Курс «Интеллект-стек» раскрывает понятия интеллекта и мышления, предлагает усиление естественного и искусственного интеллекта за счёт изучения лучших (SoTA, state-of-the-art) мыслительных практик, основанных на трансдисциплинах понятизации, собранности, семантики, математики, физики, теории понятий, онтологии, алгоритмики, логики, рациональности, познания/исследований, эстетики, этики, риторики, методологии, системной инженерии.
Приведённый ознакомительный фрагмент книги Интеллект-стек 2023 предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
2. Понятизация
Быстрое мышление через поиск ассоциаций
Понятизация — это практика как-то находить предметы похожими друг на друга и на этой основе выделять какие-то «фигуры из фона», выделять объекты наблюдения и действия (смотрю на гвоздь и забиваю его, смотрю на палящее солнце и загораживаюсь от него) из огромного числа потенциальных окружающих объектов. А ещё эти объекты надо как-то называть (необязательно словами, это иногда называют маркировка/labeling/означкование), и поэтому общее название роли поэт, у которого практика «разглядеть что-то в пестроте будней — и как-то обозвать».
Метафору понятизации и связанных с ней трудностей можно найти на вот этой картинке (в каждой шутке есть доля шутки):
Тут нужно уметь ещё отличать имена предметов (name) от самих предметов (thing), обозначаемых именами, то есть уметь понимать разницу не только между крестами и кольцами (предметами), но и между крестами металлическими и крестами католическими (понятиями).
По большей части речь идёт о врождённой части нейросетевого (в том числе человеческого, но есть гипотезы, что вообще вся вселенная в каком-то роде огромная нейросеть) интеллекта: умение группировать воспринимаемые в физическом мире объекты и воспринимаемые «умозрительно/умочувствовательно» понятия как объекты по их похожести, равно как и понимать, что за звуками речи и символами на письме скрываются понятия.
Именно врождённая понятизация лежит в основе быстрого мышления (мышления-1, режим работы мозга S1) по Даниэлю Канеману98.
В машинном интеллекте это «быстрое» понятийное мышление хорошо реализуется глубокими нейронными сетями (deep neural networks). Но необученная нейронная сеть бесполезна в плане мышления примерно так же, как новорождённый ребёнок. Чтобы размышлять даже «быстро», «интуитивно» (про логичное мышление пока молчим), людям с их «мокрыми» нейронными сетями и искусственным нейронным сетям на самой разной аппаратной основе (классические компьютеры, оптические компьютеры, квантовые компьютеры, аналоговые мемристорные компьютеры и т.д.) нужен некоторый жизненный опыт, насмотренность/наслушанность/наработанность. Нужно долгое (для людей — многолетнее) и дорогое познание/исследование — предобучение, а потом ещё и настройка на ту или иную предметную область (профессионализация).
Маленький ребёнок насматривается, наслушивается, наигрывается — он тренирует нейронные сети в своём мозгу. Это неважно, что его не учили писать, читать, логично размышлять. Говорить ребёнок сможет, какие-то проблемы решать (обобщать примеры ситуаций, виденные им в жизни на новые ситуации, в чём-то похожие на старые) ребёнок тоже сможет. Даниэль Канеман подчёркивал, что режим S1 вполне обеспечивает речь, это вовсе не только «образное мышление», «визуальное мышление». Символические рассуждения в S1 вполне возможны! Невозможно только «алгеброй гармонию поверить», если что-то «показалось» или «почудилось», то в этом режиме нельзя логически покритиковать «привидевшееся» и отвергнуть. Хотя интуитивно и это можно, умение вести логические рассуждения появляется как эмерджентное свойство, оно тоже может познаваться/learn на примерах, и потом обобщаться.
S1 обеспечивает быстрые, неточные, с большим числом логических ошибок результаты. Кроме того, S1 не может объяснить полученные результаты. Но интуиция, «нюх» (включая самые разные математические, логические, физические интуиции), самые разнообразные ассоциации — это всё S1 поддерживает.
Если человек или компьютер с нейросеткой много видел, участвовал во многих ситуациях, много читал, много смотрел видео (и не только художественных фильмов, но и документальных фильмов), то речь у него будет богатой, ассоциации точными и не ограниченными одной модальностью восприятия (видео, аудио, кинестетикой, вкусом, запахом).
Сколько это — много? Это зависит от размера нейросетки. Есть работа99, показывающая зависимость размера нейросетки от оптимальной «насмотренности»: если насмотреться меньше, то аппаратные возможности недоиспользованы, если насмотреться больше — результата не будет, только зря потраченное время на познание, «некуда запоминать результаты». Если очень грубо, то для 40—70 млрд параметров нейросети для обучения надо предъявлять последовательности из 1.4 триллиона токенов (токен — это какой-то элемент как потенциальный носитель смысла, например пиксель, воксель, аудиоотсчёт, буква, слог или часть слова — корень, суффикс, приставка). Мощность человеческого мозга по отношению к оптимальности практически неограничена, нужно довольно долго (сейчас — порядка двадцати пяти лет) насматривать/нарабатывать/начитывать мозг, чтобы он начал выдавать приемлемые результаты мышления. Но нет насмотренности — привет на работе пятилетнему ребёнку, он тоже человек, просто насмотренности поменьше!
Большие языковые модели (large language models), с которыми работают сейчас в области AI, тут мало отличаются: они начитаны, удивительно творческие, хорошо пишут школьные сочинения и даже журнальные статьи, но удивительно глупы: в сгенерированных ими текстах есть ошибки, и эти сетки не трудятся их обнаружить и исправить. Со временем эта ситуация исправляется, ошибок у нейросетей меньше и меньше, и у взрослых людей ошибок меньше и меньше, но всё равно это не полная безошибочность строгого математического вычисления.
Первая же догадка, которая приходит «на ум» (живому человеку или компьютерной нежити) выдаётся как результат. Если догадка была в связи с очень похожей на уже встреченные в жизни ситуации (опыт имеет значение!), то всё ОК. Если ситуация отличается, то вероятность ошибки догадки тем больше, чем больше отличается новая ситуация от ранее встреченных. Так что начинаем мы с практики понятизации, как самой основы мышления, но практики абсолютно недостаточной для качественного мышления.
К слову сказать, и людей, и нейронные сетки учат сейчас распознавать и такие объекты как «ошибка»: люди могут буквально физически чувствовать при этом «ошибку» (например, чувство какого-то «дребезга» при сопоставлении слова и подразумеваемого им типа, например, чёткое ощущение чего-то не того в фразах типа «все три зверя чувствуют себя хорошо: слон, муха и арбуз». Идёт замедление хода мыслей, обрабатывается вот это ощущение «что-то тут не то!»).
⠀
Передача субъективного опыта
Модальности восприятия — это восприятия от наших пяти чувств: видео (зрение), аудио (слух), кинестетика (ощущения в теле — и тут много всего разного, включая проприорецепцию/проприоцепцию), ольфакторное (обоняние), густаторное (вкус). В какой модальности происходит понятизация? Ибо мышление идёт вроде как «в понятиях», амодально. Понятизация — это как раз «ввод-вывод для мышления», как раз про проявление абстрактных понятий в сознании, осознанности «содержания мышления».
Понятизация поэтому существенно связана с органами чувств, а также нашими представлениями «в голове» о нашем восприятии. «Внутри головы» мы визуализируем мысли в форме образов, аудируем в форме звуков, воображаем вкусы и запахи, а также представляем себе ощущения — «воображение работает ровно таким же образом, как и восприятие. Нельзя ничего почувствовать из того, что нельзя воспринять органами чувств». Но то, что мы можем воспринять извне, всё это мы можем и «вообразить», «галлюцинировать», «представить». Все эти «голоса внутри головы» и «картинки на внутреннем экране» реально существуют и представляют собой вполне работающие дополнительные интерфейсы к мозгу-вычислителю, как нейронной сети. Понятизация активно это использует.
Простейшая работа с нашим восприятием заставляет задуматься, как же мы представляем себе какие-то объекты. Например, в курсе системного фитнеса просят обратить внимание на кинестетическую модальность — представить себе ощущение обмякания каких-то мышц. Надо именно напрячь-расслабить какое-то место в теле, попробовать дорасслабить его вдогонку естественному расслаблению — и запомнить ощущение как «кинестетическую гифку, маленький фильм дорасслабления». А затем обращаться с этим воспоминанием как словом/знаком на «телесном языке» (всё есть текст!). Что же тут может пойти не так? Удивительно много:
• Можно запомнить дорасслабление как визуальный образ, не обращая внимания на ощущения тела. Дальше теряем время: вспоминаем визуальный образ, потом рефлекторно переходим от него к «мышечной памяти» и только тут начинается действие.
• Запоминаем ощущение в теле, но оно запоминается не как «развёрнутое во времени изменение в ощущении», а как «статичная фотка».
• Запоминаем не ощущение, а последовательность действий, приводящая к этому ощущению, и туда наверняка попадает что-то лишнее. Например, можно сразу расслабить-дорасслабить место в теле. Но запоминаем почему-то сначала напряжение, которое нам нужно было только для того, чтобы начать расслабление. Его не нужно, если уже место в теле расслаблено, а дальше надо только дорасслаблять сознательно. Но мы сначала вспомним последовательность операций, затем выполним лишнее напряжение, а потом уже начнём дорасслаблять.
•… ещё много подобных ситуаций. Люди плохо работают с кинестетической модальностью: не обращают внимание на ощущения в теле. А ведь интуиция часто проявляется в кинестетической, а не аудиальной или визуальной модальностях, и уж совсем редко в форме запаха или вкуса!
Так что нужно тренировать работу с кинестетической модальностью — как восприятием мира в первом доступе (терминология взята в адаптации её в НЛП из теории автоматов100). Прямой доступ — это то, что поступает на датчики, то есть фотоны в глаза, перепады давления воздуха в ухо и т.д., дальше это кодируется датчиком и перерабатывается мозгом. Человек получает первый доступ в момент осознания восприятия, то есть человек осознаёт только результат обработки прямого доступа. Когда речь идёт о коммуникации, даже о попытке описать свои собственные восприятия первого доступа, мы выражаем это восприятие привычным нам языком — словами и жестами, картинками. В попытках описать восприятия первого доступа (ко внешнему миру или воображаемому/ментальному «внутри головы», это без разницы) мы уходим довольно далеко от точности выражения этого восприятия, если будем использовать слова, обозначающие какие-то абстрактные объекты, например «я ощущаю затруднение» (какое именно? что трудно?). Но мы можем поднять точность выражения, если будем заботиться о сенсорной обусловленности описаний (то есть отслеживать, что мы представляем мир довольно точно таким образом, как он выглядит, слышится, ощущается, пахнет, каков он на вкус — и ещё это в развёртке динамики, «гифками во всех модальностях восприятия»). И тут оказывается, что наличие языка и какой-то «насмотренности» накладывает ещё один фильтр: сенсорная обусловленность в понятизации профильтровывается только тем, что есть в культуре, культурной обусловленностью, поскольку, если чего в культуре нет (например, нет слов для передачи какого-то ощущения), вы передать его не сможете.
Предположим, у вас нет слов для передачи вашего ощущения для чего-то очень специфического из вашей практики — например, ощущения от расслабления чего-то в районе горла. Это называется «субъективный опыт». Передача субъективного опыта — это огромная проблема для философов. Но поскольку мы тут не занимаемся философией, мы эту проблему будем решать инженерно, «из первых принципов», то есть исходить из физики (и поступать так же, как поступают физики).
Роджер Желязны описывал, что два мага с изумлением обнаружили, что они видят заклинания по-разному: для одного это были ниточки с узелочками, а для другого лучики с блёстками. Вот это оно и есть. При этом, конечно, для визуальности у нас полно средств описать, что там видно — пока вы не увидите что-то типа вертолёта, который нужно будет описать Чебурашке, как в том анекдоте: «как бы тебе это объяснить? Апельсин знаешь? Ага, знаешь. Ну так вот вертолёт на него абсолютно не похож». А теперь опишите соседу, как вы чувствуете тальк, рассыпанный по полу — это ж просто кинестетика, да? Тело, которое вдруг начинает вести себя на скользком тальке совсем не так, как на земле, но и не совсем так, как на льду. И вы это тело воспринимаете не снаружи глазами, а в ощущениях, изнутри. Как это ощущение описать? Ощущение поцелуя, ощущения эээ… ну вы понимаете.
Итак, вы называете нужное вам ощущение «расгорлить» и понимаете, что никакие слова передать это ваше субъективное ощущение (субъективный опыт) другому человеку не помогают. Чтобы «расгорлить» (то есть представить это ощущение там, где вам надо — и получить эффект расслабления там, где надо), надо это представить — но передать из мозга в мозг ощущение нельзя! А уж если надо передать ощущение «расгорлить» компьютерной нейросетке, то это и подавно оказывается невозможным.
Тут помогает та же процедура, что известна физикам, когда они передают свои абстрактные понятия типа «ускорение свободного падения». Они задают какие-то операции во внешнем мире с понятными хорошо определёнными предметами, чтобы точно воспроизвести какой-то эксперимент. В эксперименте предусмотрено измерение, то есть обращение внимания на какой-то конкретный параметр системы в ходе взаимодействия объектов этой системы. Эксперимент уточняется и уточняется, пока не получается однозначным (например, не просто кидается дробинка и пёрышко с Пизанской башни, а падение делается в трубке, из которой откачан воздух — уточняются условия, убираются мешающие факторы, добиваются однозначного воспроизведения у разных людей).
Как понять, что такое красный? Выполните инструкцию: проколите на солнечном свету (конечно, тут мы поступаем как физики: долго описываем все условия эксперимента, необходимые и достаточные, чтобы получить результат измерения) пальчик булавкой, посмотрите на это место, там будет жидкость как раз красного цвета, хотя и разных оттенков. Или купите в магазине красную краску (попросите продавца продать «красную краску») и поглядите на неё. Ещё лучше выполнить пять-шесть разных замеров разными способами, чтобы как-то обобщить результат. Ощущения, понятно, запоминаются — и маркируются словом. Но передаётся от источника знаний не «краснота», а инструкция по её получению. Когда мы обсуждаем, как в эволюцию/развитие включить развитие внутреннего опыта, если мы не можем записать это знание в мемом где-нибудь рядом в книжке, то это тупик. Мы должны в мемом включать маркер для названия ощущения («красный») и пару-тройку инструкций по выполнению практики, как это ощущение получить. Другой объект: запоминается практика со знакомыми объектами, чтобы получить незнакомый внутренний опыт. Хотите узнать, что ощущает гимнаст во время сальто? Сделайте сальто, и вы это ощутите!
Не заметили подвоха в предыдущих строчках? Чтобы сделать сальто, нужно что-то сделать со своим телом, для этого нужно как-то им проуправлять (как? вы ж не делали никогда сальто?), а уж потом вы попадаете в сальто — то есть вы как гимнаст воспроизводите телом ощущения прыжка в сальто (но оно вам неизвестно!), а потом уже вы можете ощутить, что там в самом прыжке, если вы ухитрились туда как-то допрыгнуть. То есть сначала опытный гимнаст должен передать вам соматомеханическое описание (что там происходит с телом изнутри тела: сома — это как раз тело, как оно чувствуется изнутри тела) для захода в биомеханическое внешне видимое сальто вашего тела, чтобы потом вы оценили, как там оно в этом прыжке в ощущениях. То есть вы уже должны неплохо владеть сомой, чтобы выжимать из сомы всё новые и новые ощущения. Ну да, вы уже должны знать про зрение, чтобы смотреть на «красный», а не слушать «красный», или не пробовать «красный» на вкус. Всегда есть какое-то базовое знание, вы обычно не с полного нуля начинаете, у вас уже есть какая-то насмотренность/наслышанность/начувствованность, а также наработанность как опыт манипулирования какими-то предметами, включая собственное тело.
Как тренеру системного фитнеса продемонстрировать обмякание в ваших перенапряжённых мышцах, чтобы дальше вы могли работать с этим ощущением? У всех эти мышцы перенапряжены в разных местах, внутри себя все чувствуют разное (описывают это как жжение, давление, «тянет», «прёт», набухает, холодит и т. д. — и часто это ещё и совсем другие ощущения). Всё просто: вы проводите ряд операций типа подавить рукой на стенку с разной силой, а потом прекратить давление — и обратить внимание на ощущения, да ещё сознательно попытаться его усилить, «доотпустить мышцу», сопроводить этот сброс усилия. Не всё, конечно, вот прямо так просто (то есть как и в случае «выйди на солнышко перед тем, как смотреть на пальчик», чтобы было точно «красное», а не «в темноте все кошки серы», нужно выполнить несколько дополнительных условий, повышающих вероятность того, что вы ощущаете ровно то, что нужно), и давите затем вы ногой, лбом — пытаясь обобщить это ощущение сброса усилия мышцами. Запоминаете это под названием «обмякание». Пытаетесь воспроизводить с самыми разными регионами тела (вам же даже названия мышц не нужны!), поднимаете вашу чувствительность к «обмяканию» (новое ощущение! но вы уже знаете, каково оно, поэтому можно захватить его вниманием и отслеживать его маленькие изменения!), добиваетесь беглости воспроизведения сброса усилий мышц в разных частях тела «по памяти» (то есть не надо давить куда-нибудь, чтобы получить ощущение обмякания, а нужно просто дать сознательную команду — «сбрасывай усилие», мышцы обмякнут, и вот оно — ощущение «обмякания», воспроизведённое по вашей уникальной памяти). Как записать это уникальное знание «обмякания», чтобы потом обсуждать его, передавать от человека к человеку, оно ж абсолютно уникально ощущается в каждом мозгу, в каждом теле?! А вот так, процедурой «подготовка измерения, проведение измерения, передача результата измерения в память». И, конечно, «результат измерения по заданной процедуре» получает название, которое можно использовать при обсуждении. Вот это самое «расгорлить» можно передать по вот этой процедуре.
Возьмём случай посложнее. Вот собранный человек с хорошо развитым сознанием, которое понятийно наводит внимание и умеет каким-то образом не терять это внимание подолгу. Те, кто занимаются просветлением, берут коан (любая бессмысленная мысль, смысла которой понять заведомо невозможно — вам же нужно занять ум задачкой, у которой заведомо нет решения, чтобы задачка никогда не кончилась! Смысла заведомо не должно быть, чтобы вы вечно могли его искать!) и удерживают его во внимании. Оказывается, это можно тренировать, как цирковой трюк: удерживать размышление над бессмыслицей весь день, а потом ещё и полночи (быстрый сон), а потом еще и всю ночь (медленный сон). Ура, после круглосуточного удержания внимания ваш мозг попадает в особый режим круглосуточной работы сознания, вы можете называться «пробуждённым» (другое название того же самого — «просветлённый»), ибо вы спите, но ваше сознание как удержание внимания на задаче работает. Полностью бессмысленное дело, цирковой номер, ни на что не влияет, занимает кучу времени, но вам же хотелось узнать «каково оно, быть пробуждённым/просветлённым» изнутри? Вот, как раз операционный рецепт, цифровая (точно воспроизводимая, словесная, знаковая) память, нужная для эволюции, простота репликации, точность повторения (это повторяли сотни тысяч людей! Просветлённых на Земле и сейчас десятки тысяч в странах, где практикуют буддизм, индуизм, ламаизм). Нужно только выполнить последовательность операций, потратить от двух до шести лет жизни. Эффектов для интеллекта от этого особо никаких не получите (скорее, наоборот — число лауреатов нобелевской премии в странах, где много просветлённых пониже, и вообще уровень жизни пониже, если бы люди от такого умнели, всё было бы по-другому101), хотя внутри мозга это очень, очень приятно.
Альтернатива: удерживать внимание путём записей (на бумаге или в компьютере — это уже становится непринципиальным), записи помогут удержать внимание на каком-то предмете и на пять лет, не только на время сна! А за приятными ощущениями проще сходить в баньку попариться, или послушать хорошую музыку, покушать клубнику со сливками и т. д. Можно понять попов/жрецов и прочих продавцов религиозных мемов: чтобы затащить к себе, они дают подобные ощущения «кайфа от нестандартных режимов работы мозга», и человек на них подсаживается — всё, вот ещё один монах, который искренне рассказывает, что можно получать кайф вот таким извращённым способом. Репликация мемов практики работы с вниманием! Но можно ведь без кайфа и цирковых эффектов удержания мозга в несколько лет тренируемых режимах, а просто быть осознанным и собранным для работы. Более того, можно этими альтернативными «техническими» методами удерживать собранность и коллектива! И даже не надо заботиться о телепатии, если полагаться на смартфон, который по большому счёту эту проблему «передачи мысли на расстояние» решил, и решил надёжно, дёшево и без затрат на обучение и тренировки. Этот инженерный подход в сто раз быстрее и в тысячу раз полезнее. Поэтому субъективно ощущаемая «собранность» передаётся тоже словесно, тоже записывается — но эта собранность (включая собранность, поддержаную экзкокортексом/моделером) как субъективное ощущение не может быть описана, как она ощущается изнутри. И всё же она описывается: как набор операций, приводящих вас в состояние, когда вы просто её ощущаете, то есть становитесь собранным.
Для «расгорлить» вы придумываете последовательность упражнений, в которых внимание того, кому вы хотите это передать, направляется на какое-то расслабление («подними гирю правой рукой на упоре, затем отпусти гирю — почувствуй, что у тебя расслабляется», «повтори другой рукой» и т.д., далее инструкция на генерализацию — всё это обобщается как «расслабление где-то»). Дальше можно дать какие-то упражнения, где мышцы напрягаются уже не гирей — внимание знает, как искать где-то в теле «расслабление». Далее надо задать упражнение, которое чуть-чуть напрягает мышцы в горле, которые надо расслабить. И потом сознательно надо усилить это расслабление «вдогонку», то есть «дорасслабить» сознательно. Полученное конечное ощущение после действия сознательного «дорасслабления» в горле — это и есть результат операции «расгорлить». Всё, достаточно теперь сказать, что надо «расгорлить», и мы получим искомое состояние, просто сознательно выполнив это «дорасслабление в нужном месте» без предварительных нагрузок и других упражнений. Время изготовления навыка какого-то телесного действия, время использования навыка — получения нужного состояния, достижения заданных ощущений, индивидуально воспринимаемых каждым в их первом доступе, но трудных в словесном выражении.
Выполнить всё это оказывается возможным, если мы даём инструкции на сенсорно-обусловленном, а также культурно-обусловленном языке (не обязательно словами! Кинестетика, если эти ощущения нам знакомы, это тоже текст, причём «слова» там могут быть «гифками», то есть это всё динамическое, а не статическое. Слова речи «в голове», они ведь тоже «аудиогифки», меняющиеся во времени фонемы, а не «один статичный постоянный звук»! ).
Конечно, тренировать сенсорную обусловленность и преодоление культурной обусловленности нужно для всех модальностей, не только кинестетической. Например, хорошо бы понимать, что происходит в визуальной модальности — «картинки внутри головы» не самый плохой интерфейс к нейросети, эти картинки вполне могут становиться сами по себе объектами внимания точно так же, как и внешне воспринимаемые зрительные образы. Но как и с кинестетическими «образами», нельзя считать, что мышление идёт именно в визуальной модальности. В европейской культуре визуализации «внутри головы» обычны для мыслящих людей, с детства они работают с диаграммами и художественными сложными образами, схемами и иллюстрациями. В культуре индейцев визуализация мышления — это дар богов, или нужно пить психотропные вещества, чтобы тебя «посетили видения». В книге «Визуальное мышление. Доклад о том, почему им нельзя обольщаться»102 рассказано, что полагаться именно на визуализацию, как основной способ мышления, неправильно:
https://ridero.ru/books/vizualnoe_myshlenie/
⠀
Нейросемиотика. Нейросемиотическое программирование
Понятийное мышление вполне синестезийно в части представления его результатов как доступного восприятию, то есть которые можно выделить вниманием, но абстрактно/внемодально в части понятийной работы, не привязано к каким-то определённым модальностям. Понятия представляются как некоторые области многомерного пространства, отвечающего всем возможным понятиям. И эти понятия могут затем отображаться как картины (или даже «фильмы/гифки»), звуки (или даже «речь»), ощущения (или «кинестетические гифки»), и т.д., или даже «всё это вместе и одновременно, тесно переплетённое», то есть синестезийно103 и идеастезийно104.
В машинном интеллекте те же тренды: языковые модели получают уже и для визуальных наборов данных, и наборов данных из подписанных картинок. Всё больше и больше исследователей замечают, что есть огромное сходство старого нейролингвистического программирования (NLP, neuro-linguistic programming)105 и современной работы с нейронными сетками в части естественного языка (NLP, natural language processing, сводимого сегодня к «пониманию человеческой речи на естественных языках»). Но так же, как понятийное мышление не визуально (ну, или «и визуально тоже», можно визуализировать результаты), оно не аудиально, то есть необязательно идёт «словами». Поэтому один из подходов тут может считаться нейросемиотическим/neurosemiotic106 — это про то, каким образом формируются понятия и знаки в нейронных сетях, в том числе человеческом мозге, но и не только — компьютерные нейронные сети сюда тоже попадают, а ещё можно рассматривать и другие варианты вычислителей (семиотика — это наука знаках).
Модель мира отражается в многомерном ментальном пространстве понятий, а потом как-то становится доступной сознанию (иногда причудливым образом: уши слышат, как наш рот проговаривает какие-то слова — одна часть мозга генерирует речь, а вторая часть мозга обеспечивает восприятие этой речи как бы извне, но вот сама понятийная работа, само мышление как поиск решений проблем остаются «невоспринимаемыми» — я специально не употребляю тут модально-окрашенных слов «невидимыми», «неслышимыми», «не унюхиваемыми»).
Понятизация занимается тем, как соотносятся объект, его знак, понятие, значение, смысл в нейросети живой или не очень живой, или даже другом вычислительном субстрате с позиции восприятия этого вычислителя («я работаю с понятиями»), как вообще идёт означкование в каком-то вычислителе, какие алгоритмы можно применить в этом вычислителе для работы с понятиями. Нейросемиотика — это про понятизацию в нейровычислителях (в том числе человеческом мозге, но это могут быть и сообщества, и общества). Семантика занимается соотношениями между знаками, стоящими за ними понятиями и объектами, которые эти понятия отражают, причём с внешней позиции восприятия субстрата вычислителя («он работает с понятиями», а не «я работаю с понятиями»), вычислитель и его природа тут не так важны, сколько важно, с чем этот вычислитель должен работать — с отношениями знаков, понятий, объектов. Как в обычном программировании/информатике можно выделить алгоритмику (качественные алгоритмы, выдающие правильный результат за минимальное время) и семантику как вопрос о смысле вычислений, так и в нейролингвистическом/словесном или нейросемиотическом/знаковом в любой форме программировании можно тоже выделить понятизацию/алгоритмику (что делать, чтобы быстро и правильно думать о понятиях, знаках и предметах и как-то устанавливать между ними соотношениями) и семантику (каковы должны быть соотношения между знаками, понятиями и объектами, чтобы они имели смысл). Программирование/обучение/преднастройка на контекст может быть как живого человеческого мозга (трудно представить мозг кошки, хорошо работающий со знаками), так это может быть программирование/обучение/преднастройка на контекст нейронной сети в «неживых» вычислителях, «разговаривающий компьютер» уже вполне существует.
В какой-то мере самые разные последовательности не только букв, но и фонем в речи, нот в музыке, паттернов в чём угодно можно (и, наверное, нужно) считать текстом, следуя известной максиме Jacques Derrida107 «всё есть текст». Если вам пару веков назад бросили перчатку, то это такой «динамический знак» (жест), означающий вызов на дуэль. Это «словарное значение» знака, но их может быть и несколько разных («косил косой косой косой»). Вокруг текста как последовательности знаков (или даже одного знака) есть контекст, который уточняет значение текста (или даже одного знака) — ту область пространства понятий, куда мы попадаем. А то, зачем мы вообще занимаемся вычислениями с этим текстом, задаёт смысл: какое отношение к изменениям в физическом мире имеют эти вычисления.
Пространство понятий в знаках выражается квантованно/дискретизовано, ибо часто значение находится где-то там, где нет подходящего знака для его выражения («между точками дискретизации пространства понятий»), и приходится работать с пространством понятий через грубый язык, через знаки, а иногда и изобретать знаки — быть поэтом. Вот это и есть предмет понятизации. Представьте себе 100 оттенков синего цвета, и слова-знаки «синий» и «голубой» (при этом в некоторых языках даже может не быть слова «голубой»). Вот это типичная ситуация: требуется довольно много слов, чтобы выразить некоторые понятия. Потом их можно означковать, но это если они часто встречаются. Большинство понятий не имеют каких-то своих значков, но вполне выразимы на естественном языке.
Нейролингвистические программисты влед за Хомским говорят о поверхностной структуре языка (выразимой знаками, как изображение пикселями, а звук отсчётами амплитуды в какие-то дискреты во времени) и глубокой структуре (понятия, кодируемые нейросеткой, эти понятия обычно «промеж пикселей, результат вычислений», не точно соответствуют каким-то знакам). Знаки (поверхностная структура) тем самым представляют какие-то вехи, обозначающие места в понятийном пространстве (глубокая структура), поэтому иногда говорят о знаковой координатной сетке/grid (скажем, понятия разных синих цветов вам или больше доступны, если есть слова/знаки «голубой» и «синий», или менее доступны — вы хорошо можете различать голубой и синий цвет, но не сможете это хорошо выразить. Чем больше развит язык, тем точнее можно высказываться на нём. Ньютон писал свои трактаты на латыни, ибо тогдашний английский был как язык довольно убог).
Представьте себе, что у вас есть мир Майнкрафта и слова для каждого его объекта. А потом вам предлагают описать ваше реальное рабочее место только этими словами. Трудно, да? В этот момент вам захочется и как-то аллегорически или метафорически заговорить на этом языке, а иногда и новые слова в этот язык внести, а иногда переопределить значение уже имеющихся слов. По большому счёту, с естественным языком происходит ровно вот это: выражение на языке знаков (без разницы, синестетических, визуальных, аудиальных, динамических/жестов, кинестетических и т.д.) — это дискретизация, что-то типа АЦП, аналого-цифрового преобразования, а понимание выраженного знаками — обратный процесс, «цифро-аналоговое преобразование» со всеми вытекающими особенностями аналогового представления (например, невозможность многократного точного копирования, ибо при аналоговом копировании накапливается ошибка).
По большому счёту, значительная часть работы человеческого и машиннного (Bing, ChatGPT, Bard, ERNIE Bot и множество других систем AI на базе современных нейронных сетей) мыслительного мастерства сегодня проходит в простом и лёгком режиме S1 по Канеману. Из экспериментов в AI известно, что способности нейронной сети к научению растут с размером этой сети, и при достаточных размерах даже наблюдается рост способности к обобщению, а потом и возможность рассуждать108:
Человек в этом плане лучше, чем муравей или кошка. В мозгу человека множество разных нейронных сетей в разных частях мозга причудливо связаны друг с другом так, что появляется и понимание языка, и понимание шуток. А в мозгу кошки нейроны связаны друг с другом так, что понимание языка и шуток не появляются. А вот в искусственных нейронных сетях это всё появляется, но эти сети тоже должны быть не любыми, а специально устроенными.
Сами по себе проверки на ошибки в каких-то представлениях в нейронной сети не появляются, и огромные нейронные сети страшно ошибаются, если решаемые ими задачи вдруг становятся проблемами, то есть требуют разбирательства с новой предметной областью. Ребёнок, у которого не удерживается внимание, который не владеет логикой, но который много чего повидал и почитал — вот это и есть человек с хорошо развитым мастерством понятизации и отсутствием разных других видов мастерства. Это поэт, который легко отождествляет морскую звезду из монографии по биологии морских безпозвоночных и Патрика из мультильма Спанчбоб. Поэтому в его рассуждении морская звезда со дна моря вполне может сказать несколько слов и иметь друзей. Это поэзия, склеивание миров. В мире поэзии граф Дракула — вампир, а высказывание «вампиров не существует» заставляет графа Дракулу смеяться. Поэт интуитивно может расклеить разные миры, но может и не расклеить — ибо устранение ошибок смешивания рассуждений из разных контекстов делается обычно логическими проверками.
Мы начинаем учиться тогда, когда уже умеем выделить какую-то фигуру из фона: выделить объект (ментальный или во внешнем восприятии) и обнаружить сходство его с другим каким-то объектом, который вынимаем из нашей памяти. Начинаем с врождённого умения выделять объекты и обобщать способ, которым мы эти объекты выделяем (находим в объектах похожести). Это и есть понятизация — работа с понятиями, их ассоциирование/сопоставление друг с другом на предмет нахождения похожестей.
О том, что мышление человека существенно опирается на аналогии, на нахождение паттернов/закономерностей/связей/шаблонов/ритмов хорошо написано в книге Дугласа Хофштадтера «Гёдель, Эшер, Бах. Эта бесконечная гирлянда»109. Это книжка аж 1979 года (написана сорок два года назад), поэтому она давно уже неактуальна как «передовое знание человечества», но она являет собой хороший сборник примеров причудливости проявления аналогий и ассоциаций, хорошее введение в саму проблематику понятизации. За сорок с лишним лет после издания этой книги она перестала быть «передовой», и человечество существенно продвинулось в объяснении того, что в этой книге описано. Но главное — у человечества появилось машинное обучение, а в рамках машинного обучения появились большие языковые модели (large language models), которые показывают, каким образом появляется понятизация, дают возможность экспериментировать и возможности инженерной разработки устройств, которые выполняют понятизацию.
Всевозможные детские упражнения на «логику» типа «какой тут предмет лишний» — это, по большому счёту, упражнения не на логику, а на классификацию (отнесение предмета к какому-то типу на основании его похожести по каким-то критериям). Это как раз про понятизацию. Логика нужна была бы только в том случае, если нужно было бы объяснить, почему было принято то или иное решение по поводу отнесения объекта к типу, но для этого объяснения нужно будет много чего ещё уметь, кроме как выдать догадку, что же в ряду лишнее или что на что похоже.
Классические тесты на IQ — это тесты на часть понятизации, связанные с определением паттернов. Это хорошо показано в работе François Chollet «On the Measure of Intelligence»110 (2019). По большей части это тесты, которые не требуют даже владения естественным языком111 (хотя там для людей бывают и лингвистические тесты, но это не главное там тестируемое, и компьютерные варианты этих тестов не обращаются к знанию языка для тестируемых на интеллект алгоритмов112).
IQ тесты мало тестируют мастерство в других практиках интеллект-стека, хотя они и связаны тесно с собранностью (если у вас внимание отсутствует, то вы просто не помните, какой паттерн уже видели — и ничего повторяющегося в мире у вас нет. То есть для понятизации уже нужна собранность! Деление на отдельные практики интеллект-стека и выстраивание в последовательность довольно условно). И хоть понятизация лежит в основе интеллект-стека, это не самая большая его часть. Так что IQ не слишком коррелирует с успешностью в науке или бизнесе, хотя некоторая связь, конечно, есть. Но не такая прямая, как это обычно представляется. Люди со средним IQ могут получить хорошее образование и добиться больших успехов в науке. А люди с высоким IQ вполне могут иметь мастерство в других практиках интеллект-стека похуже, и не достичь особых результатов. Интеллект не определяется полностью качеством именно понятизации или собранности. Интеллект определяется совокупным мастерством мышления по дисциплинам всех практик интеллект-стека в целом.
⠀
⠀
Психопрактики для понятизации: внимание к кинестетике
Помощь в понятизации людям может прийти со стороны психопрактик фокусирования/focusing (вытаскивание инсайтов из телесных/кинестетических ощущений)113 и вытекающих из них практик концептуализации этих инсайтов thinking at the edge (TAE)114. По своим идеям эти практики очень близки к нейролингвистическому программированию, но выходят за классические рамки НЛП в том, что не работают чисто с «процессом», оставляя «содержание» где-то в глубинах нейросетки. Нет, это практика понятизации как работы с содержанием: «процесс» как раз вытаскивает содержание из нейросетки, вытаскивает субъективный опыт (первый доступ «внутри головы») — и пытается передать его другим людям, найти выражение для этого опыта.
TAE как практика начинает с внимания к ощущениям тела (это тоже знаки! Всё есть текст!), затем эти ощущения стабилизируются, затем они выводятся на уровень понятий (осознание того, что эти ощущения могут означать), затем этим понятиям даются имена.
TAE заходит довольно далеко и в практики интеллект-стека, которые находятся после понятизации, ибо кроме концептуализации/формализации/моделирования на поздних этапах там включается и логика тоже. Focusing и TAE продолжают линию метафора-ориентированной психотерапии, выводя терапию с пациентами (ремонт поломанных людей) за пределы терапии, превращая её в инженерию с клиентами (не поломанными!), обучение с учениками (не поломанными!). Авторы TAE пишут, что все «шаги» их процедур нужны только для того, чтобы научить. А потом «немые обретают язык, и выражают свою интуицию быстро и понятно». Это ровно то, что нам нужно на этапе осознания: из синестезии по линии либо визуальной (образы, всякие техники «ответа на экране»), либо кинестетической (как в психопрактике фокусирования, предтече TAE) получить какие-то тексты, характеризующие содержание пространства смыслов — для той его области, в которой часто и слов-то нет для обозначения новых, пока безымянных концептов. В TAE оговаривается, что даже при отсутствии слов для концептов можно использовать всю полноту естественного языка для выражения этих новых концептов, так что это тоже не препятствие.
Аналогичные TAE практики легко представить и в других модальностях (визуальной, аудиальной), не только кинестетической, как в оригинальном методе. В принципе, такое можно делать и в синестезии, это ведь тоже тренируется. Безмодальное/внемодальное пространство смыслов отражается в сознании синестезийно, и потом только осознаётся разными модальностями — ощущениями в теле, мелькающими перед внутренним взором картинками, слышимыми внутренним слухом звуками и т. д. Вот и использовать всё это богатство внутреннего представления мира. Модели мира внутри себя сознанием ощущаются ведь ровно так же, как мир снаружи: видео, аудио, ощущения и т. д. — только это «внутри головы». И даже пространство «внутри головы» такое же, четырёхмерное (3D и время).
Классическое нейролингвистическое программирование115 жёстко критикуется психотерапевтами (почти всё содержание статьи в Википедии — это критика со стороны психотерапии), и часть этой критики верна. В том числе верна и в том, что это — не терапия, а больше инженерия. То, что предлагало NLP для людей, очень напоминает prompt engineering116 для современный нейросетей: настройка/дообучение вычислений нейросети в мозгу (S1) с понятиями в контексте, задаваемом «подсказками»/промптами/prompts, причём без особого соотнесения с S2 (особо на это «программируем непосредственно S1, прямо обращаемся к вычислителю для S1, не трогаем S2» были направлены паттерны так называемого «нового кода»117 NLP). Многие сотни известных приёмов и практики (паттернов) нейролингвистического программирования118 вполне получают объяснение в свете современных воззрений на работу нейронных сетей, хотя как и с любым знанием, за почти полвека с момента появления тамошних практик их набор надо существенно чистить (напомним, это инженерия, а не «чистая наука о мозге», но инженерные практики меняются едва ли не быстрее, чем научные теории, к нейролингвистическому программированию это тоже относится в полной мере). Причём это «программирование»: в NLP это называется «работа по процессу, а не по содержанию» (внимание уделяются тому, «как думать», алгоритму, а не «о чём думаем» — ровно как в компьютерных программах на традиционных языках программирования внимание уделяется алгоритму, а не содержимому переменных, оно будет определяться потом, в ходе работы, когда входные данные определят значения переменных программы). Как ни странно, это не самая простая идея: в мире программирования разделение алгоритма (в NLP — процесса) и данных (в NLP — содержания), работа с алгоритмом как данными и данными как алгоритмами появилось не сразу и эти идеи могут принимать множество самых различных форм, учитывая и размытость между софтом и аппаратурой. Это верно и для людей: кошку и ребёнка можно научить каким-то условным рефлексам, но людей потом можно учить, просто сообщая им какие-то фразы, например, «не влезай — убьёт» (но для этого надо сначала людей научить языку, а кошку нельзя научить языку в силу плохой аппаратуры её мозга).
Оригинальное НЛП из 80х годов содержит некоторое количество инженерных решений в части моделирования «языковой модели внутри человека», а затем и в части обучения человека практикам программирования такой модели (обучения мозга, про плохую привычку: «как ваш мозг сумел это выучить?» — это не терапевтический, а инженерный вопрос!). НЛП было озабочено пониманием того, как работают результаты словесного программирования нейронных сеток людей, нейро (мозг) лингвистического (словами) программирования. А в современных искусственных нейросетках даже нет такого аспекта «работы с человеком, но не пациентом». Так что современная понятизация как-то должна объединить находки нетерапевтической/инженерной работы по моделированию человеческого совершенства (human excellence, предмет НЛП) и моделированию компьютерного совершенства (computer excellence, предмет computer science, hardware and software engineering и отдельных дисциплин типа artificial intelligenсe, deep learning и т. д. — всё, что работает с нейро-вычислителями).
Приведённый ознакомительный фрагмент книги Интеллект-стек 2023 предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
98
хорошо описано у него в книжке «Думай медленно… решай быстро» — https://www.amazon.com/Thinking-medlenno-reshay-bystro-Russian/dp/5170800533/
105
https://libcat.ru/knigi/religioznaya-literatura/samosovershenstvovanie/390938-dzhon-grinder-shepot-na-vetru.html — описание подхода на русском языке, от одного из соавторов подхода, профессора лингвистики.