Связанные понятия
Вну́тренняя эне́ргия — принятое в физике сплошных сред, термодинамике и статистической физике название для той части полной энергии термодинамической системы, которая не зависит от выбора системы отсчета и которая в рамках рассматриваемой проблемы может изменяться. То есть для равновесных процессов в системе отсчета, относительно которой центр масс рассматриваемого макроскопического объекта покоится, изменения полной и внутренней энергии всегда совпадают. Перечень составных частей полной энергии...
Теплопередача — физический процесс передачи тепловой энергии от более горячего тела к менее горячему, либо непосредственно (при контакте), или через разделяющую перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к менее горячему, что является...
Термодинамическая система — тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом; выделяемая (реально или мысленно) для изучения макроскопическая физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц, «часть Вселенной, которую мы выделяем для исследования». Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро...
Пе́рвое нача́ло термодина́мики (первый закон термодинамики) — один из основных законов этой дисциплины, представляющий собой конкретизацию общефизического закона сохранения энергии для термодинамических систем, в которых необходимо учитывать термические, массообменные и химические процессы. В форме закона сохранения (уравнения баланса энергии) первое начало используют в термодинамике потока и в неравновесной термодинамике. В равновесной термодинамике под первым законом термодинамики обычно подразумевают...
Термодинамическое равновесие — состояние системы, при котором остаются неизменными во времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в...
Упоминания в литературе
Исследования процессов сохранения и превращения энергии привели к открытию еще одного закона – закона возрастания энтропии. «Переход
теплоты от более холодного тела к более теплому, – писал Р. Клаузиус, – не может иметь места без компенсации»[5]. Меру способности теплоты к превращению Клаузиус назвал энтропией. Суть энтропии выражается в том, что во всякой изолированной системе процессы должны протекать в направлении превращения всех видов энергии в теплоту при одновременном уравнивании температурных разностей, существующих в системе. Это означает, что реальные физические процессы протекают необратимо. Принцип, утверждающий стремление энтропии к максимуму, называют вторым началом термодинамики. Первое начало – закон сохранения и превращения энергии.
Появление понятия энтропии позволило разделить
теплоту и температуру (до середины XIX в. разницы между ними не делали). Теплота стала мерой изменения энергии, а энтропия – показателем состояния системы. Энтропия определяет изменение системы между началом процесса и конечным результатом, то есть является функцией состояния системы и не связана с характером происходящего процесса.
11. Первое характерное свойство энергии заключается в том, что она сохраняется при всех своих изменениях. Когда какое-нибудь образование проходит через ряд состояний, то бывает всегда в наличности одна величина Е, обладающая тем свойством, что какой бы ни был ряд изменяющихся состояний, она принимает снова прежнюю величину, когда образование возвращается в первоначальное состояние. Эта величина и есть энергия образования. Энергия, следовательно, неразрывно связана со всяким состоянием образования. И она связана с ним не только со стороны количества, но и со стороны качества. В одном каком-нибудь определенном состоянии образования отдельные его части обладают в общем различными свойствами и притом каждая часть обладает рядом свойств (каковы: объем, давление,
теплота , электрическое напряжение, химическое сродство и т. д.). Каждое из этих свойств означает, как величина (см. §8), тенденцию к изменению. Если для каждой из этих величин ввести специфическую единицу, то с каждым из этих свойств может быть связана определенная величина энергии, так что общая энергия тела представляет собою сумму нескольких родов энергии; эти роды энергии называются в энергетике «формами энергии». Каждое изменение состояния образования характеризуется тем, что здесь происходит изменение некоторых форм энергии, но так, однако, что исчезновение определенной величины энергии одной формы всегда соответствует такой же величине приращения энергии другой формы. При соответственном выборе единиц такие количества энергии, называемые обычно эквивалентными, могут быть выражены через одни и те же числа. Здесь установлены следующие положения.
Изменение внутренней энергии системы ?E обуслов–лено работой W, которая совершается при взаимодейст–вии системы со средой, и обмен
теплотой Q между средой и системой, отношение между этими величинами состав–ляет содержание первого начала термодинамики.
которые на деле есть воображаемые вещества (matieres imaginaries), отличающиеся только этим от огня (feu) и существующие благодаря гипотезам…». Этот вывод Ламарк повторяет в параграфе 168 (см. раздел 1.3). Исходная установка Ламарка, безусловно, правильная. Нельзя придавать различным проявлениям вещества субстанциальность, т.е. видеть за этими проявлениями материальные элементы. Но при этом Ламарк ушел в другую крайность. Флогистон, кислотность,
теплота для него лишь функциональные состояния веществ (отношения, но не элементы). К числу таких же функциональных состояний вещества он, однако, отнес проявления истинных химических элементов, в частности всех известных на то время газов (таких как азот, водород, кислород) и углерод. «Кислород (oxigene) пневматических химиков – говорил Ламарк (и. 175 (4)) – есть отвлеченное понятие; он существует только в воображении тех, кто его придумал или кто допускает его существование…».
Связанные понятия (продолжение)
Адиабатический процесс является частным случаем политропного процесса, так как при нём теплоёмкость газа равна нулю и, следовательно, постоянна. Адиабатические процессы обратимы только тогда, когда в каждый момент времени система остаётся равновесной (например, изменение состояния происходит достаточно медленно) и изменения энтропии не происходит. Равновесный адиабатный процесс является изоэнтропным процессом. Некоторые авторы (в частности, Л. Д. Ландау) называли адиабатическими только обратимые...
Эне́ргия (др.-греч. ἐνέργεια — действие, деятельность, сила, мощь) — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.
Мeханическая работа — это физическая величина — скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел).
Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).
Равнове́сный тепловой процесс — тепловой процесс, в котором система проходит непрерывный ряд бесконечно близких равновесных термодинамических состояний.
Термодинами́ческие ци́клы — круговые процессы в термодинамике, то есть такие процессы, в которых совпадают начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура и энтропия).
Квазистатический процесс в термодинамике — идеализированный процесс, состоящий из непрерывно следующих друг за другом квазистатических состояний, в которых характеризующие систему термодинамические величины за время наблюдения не изменяются. Если каждое такое квазистатическое состояние системы близко к состоянию равновесия и, следовательно, систему в каждый момент времени можно считать находящейся в термодинамическом равновесии, то такие процессы называют равновесными, или, точнее, квазиравновесными...
Теплово́е движе́ние — процесс хаотичного (беспорядочного) движения частиц, образующих вещество. Чем выше температура, тем больше скорость движения частиц. Чаще всего рассматривается тепловое движение атомов и молекул.
Агрега́тное состоя́ние вещества (от лат. aggrego «присоединяю») — физическое состояние вещества, зависящее от соответствующего сочетания температуры и давления.
Диссипа́ция энергии (лат. dissipatio «рассеяние») — переход части энергии упорядоченных процессов (кинетической энергии движущегося тела, энергии электрического тока и т. п.) в энергию неупорядоченных процессов, в конечном счёте — в теплоту. Системы, в которых энергия упорядоченного движения с течением времени убывает за счёт диссипации, переходя в другие виды энергии, например в теплоту или излучение, называются диссипативными. Для учёта процессов диссипации энергии в таких системах при определённых...
Универса́льная га́зовая постоя́нная — константа, равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К. Обозначается латинской буквой R.
Нагрев — искусственный либо естественный процесс повышения температуры материала/тела, либо за счёт внутренней энергии, либо за счёт подведения к нему энергии извне. Для подведения энергии извне используется специальное устройство — нагреватель (нагревательный элемент), того или иного вида и конструкции.
Компоненты (в термодинамике и химии) — независимые составляющие вещества системы, то есть индивидуальные химические вещества, которые необходимы и достаточны для составления данной термодинамической системы, допускают выделение из системы и независимое существование вне её. Изменения масс компонентов выражают все возможные изменения в химическом составе системы, а масса (количество вещества, число частиц) каждого вещества, выбранного в качестве компонента, не зависит от масс (количеств вещества...
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения...
Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.
Абсолю́тный нуль температу́ры (реже — абсолютный ноль температуры) — минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 году X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой — тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному...
Количество вещества — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы, молекулы, ионы, электроны или любые другие частицы). Единица измерения количества вещества в Международной системе единиц (СИ) и в системе СГС — моль. Без конкретизации объекта рассмотрения термин «количество вещества» не используют.
Энтропи́я (от др.-греч. ἐν «в» + τροπή «обращение; превращение») — широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы. Энтропия определяет меру необратимого рассеивания энергии или бесполезности энергии, ибо не всю энергию системы можно использовать для превращения в какую-нибудь полезную работу. Для понятия энтропии в данном разделе физики используют название термодинамическая энтропия. Термодинамическая...
Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др. Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы. Эти уравнения не содержатся в постулатах термодинамики, так что для...
Техни́ческая термодина́мика — раздел теплотехники и одновременно раздел термодинамики, занимающийся приложениями законов термодинамики в теплоэнергетике, теплотехнике и хладотехнике. Исторически термодинамика начала формироваться именно как техническая термодинамика — учение о превращении теплоты в работу. На этой стадии были сформулированы основные законы классической термодинамики и получены их математические выражения. В дальнейшем область термодинамических исследований расширяется и охватывает...
Равнове́сие фаз в термодинамике — состояние, при котором фазы в термодинамической системе находятся в состоянии теплового, механического и химического равновесия.
В физике механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергий, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу; это энергия движения и сопровождающего его взаимодействия.
Подробнее: Механическая энергия
Сплошна́я среда ́ — механическая система, обладающая бесконечным числом внутренних степеней свободы. Её движение в пространстве, в отличие от других механических систем, описывается не координатами и скоростями отдельных частиц, а скалярным полем плотности и векторным полем скоростей. В зависимости от задач, к этим полям могут добавляться поля других физических величин (концентрация, температура, поляризованность и др.)
Химическая энергия — потенциал вещества трансформироваться в химической реакции или трансформировать другие вещества. Создание или разрушение химических связей происходит с выделением (экзотермическая реакция) или поглощением (эндотермическая реакция) энергии.
Калори́метр (от лат. calor — тепло и metor — измерять) — прибор для измерения количества теплоты, выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «калориметр» был предложен А. Лавуазье и П. Лапласом (1780).
Фа́зовый перехо́д (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется...
Твёрдое тело — одно из четырёх основных агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия.
Флюи́д (от лат. fluidis — «текучий») — вещество, поведение которого при деформации может быть описано законами механики жидкостей. Термин, как правило, относится к состоянию вещества, объединяющего жидкости и газы, и эквивалентен словосочетанию «газы, плазма, изотропные жидкости и пластичные тела». В русском языке в основном используется для обозначения газов с плотностью характерной для жидкости, но неограниченно расширяющихся. Также используются термины текучая среда или текучее вещество.
Термодинами́ческая фа́за — гомогенная часть гетерогенной системы, ограниченная поверхностью раздела. Менее строго, но более наглядно фазами называют «гомогенные части системы, отделенные от остальных частей видимыми поверхностями раздела». При этом совокупность отдельных гомогенных частей системы, обладающих одинаковыми свойствами, считается одной фазой (например, совокупность кристаллов одного вещества или совокупность капелек жидкости, взвешенных в газе и составляющих туман). Каждая фаза системы...
Обратимый процесс — равновесный термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений. Количественным критерием обратимости/необратимости процесса служит возникновение энтропии — эта величина равна нулю при отсутствии необратимых процессов в термодинамической системе и положительна...
Второе начало термодинамики (второй закон термодинамики) устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры, то есть «второе начало представляет собой закон об энтропии» и её свойствах. В изолированной системе энтропия остаётся либо неизменной, либо возрастает (в неравновесных процессах), достигая максимума при установлении термодинамического равновесия (закон возрастания энтропии). Встречающиеся в литературе...
Поверхность раздела фаз — граничная поверхность между любыми двумя контактирующими фазами термодинамической системы. Например, в трёхфазной системе лёд — вода — воздух существуют три поверхности раздела (между льдом и водой, между льдом и воздухом, между водой и воздухом), вне зависимости от того, сколько кусков льда имеется в системе.
Пар — газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества, то есть при температурах ниже критической температуры вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация. При низких давлениях и высоких температурах свойства пара приближаются к свойствам идеального газа. В разговорной речи под словом «пар» почти всегда понимают водяной пар...
Электро́нный га́з — модель в физике твердого тела, описывающая поведение электронов в телах с электронной проводимостью. В электронном газе пренебрегается кулоновским взаимодействием между частицами, а сами электроны слабо связаны с ионами кристаллической решетки. Соответствующим понятием для материалов с дырочной проводимостью является дырочный газ.
Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).
Магнитная восприимчивость — физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе.
Диссипативная система (или диссипативная структура, от лат. dissipatio — «рассеиваю, разрушаю») — это открытая система, которая оперирует вдали от термодинамического равновесия. Иными словами, это устойчивое состояние, возникающее в неравновесной среде при условии диссипации (рассеивания) энергии, которая поступает извне. Диссипативная система иногда называется ещё стационарной открытой системой или неравновесной открытой системой.
Нью́тоновская жи́дкость (названная так в честь Исаака Ньютона) — вязкая жидкость, подчиняющаяся в своём течении закону вязкого трения Ньютона, то есть касательное напряжение и градиент скорости в такой жидкости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость.
Рабо́чее те́ло — в теплотехнике и термодинамике условное несменяемое материальное тело, расширяющееся при подводе к нему теплоты и сжимающееся при охлаждении и выполняющее работу по перемещению рабочего органа тепловой машины. В теоретических разработках рабочее тело обычно обладает свойствами идеального газа.
Насы́щенный пар — это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава. Насыщенный водяной пар над водой (льдом) — водяной пар, находящийся в термодинамическом равновесии с плоской поверхностью жидкой воды или льда в чистом виде или в составе влажного газа.
Жи́дкость — вещество, находящееся в жидком агрегатном состоянии, занимающем промежуточное положение между твёрдым и газообразным состояниями.
Упоминания в литературе (продолжение)
Влияние различных факторов на жидкотекучесть. Величина жидкотекучести непосредственно не связана с вязкостью и поверхностным натяжением жидкого металла, а определяется интервалом кристаллизации и совокупностью теплофизических свойств металлов:
теплотой кристаллизации, теплоемкостью и теплопроводностью, вязкостью, окисляемостью. При этом теплота кристаллизации является основным фактором: чем больше теплота кристаллизации, тем выше жидкотекучесть. Минимумы и максимумы жидкотекучести (X) сплавов в зависимости от состава отвечают определенным участкам и критическим точкам на диаграммах состояния (рис. 5.1). Сплавы с широким интервалом кристаллизации, как правило, обладают минимальной жидкотекучестью, а максимумы на диаграммах состав – жидкотекучесть соответствуют эвтектическим сплавам и химическим соединениям.
Оказалось, что температура воздуха в верхней камере установки повышается (по данным более 30 замеров) в течение опыта примерно на 3°С. Это весьма важное обстоятельство. При столь резких колебаниях температуры воздуха, окружающего облучаемый участок, допустить реакции испытуемого на относительно совершенно ничтожную лучистую
теплоту едва ли возможно. С другой стороны, эти данные показывают, что наблюдаемые колебания температуры кожи испытуемых не зависят от внешних тепловых воздействий (точнее говоря, что их влияние полностью перекрывается), так как температурные кривые кожи руки и воздуха и установке идут в противоположном направлении – первые падают, вторые резко поднимаются.
Поглощение электромагнитной энергии живыми тканями сопровождается повышением их температуры, если поглощаемая мощность превосходит мощность рассеяния тепловой энергии. Последняя определяется теплоотдачей, которая осуществляется с поверхности тела посредством излучения, конвекции, теплопроводности и испарения влаги. Отведение тепловой энергии от глубоких тканей к поверхности тела обеспечивается кровообращением. Механизмы теплоотдачи функционируют в организме непрерывно, поскольку ему свойствен постоянный высокий уровень производства
теплоты в ходе обмена веществ. Нарушение теплового гомеостаза в организме в результате облучения ЭМИ наступает в тех случаях, когда возникшая в результате этого дополнительная тепловая нагрузка, по меньшей мере, вдвое превышает уровень основного обмена [2].
Теперь вновь обратимся к человеку и его деятельности на планете. Из открытых источников по данным на 2008 год видим, что потребление энергии из ископаемых источников и ядерных источников 125,359 · 10? 15 Ватт·час. Вся эта энергия, теми или иными путями, переходит в тепло. Зная площадь поверхности планеты и тепловой поток из ее недр, сравним это тепло с тем, что вырабатывается человечеством в хозяйственных целях. Для этого распределим теоретически все выработанное человечеством тепло из ископаемых и атомных источников по всей поверхности Планеты. Разделив тепло вырабатываемое человечеством из упомянутых источников на
теплоту , идущую от недр, получим соотношение равное примерено 32%! Это важный вывод! Сравним его теперь с тем теплом, что физиологически вырабатывается человечеством. Человечество в силу теплокровности выделяет некоторую теплоту на поверхности Земли. Тепловыделение человека составляет от 93 Вт в состоянии покоя при температуре +35°C, до 290 Вт для тяжелой работы при температуре +10°C. Учитывая, что часть людей бодрствует, часть работает, а также то, что когда в одном полушарии зима, то в другом – лето, примем среднее тепловыделение 180 Вт. Численность человечества на 1 января 2014 г. примерно составляет 7 млрд 137 млн 577 тысяч 750 человек соответственно: 7137577750 · 180 = 1,28?1012 Вт (1,28 ТВт). Разделив на площадь поверхности суши: 1,28?1012 Вт / 1,49?1014 м2 = 0,85 10-2 Вт/м2 = 0,008 Вт/м2. В любом случае тепловыделение собственно человечества гораздо меньше техногенных источников и выделения теплоты из недр. Итак, ситуация такова: Солнце – основной источник теплоты и энергии на Земле, а энергия хозяйственной деятельности и жизнедеятельности человечества сравнимы с энергиями геологических процессов планеты.
Такова, напр., связь той же атмосферы с «гидросферою» – водной частью оболочки Земли. Между ними существует целый ряд конъюгационных связей: круговорот воды – пара, растворение газов воздуха в воде, обмен тепловой, электрический, и пр. Обе стороны и здесь регулируют друг друга, взаимно поддерживая свою устойчивость. Так, атмосфера, путем дождей, снега, инея и т. д., теряет свою, газообразную воду; гидросфера получает ее в виде ручьев, рек, впадающих затем в моря и океаны; но она в свою очередь возвращает ей приблизительно такое же количество воды через испарение. Температурная устойчивость системы поддерживается тем, что непрерывная воздушная оболочка задерживает
теплоту гидросферы, как и «литосферы», твердой части земной коры, доставляемую почти всецело лучами Солнца; а гидросфера, обладающая громадной теплоемкостью, образует как бы резервуар, то поглощающий излишки тепловой энергии, когда нагревание усиливается, то отдающий эти излишки воздуху, а через него и литосфере, когда нагревание уменьшается; таким образом температурные колебания удерживаются в ограниченных пределах около одного основного уровня.
Строение воды. Вода – уникальное вещество и все её аномальные свойства (высокая температура кипения, значительная растворяющая и диссоциирующая способность, малая теплопроводность, большая
теплота испарения и плавления, большая теплоёмкость, большое поверхностное натяжение и когезия и другие) обусловлены строением её молекулы и пространственной структурой. У отдельно взятой молекулы воды есть качество, которое проявляется только в присутствии других молекул: способность образовывать водородные мостики между атомами кислорода двух оказавшихся рядом молекул, так, что атом водорода располагается на отрезке, соединяющем атомы кислорода. Молекулы H2O, благодаря неравномерно распределенному по их объему электрическому заряду, способны притягиваться друг к другу и образовывать беспорядочные роевые формы и упорядоченные «водяные кристаллы». Свободные, не связанные в ассоциаты молекулы H2O присутствуют в воде лишь в очень небольшом количестве. В основном же вода – это совокупность беспорядочных роев и «водяных кристаллов».
Кроме того, планета с недостаточной массой не может удержать внутреннее тепло и быстро остывает. Железное расплавленное ядро планеты создает магнитное поле, защищающее ее биосферу от губительного воздействия космических лучей, заряженных частиц солнечного ветра, жесткого рентгеновского излучения. Наша планета уникальна и своей атмосферой – соотношением в ней объемов кислорода и азота, уровнями углекислого газа, водяного пара, озона. При меньшем количестве кислорода в воздухе (менее 21 % атмосферы) задохнулись бы крупные млекопитающие, при увеличении количества кислорода планета страдала бы от постоянных пожаров. Особенный состав земной атмосферы (в частности, наличие озона) обеспечивает поглощение рентгеновского и ультрафиолетового излучения. Уникальны наши морская и пресная вода, при этом многие полезные для жизни вещества очень хорошо растворяются в воде, а вредные растворяются плохо. Пары воды легче сухого воздуха, что важно для переноса
теплоты и круговорота воды на планете, а атмосфера не дает воде улетучиться в космос.
Материальный баланс нагреваемой среды в паровом котле достаточно прост: поступает в котел питательная вода при температуре, определяемой системой подогрева с использованием низкопотенциальной
теплоты из отборов паровой турбины. Выдает котельная установка на ТЭС перегретый пар, используемый для производства электрической энергии.
Снижение шума методом звукопоглощения основано на переходе звуковых колебаний частиц воздуха в
теплоту вследствие потерь на трение в порах звукопоглощающего материала.
В-третьих, вода обладает высокой удельной
теплотой плавления, то есть воду очень трудно заморозить, а лед – растопить. Это способствует установлению на Земле в целом достаточно стабильного и мягкого климата.
Поглощая огромное количество
теплоты , сама вода существенно не нагревается. Удельная теплоемкость ее в 5 раз выше, чем у песка, и почти в 10 раз выше, чем у железа. Вот эту теплоту и отдает вода, превращаясь в лед. А теплопроводность льда намного меньше, чем у воды, поэтому «ледовая» шуба защищает цветки.