Джованни Доменико Кассини, сделавшего ряд важных открытий в Солнечной системе. Теперь его дело продолжает носящий то же имя космический аппарат — от него и получено это изображение.
Илл. 16. Крупный план колец Сатурна
На этом снимке, сделанном аппаратом «Кассини» в контровом свете, Солнце подсвечивает кольца Сатурна сзади, выявляя тонкую спиральную структуру многочисленных колец.
На крупном плане мы видим концентрические кольца. Теперь мы знаем, что таких колец многие сотни, все они лежат в одной плоскости, и еще мы знаем — а Кант и Лаплас лишь догадывались, — что они состоят из глыб и пылевых частиц. Кстати, соотношение между толщиной и шириной колец Сатурна меньше, чем у листа бумаги.
Кроме того, Канту были известны небесные объекты, называвшиеся тогда туманностями. В то время еще не удалось установить, где они находятся — внутри Млечного Пути или за его пределами, но теперь мы, конечно, знаем, что за пределами в большинстве своем. Часть туманностей тоже представляет собой плоские системы, состоящие, как выяснилось, из звезд.
И вот Кант и Лаплас, явно ссылаясь на кольца Сатурна, а Кант еще и упоминая эллиптическую туманность, предположили, что Солнечная система произошла из такого вот плоского диска, в котором из сгустившихся частиц образовались планеты. Но если это так, то диск вообще-то вращается. И все сгустившееся внутри него будет вращаться в том же направлении. И если задуматься, станет очевидно, что и направление вращения вокруг своей оси у тел, которые формируются из собирающихся вместе частиц, тоже будет общим.
Кант и Лаплас предложили модель так называемой солнечной туманности, или аккреционного диска, выступившего прародителем планет, поэтому нетрудно понять, почему планеты находятся в одной плоскости, движутся в одном направлении и вращаются одинаково.
Более того, теперь мы знаем, что беспорядочная ориентация комет не была такой изначально: скорее всего, они тоже зарождались в солнечной туманности, обращались вокруг Солнца в одном направлении, были выброшены из нее в ходе гравитационного взаимодействия с основными планетами, а потом их орбиты расстроились в результате гравитационного возмущения, вызываемого звездами.
Таким образом, Ньютон ошибся дважды: а) полагая, что хаотичное распределение кометных орбит присуще системе изначально, и б) не допуская, что упорядоченность в движении планет могла возникнуть естественным путем, без божественного вмешательства, из чего он и делал вывод о существовании Создателя.
Что ж, если даже Ньютона удалось ввести в заблуждение, тут есть о чем задуматься. Это значит, что и мы, заведомо уступающие этому интеллектуальному гиганту, не застрахованы от такой же ошибки.
А сейчас я хотел бы подкрепить сказанное выше о солнечной туманности еще тремя изображениями.
Это попытка проиллюстрировать описанное ранее. Изначально беспорядочное межзвездное облако вращается, сжимаясь за счет гравитации, то есть стягивается за счет собственного тяготения. В силу сохранения углового момента оно сплющивается в диск. Нужно иметь в виду, что центробежная сила не противодействует сжатию по оси вращения, но препятствует сжатию в плоскости вращения. Поэтому в конечном результате получается диск. В ходе процессов, на которых мы сейчас задерживаться не будем (хотя в их понимании за последние десятилетия удалось существенно продвинуться), возникает гравитационная неустойчивость, в которой образуется большое количество тел, которые затем объединяются в результате столкновений, соответственно уменьшаясь в количестве.
Илл. 17. Солнечная туманность
Хаотичное облако межзвездного газа и пыли стягивается под воздействием собственного тяготения (А). Основная масса оказывается в центре и поджигает Солнце, однако остаточное вращение не дает облаку стянуться в точку, в результате образуется плоский вращающийся диск (B). Составляющие диск частицы сгущаются в более крупные тела, и самые крупные из них прокладывают себе дорожки среди остатков (C). В результате столкновений частицы вырастают в размерах и уменьшаются в количестве (D), формируя в конечном итоге Солнечную систему в ее нынешнем виде (Е).
Очевидно, что при наличии огромного числа тел с пересекающимися орбитами они неизбежно будут сталкиваться, постепенно уменьшаясь в количестве. Таким образом, мы имеем дело с подобием естественного отбора путем столкновений — эволюционным принципом применительно к астрономии, в результате которого у нас остается меньшее число тел, которые при этом движутся по непересекающимся орбитам. Именно так в конечном итоге и выглядит показанная здесь система планет.
А это еще одна попытка изобразить раннюю стадию образования нашей Солнечной системы — россыпь мелких тел (несколько километров в поперечнике), из которой формировались планеты. Эту гипотезу подтверждают недавние открытия ряда уплощенных дисков вокруг ближайших звезд.
Илл. 18. Планетезимали
На этом этапе формирования планетной системы сталкивающиеся небесные тела размером с астероид обращаются вокруг центральной звезды.
Илл. 19. Бета Живописца
На этом снимке 1997 г. запечатлены в условных цветах края осколочного диска, окружающего звезду Бета Живописца, которая примерно за 20 лет до этого предоставила нам первое свидетельство формирования планет вокруг звезды за пределами нашей Солнечной системы. Телескоп блокирует прямой свет звезды, позволяя различить более слабый свет, отраженный от диска. Разрыв в диске означает, что там идет процесс образования планет. Аналогичные диски вращаются вокруг большинства молодых звезд.
Здесь вы видите диск вокруг звезды Бета Живописца из созвездия в южном полушарии неба. И у Веги, одной из ярчайших звезд северного неба, тоже имеется плоский диск из пыли и, возможно, некоторого количества газа. Многие полагают, что он находится на последней стадии сжатия туманности, что планеты там уже образовались и, если вернуться к наблюдениям через каких-нибудь несколько десятков миллионов лет, мы обнаружим там вместо диска полностью сформированную планетную систему.
А теперь я хотел бы перейти к так называемому антропному принципу. У любого, кто изучает историю, возникает почти непреодолимое искушение задаться вопросом: а что если бы все пошло иначе? Если бы Георг III был милым и добрым? Простор для вопросов огромен, этот не претендует на глубину, но вы понимаете, о чем я. В мировой истории найдется немало случайных, на первый взгляд, событий, которые вполне могли бы обернуться по-другому, и тогда сама история сложилась бы иначе. Скажем (не знаю, так ли это на самом деле), мать Наполеона чихнула, отец Наполеона сказал «будьте здоровы», так они и познакомились — соответственно, в этом повороте мировой истории повинна крошечная частица пыли. Можно вообразить и другие, более значимые развилки. Вполне естественный предмет для размышления.
Итак, вот мы. Живые, обладаем некоторым скромным разумом, а вокруг нас — Вселенная, явно допускающая эволюцию жизни и разума. Утверждение банальное и, думаю, максимально для данной темы безопасное: Вселенная согласуется с эволюцией жизни, по крайней мере здесь. Однако интересно, что кое в чем Вселенная очень тонко настроена, и если бы все было чуть иначе, будь слегка иными законы природы и некоторые константы, определяющие действие этих законов, то сама Вселенная, возможно, оказалась бы несовместима с жизнью.
Например, мы знаем, что галактики разбегаются друг от друга (так называемое расширение Вселенной). Темп этого расширения можно измерить (он меняется со временем). Мы можем даже провести обратную экстраполяцию и выяснить, когда галактики находились в такой непосредственной близости друг к другу, что буквально соприкасались. И это будет если не начало Вселенной, то по крайней мере аномальное или единичное событие, от которого можно вести отсчет. Результаты у разных вычислений варьируются, однако приблизительный срок составляет около 14 млрд лет.
А еще нам известно, что срок, требующийся для развития разума во Вселенной, — если мы уникальны и нескромно определяем в носители разума именно себя (потому что можно рассматривать и других приматов, дельфинов, китов и так далее) — около 14 млрд лет. Как это? Откуда это сходство в числах? Поставим вопрос иначе: если бы мы находились на более ранней или более поздней стадии расширения Вселенной, все обстояло бы по-другому? Будь мы на более ранней стадии развития Вселенной, согласно этой точке зрения, эволюционные процессы не успели бы дать плоды, разум еще не успел бы возникнуть, а значит, некому было бы приводить этот довод или дискутировать на эту тему. Таким образом, одно то, что мы это обсуждаем, свидетельствует, согласно данному аргументу, что Вселенная должна быть не моложе определенного возраста. То есть, если бы нам хватило ума опередить Эдвина Хаббла с этим доводом, мы могли бы сделать потрясающее открытие о расширении Вселенной, просто созерцая собственный пуп.
Я вижу в этом аргументе очень любопытный вывод. Рассмотрим еще один пример. Ньютоновское притяжение по закону обратных квадратов. Возьмем два гравитирующих тела, увеличим расстояние между ними вдвое, гравитационное притяжение составит четверть от прежнего. Увеличим расстояние в десять раз — гравитационное притяжение составит одну сотую, и так далее. Как выясняется, практически при любом отклонении от точного закона обратных квадратов орбиты планет будут так или иначе нестабильными. При законе обратных кубов, скажем, или еще более высоких обратных степенях планеты стремительно докрутятся по спирали до Солнца и погибнут.
Представьте себе прибор, меняющий закон всемирного тяготения (очень хотелось бы иметь такой прибор, но он не существует). На шкале можно выставить любой показатель степени, в том числе 2, как в нашей Вселенной. Меняя значения, мы убедимся, что в достаточно большом количестве случаев получившихся вселенных стабильные планетные орбиты невозможны. И даже крошечное отклонение от 2, например 2,0001, способно за долгий срок существования Вселенной привести к тому, что экспериментировать с подобными расчетами будет некому.
И тогда возникает вопрос: почему именно закон обратных квадратов? Как так получилось? Перед нами закон, применимый ко всему обозримому космосу. Далекие двойные галактики, вращающиеся друг вокруг друга, подчиняются именно этому закону — закону обратных квадратов. Почему не какому-то другому? Это случайность или закон обратных квадратов существует для того, чтобы существовали мы?
В той же ньютоновской формуле закона всемирного тяготения имеется гравитационная постоянная, обозначаемая как G. Как выясняется, если бы G была в десять раз больше (в системе СИ она составляет около 6,67 × 10–8) и равнялась 6,67 × 10–7, из всех звезд в небе остались бы одни голубые гиганты, которые расходуют свое термоядерное топливо так быстро, что для развития жизни на обращающихся вокруг них планетах просто не хватит времени (если, конечно, наша планета действительно эталон по части сроков развития жизни).
Если G будет в десять раз меньше, у нас останутся только красные карлики. Что плохого во Вселенной, состоящей из красных карликов? Да, они держатся долго, поскольку термоядерное топливо расходуют медленно, но свет они дают настолько слабый, что планеты смогут прогреться до температуры, скажем, жидкого состояния воды[9], только держась максимально близко к звезде. Однако, если поместить планеты слишком близко к звезде, в силу приливного воздействия звезды на планету та будет постоянно обращена к звезде только одной стороной, которая, соответственно, будет нагреваться, тогда как обратная сторона останется холодной, и жизнь на такой планете развиться не сможет. Не поразительно ли, что G имеет именно то значение, которое имеет? К этому я еще вернусь.
Или возьмем, например, устойчивость атома. У электрона, масса которого примерно в 1800 раз меньше массы протона, электрический заряд будет в точности такой же, как у протона. Один в один. Будь он чуть иным, атом утратил бы устойчивость. Откуда взялась эта идентичность электрических зарядов? Зачем она нужна? Чтобы 14 млрд лет спустя тут были мы, состоящие из атомов?
Если бы константа сильного ядерного взаимодействия была чуть меньше, устойчивость во всей Вселенной сохранял бы один водород, а все остальные атомы, без которых невозможна жизнь, не появились бы вовсе.
Или, скажем, если бы слегка отличались от существующих определенные ядерные резонансы у углерода и кислорода, в ядрах красных гигантов не создавались бы более тяжелые элементы, и во Вселенной снова остались бы только водород и гелий, и появление жизни снова оказалось бы невозможно. Почему все так благоприятствует возникновению жизни, если существует столько возможностей для совершенно иной картины Вселенной? (Нет, не ждите, что я сейчас отвечу на этот вопрос.)
В этом перечне доводов несложно отыскать скрытые постулаты телеологии. По сути, само словосочетание «антропный принцип» выдает по крайней мере эмоциональную, если не логическую подоплеку этого аргумента. Центральную позицию занимаем мы, люди, это мы «антропос». И именно поэтому я вижу здесь еще одно поле боя, несколько завуалированное, на котором разворачивается коперниканская революция в наше время. Дж. Барроу, один из авторов и пропагандистов антропного принципа, высказался без обиняков. Он утверждает, что Вселенная «создана с целью порождать и поддерживать существование наблюдателей», то есть нас.
Что на это сказать? Позволю себе в завершение несколько критических замечаний. Во-первых, по крайней мере часть пунктов этого аргумента грешит недостатком воображения. Возьмем довод про красных карликов, которые остались бы единственным типом звезд во Вселенной, будь гравитационная постоянная на порядок меньше. Действительно ли в таких условиях не может возникнуть жизнь по приведенным выше причинам? Как выясняется, это не так, и объяснений тут два. Вернемся к доводу про приливный захват. Да, для близко расположенной планеты и звезды конечный результат, скорее всего, будет тот же, что для Земли и Луны, то есть спутник будет делать один оборот за период обращения, всегда оставаясь повернутым к центральному телу одной и той же стороной. Поэтому мы всегда видим только «лунный лик», а не «лунный затылок». Но если взять, скажем, Меркурий и Солнце, перед нами будет приближенная к центральному телу планета с соотношением вращения и обращения не один к одному, а два к трем. В подобной ситуации возможны и другие соотношения, это не единственное. Более того, если мы говорим о планете, где имеется жизнь, мы предполагаем наличие атмосферы. А в атмосфере тепло переносится с освещенного полушария на неосвещенное, температура перераспределяется. Так что там не появятся только горячая и только холодная сторона. Все будет несколько умереннее.
А теперь посмотрим на более удаленные планеты, где жизнь вроде бы не может возникнуть из-за чрезмерного холода. В этом доводе упущен из вида так называемый парниковый эффект — задержка атмосферой инфракрасного теплового излучения планеты. Возьмем Нептун, расположенный в 30 а.е. от Солнца, а значит предположительно получающий почти в 1000 раз меньше солнечного света. Однако в атмосфере Нептуна есть обнаруживаемый с помощью радиоволн участок, где так же тепло, как в помещении, в котором я сейчас нахожусь. Как видим, довод выдвинут, но недостаточно подробно проработан и недостаточно пристально рассмотрен. И готов спорить, что так же будет обстоять дело с некоторыми другими представленными примерами.
Во-вторых, не исключено, что существует некий еще не открытый принцип, которые свяжет различные разрозненные вроде бы аспекты Вселенной, подобно тому как теория естественного отбора дала неожиданное решение проблемы, казалось бы не имевшей мыслимого решения.
И в-третьих, есть еще идея так называемой множественности миров или, точнее, множественности вселенных. И именно это я имел в виду, говоря в самом начале об истории. Если в каждое микромгновение Вселенная расщепляется на альтернативные версии, где все устроено иначе, и если в каждый момент одновременно существует огромный, гигантский, возможно, бесконечный спектр иных Вселенных со своими законами природы и другими константами, то наше существование не так уж примечательно. Есть множество других Вселенных, в которых никакой жизни нет. А мы по чистой случайности оказались в той, где жизнь имеется. Это примерно как получить выигрышную комбинацию карт в бридже. Шансы, что вам сдадут, скажем, 12 пик, до абсурдного ничтожны. Однако этот шанс ничем не хуже вероятности получить любой другой набор карт, и поэтому, если играть достаточно долго, рано или поздно в какой-нибудь Вселенной соберутся вместе именно наши законы природы.
Я полагаю, мы наблюдаем по-прежнему почти неизведанную область физики, на которую проецируются все те же человеческие надежды и страхи, сопровождавшие всю историю полемики, связанной с коперниканской революцией.
В завершение еще два пункта. Первый: если истинна самая радикальная версия антропного принципа, а именно — Господь (будем называть вещи своими именами) создал Вселенную так, чтобы в ней рано или поздно появился человек, закономерен вопрос, что произойдет, если человечество себя уничтожит. Ведь тогда творение получится напрасным. Так что, если принимать радикальную версию, напрашивается вывод, что (а) Вселенная создана не всемогущим и всеведущим Господом, то есть Он был некомпетентным космическим инженером, либо, что (б) человечество не уничтожит само себя. Оба варианта, мне кажется, представляют интерес и познавательную ценность. Однако во втором ответвлении этой развилки кроется опасный фатализм.
А подытожить я хотел бы стихотворением Руперта Брука под названием «Небеса»[10]:
В полдневный час, ленивым летом,
овеянная влажным светом,
в струях с изгиба на изгиб,
блуждает сонно-сытых рыб
глубокомысленная стая,
надежды рыбьи обсуждая,
и вот значенье их речей:
«У нас прудок, река, ручей;
но что же дальше? Есть догадка,
что жизнь — не все; как было б гадко
в обратном случае! В грязи,
в воде есть тайные стези,
добро лежит в их основанье.
Мы верим: в жидком состоянье
предназначенье видит Тот,
Кто глубже нас и наших вод.
Мы знаем смутно, чуем глухо —
грядущее не вовсе cyxo!
«Из ила в ил!» — бормочет смерть;
но пусть грозит нам водоверть,
к иной готовимся мы встрече…
За гранью времени, далече,
иные воды разлились.
Там будет слизистее слизь,
влажнее влага, тина гуще…
Там проплывает Всемогущий,
с хвостом, с чешуйчатой душой,
благой, чудовищно-большой,
извечно царствавший над илом…
И под Божественным правилом
из нас малейшие найдут
желанный, ласковый приют…
О, глубь реки безмерно мирной!
Там, под водою, в мухе жирной
крючок зловещий не сокрыт…
Там тина золотом горит,
там — ил прекрасный, ил пречистый.
И в этой области струистой
ах, сколько райских червяков,
бессмертных мошек, мотыльков
какие плавают стрекозы!»
И там, куда все рыбьи грезы
устремлены сквозь влажный свет,
там, верят рыбы, суши нет…
Приведённый ознакомительный фрагмент книги «Наука в поисках Бога» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
8
Преобразования Лоренца описывают замедление времени и сокращение длины движущегося тела в любой системе отсчета в зависимости от относительной скорости. Эйнштейн в своей специальной теории относительности вывел преобразования Лоренца, исходя из принципа постоянства скорости света для всех наблюдателей. — Прим. сост.