Понятия со словосочетанием «многомерное пространство»
О́бщая тео́рия относи́тельности в многоме́рном простра́нстве — это обобщение общей теории относительности на пространство-время с размерностью больше или меньше 4. Эта теория даёт основу для так называемой геометризации взаимодействий — одного из двух путей (наряду с калибровочным подходом) к построению единой теории поля. Она состоит из различных физических теорий, которые пытаются обобщить теорию относительности Эйнштейна на более высоких размерностях. Такая попытка обобщения находится под большим...
Связанные понятия
Теорема о топологической цензуре в общей теории относительности утверждает, что в отсутствие экзотической материи нетривиальная топология пространства-времени не может быть обнаружена внешним наблюдателем, так как любые такие области коллапсируют настолько быстро, что свет не успевает их пересечь. Более точная формулировка утверждает, что в глобально гиперболическом и асимптотически плоском пространстве-времени, где выполняются световые энергетические условия, любая причинная кривая от светоподобной...
Подробнее: Топологическая цензура
Координа́тная сингуля́рность — такая сингулярность решения уравнений Эйнштейна (либо других основных уравнений метрической теории гравитации) вкупе с координатными условиями, которую можно устранить преобразованием координат. Отличается тем, что при стремлении к такой сингулярности инварианты кривизны не расходятся.
То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.
Эквифокальная гиперповерхность (или гиперповерхность Дюпена) — гиперповерхность в пространственной форме, у которой значение главных кривизн и их кратности одинаковы во всех точках.
Мирова́я ли́ния в теории относительности — кривая в пространстве-времени, описывающая движение тела (рассматриваемого как материальная точка), геометрическое место всех событий существования тела. Иногда мировой линией называют вообще любую непрерывную линию в пространстве-времени.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
Телепараллелизм — это одна из попыток Эйнштейна создать теорию, объединяющую электромагнетизм и гравитацию. Пространство-время является, как обычно псевдоримановым многообразием c сигнатурой метрики (1,3), но, в отличие от ОТО, с нулевой кривизной и ненулевым кручением. В качестве описания гравитационного поля рассматривается не псевдориманова метрика, а поле реперов.
Изотропность пространства означает, что в пространстве нет какого-то выделенного направления, относительно которого существует «особая» симметрия, все направления равноправны.
Координатное представление (квантовая механика) — это такое представление операторов квантовой механики, в котором операторы и волновая функция зависят от пространственных координат.В этом представлении оператор координаты диагонален.
Четырёхсила, 4-сила — 4-вектор силы, релятивистское обобщение трёхмерного вектора силы классической механики на четырёхмерное пространство-время.
Собы́тие (мирова́я то́чка) в теории относительности — моментальное локальное явление, происходящее в уникальном времени и месте, то есть точка в пространстве-времени. События являются элементами плоского пространства Минковского СТО и искривленного псевдориманова пространства-времени ОТО.
Многообразие Эйнштейна — риманово или псевдориманово многообразие, тензор Риччи которого пропорционален метрическому тензору.
Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».
Пространства
Адамара (или полное CAT(0) пространство с внутренней метрикой) — нелинейное обобщение гильбертовых пространств,
Конформная теория поля это квантовая теория поля, которая является инвариантной относительно конформных преобразований. При размерности пространства равном двум может быть решена в точности.
Трёхмерная сфера, или трёхмерная гиперсфера, иногда 3-сфера, — трёхмерный аналог двумерной сферы. Состоит из множества точек, равноудалённых от фиксированной центральной точки в четырёхмерном евклидовом пространстве. Так же, как двумерная сфера, которая образует границу шара в трёх измерениях, 3-сфера имеет три измерения и является границей четырёхмерного шара.
Ква́нтовая гравита́ция — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия (и, в случае успеха, — объединение таким образом гравитации с остальными тремя фундаментальными взаимодействиями, то есть построение так называемой «теории всего»).
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Вложение Сегре используется в проективной геометрии для того, чтобы рассматривать прямое произведение двух проективных пространств как проективное многообразие. Названо в честь итальянского математика Беньямино Сегре.
Квантовая статистическая механика – статистическая механика, применяемая к квантовомеханическим системам. Для перехода от классической статистической механики к квантовой предположение классической статистической механики о том, что все допустимые области фазового пространства можно считать равновероятными, заменяется предположением, что все допустимые состояния имеют равные вероятности. Математически это означает, что все интегралы по фазовому пространству заменяются суммами по всем собственным...
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
Ме́трика Гёделя — точное решение уравнений Эйнштейна, полученное Куртом Гёделем в 1949 году. Это решение порождается тензором энергии-импульса, состоящим из двух частей; первая представляет собой плотность материи однородно распределённых вращающихся частиц пыли, а вторая — ненулевую космологическую постоянную.
Инвариантная мера — в теории динамических систем мера, определённая в фазовом пространстве, связанная с динамической системой и не изменяющаяся с течением времени при эволюции состояния динамической системы в фазовом пространстве. Понятие инвариантной меры применяется при усреднении уравнений движения, в теории показателей Ляпунова, в теории метрической энтропии и вероятностных фрактальных размерностей.
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
В теоретической физике
диаграмма Пенроуза (названная в честь математического физика Роджера Пенроуза) представляет собой двумерную диаграмму, фиксирующую причинное отношение между различными точками в пространстве-времени. Это расширение диаграммы Минковского, где вертикальное измерение представляет время, горизонтальное — пространство, а наклонные линии под углом 45° соответствуют лучам света. Главное отличие состоит в том, что локально метрика на диаграмме Пенроуза конформно эквивалентна к фактической...
Сходи́мость по ме́ре (по вероя́тности) в функциональном анализе, теории вероятностей и смежных дисциплинах — это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве).
Прострáнством называется математическое множество, имеющее структуру, определяемую аксиоматикой свойств его элементов (например, точек в геометрии, векторов в линейной алгебре, событий в теории вероятностей и так далее).Подмножество пространства называется «подпространством», если структура пространства индуцирует на этом подмножестве структуру такого же типа (точное определение зависит от типа пространства).
Подробнее: Пространство (математика)
Разложение Риччи — это разложение тензора кривизны Римана на неприводимые относительно ортогональной группы тензорные части.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
Гиперобъём — некоторая мера (обычно мера Лебега), сопоставляемая внутренности «гипертел» (тел в многомерном пространстве), обобщение трёхмерного объёма.
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Ве́кторная величина́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
Теорема Мура о факторпространстве — классическое утверждение двумерной топологии, даёт достаточное условие на то, что факторпространство сферы гомеоморфно двумерной сфере.
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Подпростра́нство — понятие, используемое (непосредственно или в словосочетаниях) в различных разделах математики.