1. книги
  2. Физика
  3. ИВВ

Эволюционные стратегии: оптимизация параметров в формуле AGI. Искусственный интеллект

ИВВ
Обложка книги

«Эволюционные стратегии: оптимизация параметров в формуле AGI», рассматривается методика эволюционной оптимизации для настройки параметров формулы искусственного общего интеллекта (AGI). Подробный обзор шагов процесса оптимизации, объясняет роль каждого компонента формулы AGI и описывает методы выбора родителей, генетические операторы и обновление популяции. Авторы представляют практические примеры и руководство по применению эволюционных стратегий для оптимизации различных моделей AGI.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Эволюционные стратегии: оптимизация параметров в формуле AGI. Искусственный интеллект» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Инициализация популяции

Подробное описание шага 1: инициализация популяции

Шаг 1: Инициализация популяции в методах эволюционных стратегий для AGI служит для создания начальной популяции решений, которая будет проходить процесс эволюции и оптимизации параметров формулы AGI. Вот подробное описание этого шага:

1. Определение размера популяции:

Первым шагом является определение размера популяции — количество решений, которые будут присутствовать в начальной популяции. Это может быть фиксированным числом или настраиваемым параметром, в зависимости от задачи и требуемого уровня разнообразия в популяции.

2. Генерация начальных значений параметров:

После определения размера популяции происходит генерация начальных значений параметров для каждого решения в популяции. Это может быть выполнено случайным образом, когда значения параметров выбираются из диапазонов или распределений, или это может быть основано на предварительном анализе и эвристическом подходе для более осмысленной инициализации.

3. Кодирование решений:

Представление решений в популяции требует их кодирования в структуру данных, которая может быть использована для проведения эволюционного процесса. Кодирование может быть разным в зависимости от специфики проблемы и характера параметров формулы AGI. Например, это может быть бинарное кодирование, кодирование действительных чисел или использование других специфичных способов представления параметров.

4. Создание начальной популяции:

С использованием сгенерированных начальных значений параметров и их кодирования создается начальная популяция решений. Каждое решение представляет собой комбинацию значений параметров формулы AGI, которые будут проходить процесс эволюции.

5. Оценка приспособленности:

После создания начальной популяции каждое решение оценивается в соответствии с функцией оценки приспособленности или целевой функцией. Она определяет «качество» решения и используется для сравнения и выбора лучших решений в популяции.

Инициализация популяции является важным шагом в методах эволюционных стратегий в AGI. Она обеспечивает начальную разнообразность параметров и позволяет начать процесс эволюции и оптимизации на основе оценки приспособленности. Хорошая инициализация может повысить шансы на нахождение оптимального решения в конечном итоге.

Рассмотрение различных стратегий и подходов к созданию начальной популяции решений

Рассмотрение различных стратегий и подходов к созданию начальной популяции решений в методах эволюционных стратегий для AGI включает ряд вариантов и методов.

Вот некоторые из них:

1. Случайная инициализация:

Самым простым и широко используемым подходом является случайная инициализация. Значения параметров формулы AGI генерируются случайным образом в пределах заданных диапазонов. Этот метод обеспечивает начальную разнообразность в популяции и может быть полезным, когда нет заранее известной информации о наилучших значениях параметров.

2. Эвристическая инициализация:

В некоторых случаях, особенно когда есть предварительная информация о системе или задаче, может быть полезно использовать эвристические подходы для инициализации популяции. Это может включать использование знаний предметной области или экспертных знаний для генерации более осмысленных и адаптированных значений параметров.

3. Приближенное решение:

Если есть приближенное решение или некоторое решение, которое уже близко к оптимальным значениям параметров, то его можно использовать в качестве начального решения для инициализации популяции. Это поможет ускорить процесс эволюции, направляя его вблизи оптимальных значений.

4. Импортирование из предыдущих популяций:

Если есть исторические данные предыдущих популяций с уже пройденным процессом эволюции, можно импортировать лучших решений из этих популяций в качестве начальной популяции для следующего цикла эволюции. Это поможет сохранить лучшие характеристики из предыдущего процесса.

Конец ознакомительного фрагмента.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Эволюционные стратегии: оптимизация параметров в формуле AGI. Искусственный интеллект» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я