Связанные понятия
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Флаг в геометрии многогранников — последовательность граней (различной размерности) абстрактного многогранника, в которой каждая предыдущая грань содержится в последующей и последовательность содержит ровно по одной грани каждой размерности.
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста (то есть её рост быстрее полиномиального, но медленнее экспоненциального).
Тотальная раскраска возникает естественным путём, поскольку она является простым смешением вершинной и рёберной раскрасок.
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
Алгебраическая связность графа G — это второе из минимальных собственных значений матрицы Кирхгофа графа G. Это значение больше нуля в том и только в том случае, когда граф G является связным. Это следствие того факта, что сколько раз значение 0 появляется в качестве собственного значения матрицы Кирхгофа, из стольких компонент связности состоит граф. Величина этого значения отражает насколько хорошо связен весь граф и используется для анализа устойчивости и синхронизации сетей.
Область главных идеалов — это область целостности, в которой любой идеал является главным. Более общее понятие — кольцо главных идеалов, от которого не требуется целостности (однако некоторые авторы, например Бурбаки, ссылаются на кольцо главных идеалов как на целостное кольцо).
Перечисление графов — категория задач перечислительной комбинаторики, в которых нужно пересчитать неориентированные или ориентированные графы определённых типов, как правило, в виде функции от числа вершин графа. Эти задачи могут быть решены либо точно (как задача алгебраического перечисления) или асимптотически.
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Теорема Понтрягина — Куратовского, или теорема Куратовского, — теорема в теории графов, дающая необходимое и достаточное условие планарности графа.
Срединный граф — граф, представляющий рёбра смежности внутри граней заданного планарного графа.
В теории графов двусвязный граф — это связный и неделимый граф, в том смысле, что удаление любой вершины не приведёт к потере связности. Теорема Уитни утверждает, в частности, что граф двусвязен тогда и только тогда, когда между любыми двумя его вершинами есть минимум два реберно непересекающихся пути. Таким образом, двусвязный граф не имеет шарниров.
Синглетон — множество с единственным элементом. Например, множество {0} является синглетоном.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
Интервальная размерность графа — это минимальная размерность, в которой заданный граф может быть представлен в виде графа пересечений гиперпрямоугольников (то есть многомерных прямоугольных параллелепипедов) с параллельными осям рёбрами. То есть должно существовать один-к-одному соответствие между вершинами графа и множеством гиперпрямоугольников, таких, что прямоугольники пересекаются тогда и только тогда, когда существует ребро, соединяющее соответствующие вершины.
В теории графов графом единичных кругов называется граф пересечений семейства единичных кругов на евклидовой плоскости. То есть мы образуем вершину для каждого круга и соединяем две вершины ребром, если соответствующие круги пересекаются.
Подробнее: Граф единичных кругов
Теория кос — раздел топологии и алгебры, изучающий косы и группы кос, составленные из их классов эквивалентности.
В коммутативной алгебре, дробный идеал — это обобщение понятия идеала целостного кольца, особенно полезное при изучении дедекиндовых колец. Условно говоря, дробные идеалы — это идеалы со знаменателями. В случаях, когда одновременно обсуждаются дробные и обычные идеалы, последние называют целыми идеалами.
Преобразование треугольник-звезда — способ эквивалентного преобразования пассивного участка линейной электрической цепи — «треугольника» (соединения трёх ветвей, которое имеет вид треугольника, сторонами которого являются ветви, а вершинами — узлы), в «звезду» (соединение трёх ветвей, которые имеют один общий узел). Эквивалентность «треугольника» и «звезды» обусловлена тем, что при одинаковых напряжениях между одноименными выводами электрической цепи токи, которые втекают в одноименные выводы, а...
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
Максимальным идеалом коммутативного кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.
Подробнее: Максимальный идеал
В общей алгебре,
поле k называется совершенным если выполняется одно из следующих эквивалентных условий...
В теории графов ежевикой для неориентированного графа G называется семейство связных подграфов графа G, которые касаются друг друга: для любой пары подграфов, не имеющих общих вершин, должно существовать ребро, конечные вершины которого лежат в этих двух подграфах. Порядок ежевики — это наименьший размер множества вершин G, которое имеет непустое пересечение с каждым подграфом ежевики. Ежевики используются для описания древесной ширины графа G.
Подробнее: Ежевика (теория графов)
Локальное поле — определённый тип полей с топологией, часто возникающих как пополнения полей.
Конгруэнция — отношение эквивалентности на алгебраической системе, сохраняющееся при основных операциях. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую факторсистему — разбиение исходной алгебраической системы на классы эквивалентности по отношению к конгруэнции.
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Лексикографический поиск в ширину (англ. lexicographic breadth-first search, LBFS or Lex-BFS) — алгоритм упорядочивания вершин графа. Алгоритм отличается от алгоритма поиска в ширину и дает более упорядоченную последовательность вершин графа.
Говорят, что семейство графов имеет ограниченное расширение, если все его миноры ограниченной глубины являются редкими графами. Много естественных семейств редких графов имеют ограниченное расширение. Близкое, но более сильное свойство, полиномиальное расширение, эквивалентно существованию теорем разбиения для этих семейств. Семейства с этими свойствами имеют эффективные алгоритмы для задач, в которые входят задача поиска изоморфного подграфа и проверка моделей для теории первого порядка для графов...
Подробнее: Ограниченное расширение графа
(Топологический)
индекс Хосойи , известный также как Z индекс, графа — это полное число паросочетаний на нём. Индекс Хосойи всегда больше либо равен одному, поскольку пустое множество рёбер считается как паросочетание. Эквивалентно, индекс Хосойи — это число непустых паросочетаний плюс один.
Абсолютная непрерывность — в математическом анализе, свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.
Лемма о вложенных отрезках , или принцип вложенных отрезков Коши — Кантора, или принцип непрерывности Кантора — фундаментальное утверждение в математическом анализе, связанное с полнотой поля вещественных чисел.
Недезаргова плоскость — это проективная плоскость, не удовлетворяющая теореме Дезарга, другими словами, не являющаяся дезарговой. Теорема Дезарга верна во всех проективных пространств размерности, не равной 2, то есть, для всех классических проективных геометрий над полем (или телом), но Гильберт обнаружил, что некоторые проективные плоскости не удовлетворяют теореме.
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
В теории графов рёберно-транзитивным графом называется граф G такой, что для любых двух рёбер e1 и e2 графа G, существует автоморфизм графа G, который отображает e1 в e2.
Подробнее: Рёберно-транзитивный граф
Гипотезы Вейля — математические гипотезы о локальных дзета-функциях проективных многообразий над конечными полями.
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределенный интеграл, определенный интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель...