Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11). В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям. Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала. Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.
Приведённый ознакомительный фрагмент книги Логика для всех. От пиратов до мудрецов предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Предисловие
— Когда я беру слово, оно означает то, что я хочу, не больше и не меньше, — сказал Шалтай презрительно.
Этот выпуск является продолжением книги «Логические задачи», изданной ранее в серии «Школьные математические кружки». Он состоит из десяти занятий, различных по цели, форме и уровню сложности.
Первые пять, а также восьмое занятие представляют собой элементарное введение в формальную логику. Тематика стандартна: высказывания (в том числе общие и частные) и их отрицания, закон исключенного третьего, союзы «и» и «или», следствие и равносильность. Уровень сложности и стиль изложения первых пяти и большей части восьмого занятий рассчитан в первую очередь на учеников 5–7 классов. Почти во все занятия (кроме второго) включены задачи, связанные с другими разделами математики. Особое внимание уделяется умению отличать решенную задачу от нерешенной, в частности, применимости примера и контрпримера. Активно используются графические иллюстрации. Отдельные задачи, требующие от пятиклассников дополнительных знаний (например, признаков делимости), могут быть ими пропущены или заменены аналогичными из раздела дополнительных задач.
Надеемся, что материалы первой части книжки кому-то из учителей пригодятся при подготовке уроков для всего класса, а не только занятий кружка.
Вторая половина книжки построена на решении постепенно усложняющихся задач и адресована кружковцам второго и более года обучения.
Шестое занятие развивает навык рассуждать в соответствии с законами логики, сформулированными на предыдущих занятиях. Его можно проводить после них, а для подготовленных учащихся — и вместо них.
Седьмое занятие посвящено доказательству от противного. Многие школьники впервые встречаются с методом от противного на уроках геометрии. Результат известен: метод усваивается на уровне магического заклинания, применяемого для умиротворения учителя этого бессмысленного и беспощадного предмета. Хотелось бы надеяться, что встреча с методом от противного в предложенном мини-курсе логики окажется более естественной и плодотворной. Рекомендуем провести такое занятие в конце шестого класса или в начале седьмого, незадолго до первого применения метода в геометрии или хотя бы вскоре после него. Следующий подходящий момент связан с доказательством иррациональности квадратного корня из 2 в восьмом классе. Предложенные задачи не слишком просты и для большинства восьмиклассников.
Последние три занятия посвящены метаголоволомкам (т. е. головоломкам о головоломках). В девятом занятии представлены разнообразные метаголоволомки. В десятом занятии и приложении к нему — игровые сценарии на основе задач о мудрецах. Когда мудрецы и колпаки настоящие, рассуждать не только веселее, но и гораздо проще.
Потребность детей в игре, движении, самовыражении можно также реализовать, предложив им разыграть отдельные сценки из вступлений к третьему, четвертому и пятому занятиям. Вступления к занятиям первой части — особенность этой книжки; они помогут читателю-школьнику самостоятельно разобраться с теорией, а учителю — построить вводную беседу. В остальном форма выпуска продолжает традиции серии «Школьные математические кружки»: каждое занятие предваряется методическими рекомендациями, ко всем задачам приведены ответы и решения, к некоторым — подсказки, обсуждения и комментарии. Завершают книжку дополнительные задачи, не вошедшие в занятия, а также раздаточный материал.
В большинство занятий включены соответствующие теме парадоксы — и классические, занимавшие умы философов всех времен, и придуманные недавно и связанные с трудностями перевода одной и той же мысли на разные языки: русский, английский, графический, формальный.
Возникает вопрос: а зачем вообще учить детей формальному языку даже на уровне таблиц истинности? Разве логические операции не соответствуют привычным словам родного языка? В том-то и дело, что соответствие это отнюдь не однозначное. Мы постарались затронуть на занятиях именно те места, где разница особенно заметна, а бытовая речь нелогична. Приведем пример. Допустим, сын никак не может найти ключи, а мама его ругает: «Если разбрасывать вещи где попало, потом ничего не найдешь!» С формальной точки зрения она делает две ошибки. Во-первых, путает следствие и равносильность, не уточняя, что если класть вещи на место, то найти их потом легко. Во-вторых, ее слова легко опровергнуть, найдя хотя бы одну вещь. Тем не менее, сын прекрасно понимает, что имела в виду мама. Он привыкает к соответствующей речи и с этим опытом приходит в школу.
Неудивительно, что школьники часто не отличают свойство от признака (и вообще прямую теорему от обратной), подменяют доказательство рассмотрением частного случая и делают другие логические ошибки. Удивительно скорее, когда учителей это удивляет. Мы так давно привыкли к правилам игры и считаем их настолько очевидными, что детям даже и сообщать их в соответствии с программой не требуется: пусть сами догадаются! И наиболее склонные к абстрактному мышлению дети действительно догадываются. А наиболее склонные к честной игре учителя считают своим долгом своевременно познакомить всех участников с ее правилами и терпеливо приучают не нарушать их. В помощь таким учителям и написана эта книга.
Автор благодарит К. А. Кнопа, А. В. Шаповалова и. Э. Шноля за предложенные задачи, методические идеи подробные содержательные обсуждения.
Приведённый ознакомительный фрагмент книги Логика для всех. От пиратов до мудрецов предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других