Данное издание создано в помощь студентам вузов, которые хотят быстро подготовиться к экзаменам и сдать сессию без проблем. Пособие составлено с учетом Государственного образовательного стандарта.
Приведённый ознакомительный фрагмент книги Коллоидная химия. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
8. Поглощение света дисперсными системами, уравнение Бугера-Ламберта-Бера. Определение размеров коллоидных частиц
Уравнение Рэлея справедливо для монодисперсных разбавленных коллоидных растворов при размерах частиц дисперсной фазы r < 40–70 нм. Более общие выводы о рассеянии света, справедливые для систем всех степеней дисперсности, сформулированы в теории Г. Ми. В данной теории учитывается, что при больших размерах частиц картина рассеяния света осложняется возникающими электрическими и магнитными полями. Максимум рассеяния согласно Г. Ми имеет место при размерах частиц около 0,25λ, где λ — длина волны видимой части спектра.
Явления рассеяния и поглощения света связаны также с такими свойствами, как окраска растворов, концентрация растворенного вещества. Поглощение света имеет избирательный характер. Поглощение света для молекулярных растворов определяется по уравнению Бугера-Ламберта-Бера:
I = I0 e — kcδ,
где I и I0 — интенсивность падающего света и света, прошедшего через раствор; k — коэффициент поглощения, зависящий от природы растворенного вещества и длины волны; c — концентрация поглощенного вещества; d — толщина слоя раствора.
Из данного уравнения можно вывести соответствующие уравнения для определения относительной прозрачности и относительного поглощения:
I / I0= e — kcδ;
(I0 — I) / I0 = 1 — e — kcδ.
Для коллоидных растворов в уравнение Бугера-Ламберта-Бера вносят поправку, которая необходима для учета рассеяния света. Количество рассеянного света эквивалентно дополнительному количеству поглощенного света. В связи с этим приведем модифицированную формулу, в которой учитывается явление светорассеяния:
где v — объем коллоидной частицы.
Из последнего уравнения можно вывести формулу для расчета размеров коллоидной частицы. Предположим, что частица имеет правильную сферическую форму.
Тогда радиус этой частицы будет определяться так:
Эмпирически радиус частицы в жидком растворе можно определить методом ультрамикроскопии. Для этого при помощи микрометрической окулярной шкалы выделяют определенный объем коллоидного раствора, в котором визуально подсчитывают количество коллоидных частиц. Если известна масса частицы, то, учитывая плотность диспергированного вещества, можно определить объем и размеры частицы.
Поскольку ультрамикроскоп позволяет косвенно судить о форме коллоидных частиц, то необходимо принять во внимание две формулы. Если форма частицы представляет собой куб, то справедливо, что
если частица представляет собой сферу, то
где С — массовая концентрация коллоидного раствора; V — выделенный оптический объем; v — число частиц в объеме V; L — ребро куба; D — диаметр сферы.
Приведённый ознакомительный фрагмент книги Коллоидная химия. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других