Понятия со словом «двойственно»

Неориентированный граф G двойственно хордален, если гиперграф его максимальных клик является гипердеревом. Имя происходит из факта, что граф хордален тогда и только тогда, когда гиперграф его максимальных клик двойственен гипердереву. Первоначально эти графы были определены по максимальному соседству и имеют ряд различных описаний. В отличие от хордальных графов свойство двойственной хордальности не наследуется, то есть, порождённые подграфы двойственного хордального графа не обязательно двойственно...

Связанные понятия

Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.

Подробнее: Изотоксальная фигура
Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.
Многогранник, двойственный (или дуальный) к заданному многограннику — многогранник, у которого каждой грани исходного многогранника соответствует вершина двойственного, каждой вершине исходного — грань двойственного и каждому ребру исходного — ребро двойственного. Многогранник, двойственный двойственному, гомотетичен исходному.
В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.

Подробнее: Изогональная фигура
Трапецоэдр (дельтоэдр, антитегум) — это двойственный антипризме многогранник. Если у исходной антипризмы основания — n-угольники, то у соответствующего ей трапецоэдра есть 2n граней, имеющих форму дельтоида.
Полудодекаэдр (англ. hemi-dodecahedron) — абстрактный правильный многогранник, содержащий половину граней правильного додекаэдра. Данный многогранник можно представить в виде проективного многогранника (замощение вещественной проективной плоскости шестью пятиугольниками), который можно изобразить при построении проективной плоскости в виде полусферы, где противоположные точки вдоль границы соединены и разбивают полусферу на три равные части.
Многогранник размерности 3 и выше называется изоэдральным или гране транзитивным, если все его грани одинаковы. Точнее сказать, все грани должны быть не просто конгруэнтны, а должны быть транзитивны, то есть должны прилежать в одной и той же орбите симметрии. Другими словами, для любых граней A и B должна существовать симметрия всего тела (состоящая из вращений и отражений), которая отображает A в B. По этой причине выпуклые изоэдральные многогранники имеют формы правильных игральных костей.

Подробнее: Изоэдральное тело
Многогранник или полиэдр — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью.
Многогранник Кли выпуклого многогранника P в пространстве любой размерности — это другой многогранник PK, образованный заменой каждой фасеты многогранника P невысокой пирамидой. Многогранники названы по имени американского математика Виктора Кли (Victor Klee)
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
В геометрии тетраэдр Гурса — это тетраэдральная фундаментальная область построения Витхоффа. Каждая грань тетраэдра представляет зеркальную гиперплоскость на 3-мерной поверхности — 3-сферы, евклидового 3-мерного пространства и гиперболического 3-мерного пространства. Коксетер назвал область именем Эдуара Гурса, который первым обратил внимание на эти области. Тетраэдр Гурса является расширением теории треугольников Шварца для построения Витхоффа на сфере.
Полуикосаэдр — это абстрактный правильный многогранник, содержащий половину граней правильного икосаэдра. Он может быть реализован как проективный многогранник (мозаика проективной плоскости 10 треугольниками), который можно представить себе путём построения проективной плоскости как полусферы, противоположные точки которой вдоль границы соединены и делят полусферу на три равные части.
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Существует два определения хирального многогранника. По одному определению — это многогранник в прямом смысле хиральности (или "зеркальной симметричности"), то есть, что многогранник не имеет зеркальной симметрии. По этому определению многогранник, у которого отсутствует любая симметрия, вообще будет примером хирального многогранника.

Подробнее: Хиральный многогранник
В геометрии большой великий звёздчатый стодвадцатиячейник или большой великий звёздчатый полидодекаэдр — это правильный звёздчатый 4-мерный многогранник с символом Шлефли {5/2,3,3}, один из 10 правильных 4-мерных многогранников Шлефли–Гесса. Этот многогранник имеет 600 вершин и то же самое расположение вершин, что и выпуклый правильный стодвадцатиячейник.
Символ Шлефли — комбинаторная характеристика правильного многогранника, применяется для описания правильных многогранников во всех размерностях. Назван в честь швейцарского математика Людвига Шлефли, который внёс значительный вклад в геометрию и другие области математики.
В геометрии n-угольный осоэдр — это такая мозаика из двуугольников на сферической поверхности, что каждый такой двуугольник имеет две общие вершины (противоположные точки сферы) с другими двуугольниками.
k-Смежностный многогранник — это выпуклый многогранник, в котором любое k-элементное подмножество его вершин является множеством вершин некоторой грани этого многогранника.
В геометрии семиугольная мозаика — это правильная мозаика на гиперболической плоскости. Она представляется cимволом Шлефли {7,3} и имеет три правильных семиугольника в каждой вершине.
Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
В геометрии пятиугольная бипирамида (или дипирамида) — это третье тело в бесконечном множестве изоэдральных бипирамид. Каждая бипирамида является двойственным многогранником для однородных призм.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
В геометрии призматический однородный многогранник — это однородный многогранник с диэдральной симметрией. Они образуют два бесконечных семейства, однородные призмы и однородные антипризмы. Все они имеют вершины на двух параллельных плоскостях, а потому все они являются призматоидами.
Плосконосая квадратная антипризма — это один из многогранников Джонсона (J85, М28 по Залгаллеру).
Эта страница содержит список правильных многомерных многогранников (политопов) и правильных cоединений этих многогранников в евклидовом, сферическом и гиперболическом пространствах разных размерностей.
В геометрии пятиугольный многогранник — это правильный многогранник в пространстве размерности n, построенный из группы Коксетера Hn. Семейству дал имя Гарольд Коксетер, поскольку двумерным пятиугольным многогранником является пятиугольник. В зависимости от его символа Шлефли он может быть назван додекаэдральным ({5, 3n − 2}) или икосаэдральным ({3n − 2, 5}).
Ребро в геометрии — отрезок, соединяющий две вершины многоугольника или многогранника (в размерностях 3 и выше). В многоугольниках ребро является отрезком, лежащим на границе и чаще называется стороной многоугольника. В трёхмерных многогранниках и в многогранниках большей размерности ребро — это отрезок, общий для двух граней. Отрезок, соединяющий две вершины и проходящий через внутренние или внешние точки, ребром не является и называется диагональю.
Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости.

Подробнее: Правильный четырёхмерный многогранник
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
В геометрии тороидальный многогранник — это многогранник, который является также тороидом (тор с g дырами), имеющий топологический род, g, равный 1 или выше.
В четырёхмерной геометрии полностью усечённый пятиячейник — это однородный четырёхмерный политоп, состоящий из 5 правильных тетраэдрических и 5 правильных октаэдрических граней. Он имеет 30 треугольных граней (плоских), 30 рёбер и 10 вершин. Вершинная фигура — треугольная призма.
Треугольная бипирамида — это вид шестигранника, первый многогранник в бесконечной последовательности гранетранзитивных бипирамид. Многогранник двойственен треугольной призме.
Плосконосый многогранник — это многогранник, полученный альтернированием (частичным усечением) соответствующего всеусечённого или усечённого многогранника, в зависимости от определения. Некоторые (не все) авторы включают в плосконосые многогранники антипризмы, так как они получаются таким построением из вырожденного «многогранника» всего с двумя гранями (диэдра).
Теорема Коши о многогранниках утверждает, что грани многогранника вместе с правилом склейки полностью определяют выпуклый многогранник.
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Полиэдральный граф — неориентированный граф, образованный из вершин и рёбер выпуклого многогранника, или, в контексте теории графов — вершинно 3-связный планарный граф.
Огранка является обратным или двойственным образованию звёздчатой формы. Для каждой звёздчатой формы некоторого выпуклого многогранника существует двойственная огранка двойственного многогранника.
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Блоковый многогранник — это (многомерный) многогранник, образованный из симплекса путём многократного приклеивания другого симплекса к одной из его фасет.
В геометрии однородный многогранник — это многогранник, грани которого являются правильными многоугольниками, и он вершинно транзитивен (транзитивен относительно вершин, а также изогонален, то есть имеется движение, переводящее вершину в любую другую). Отсюда следует, что все вершины конгруэнтны, и многогранник имеет высокую степень зеркальной и вращательной симметрии.

Подробнее: Список однородных многогранников
Комплексный многогранник — это обобщение многогранника в вещественном пространстве на аналогичную структуру в комплексном гильбертовом пространстве, где к каждой вещественной размерности добавляется мнимая.
При́зма (лат. prisma от др.-греч. πρίσμα «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками.
В геометрии сферический многогранник или сферическая мозаика — это тa мозаика на сфере, в которой поверхность разделена большими дугами на ограниченные области, называемые сферическими многоугольниками. Большая часть теории симметричных многогранников использует сферические многогранники.
Соединение многогранников — это фигура, составленная из некоторых многогранников, имеющих общий центр. Соединения являются трёхмерными аналогами многоугольных соединений, таких как гексаграмма.
В геометрии шестиугольная антипризма — это 4-я в бесконечном множестве антипризм, образованная чётным числом треугольных сторон между двумя шестиугольными сторонами.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я