Связанные понятия
Релятиви́стская части́ца — частица, движущаяся с релятивистской скоростью, то есть скоростью, сравнимой со скоростью света. Движение таких частиц, рассматриваемых как классические (неквантовые) материальные точки, описывается специальной теорией относительности. Безмассовые частицы (фотоны, гравитоны, глюоны и т. д.) всегда являются релятивистскими, поскольку могут существовать, лишь двигаясь со скоростью света.
Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.
Подробнее: Энергетический спектр
Неупру́гое рассе́яние — столкновение частиц (включая столкновения с фотонами), сопровождающееся изменением их внутреннего состояния, превращением в другие частицы или дополнительным рождением новых частиц.
Вы́нужденное излуче́ние , индуци́рованное излучение — генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) между двумя состояниями (с более высокого на более низкий энергетический уровень) под воздействием индуцирующего фотона, энергия которого равна разности энергий этих состояний. Созданный фотон имеет ту же энергию, импульс, фазу, поляризацию, а также направление распространения, что и индуцирующий фотон (который при этом не поглощается). Оба фотона являются когерентными...
Поляризация (фр. polarisation; от лат. polus ← др.-греч. πόλος буквально — ось) — процессы и состояния, связанные с разделением каких-либо объектов, преимущественно в пространстве.
Упоминания в литературе
• β-излучение – поток отрицательно
заряженных частиц (электронов) или заряженных положительно (позитронов). Позитрон – элементарная частица, имеющая массу электрона, но обладающая положительным элементарным зарядом; β-частицы, испускаемые при ядерных распадах естественных и искусственных радионуклидов, например 4019K → 4020Ca т. е. ядро испускает электрон, при этом возникает ядро нового элемента при неизменном массовом числе. К β-излучателям относятся фосфор-32, стронций-90, иттрий-90 и др.
Слабое взаимодействие властвует над лептонами – в это семейство входят электроны, мюоны, таулептоны и все разновидности нейтрино. В сильном взаимодействии участвуют адроны, среди которых наиболее известны нам протон и нейтрон, плюс еще несколько сотен уже известных физикам элементарных частиц. Электромагнитной силе подвластны все электрически
заряженные частицы . Гравитации подчиняется все на свете.
• Число электронов в атоме по умолчанию равно числу протонов, так что заряд целого атома равен нулю. Если же число электронов отличается от числа протонов, значит, перед нами не просто атом, а
заряженная частица – ион.
Для того чтобы объяснить взаимодействие электромагнитных волн с веществом, немецкий физик Гендрик Антон Лоренц выдвинул гипотезу о существовании электрона, т. е. малой электрически заряженной частички, которая в громадных количествах присутствует во всех весомых телах. Эта гипотеза объяснила открытое в 1896 г. немецким физиком П. Зееманом явление расщепления спектральных линий в магнитном поле. В 1897 г. У. Томсон экспериментально подтвердил наличие мельчайшей отрицательно
заряженной частицы , или электрона.
Другим возможным аналогом информационного поля является плазма. Плазма – это ионизированный газ, в котором концентрация положительных и отрицательных зарядов одинакова. В состоянии плазмы находится подавляющая часть вещества Вселенной. В околоземном пространстве плазма существует в виде солнечного ветра и ионосферы. Предполагается, например, что шаровая молния имеет плазменную природу. С плазмой связаны состояния жидкостей и твердых тел. Например, жидкую часть крови называют плазмой. В ней находятся форменные элементы крови: эритроциты, лейкоциты, тромбоциты. Под плазмой твердых тел понимают свойства совокупности подвижных
заряженных частиц в твердых проводниках. В них могут возбуждаться колебания и волны таких же типов, как и в газовой плазме. К плазменным колебаниям относятся медленные колебания тяжёлых ионов относительно быстро колеблющихся электронов и высокочастотные колебания электронов относительно медленных колебаний ионов. Плазменные колебания рассматривают как ионно-звуковые волны. В магнитном поле возможны высокочастотные спиральные волны вследствие вращения электронов и ионов в магнитном ноле. Для плазменных колебаний установлена количественная характеристика – квант колебаний плотности плазмы (плазмон), при которых заряженные частицы разных знаков смещаются друг относительно друга и возникают колебания напряженности электрического поля в плазме.
Связанные понятия (продолжение)
Эффе́кт Вави́лова — Черенко́ва, Эффект Черенкова, излуче́ние Вави́лова — Черенко́ва, черенко́вское излуче́ние — свечение, вызываемое в прозрачной среде заряженной частицей, движущейся со скоростью, превышающей фазовую скорость распространения света в этой среде.
Магно́н — квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов. В кристаллах с несколькими магнитными подрешётками (например, антиферромагнетиках) могут существовать несколько сортов магнонов, имеющих различные энергетические спектры. Магноны подчиняются статистике Бозе — Эйнштейна. Магноны взаимодействуют друг с другом и с другими квазичастицами. Существование магнонов подтверждается экспериментами по рассеянию нейтронов, электронов и света, которое сопровождается...
Поляризация вакуума — совокупность виртуальных процессов рождения и аннигиляции пар частиц в вакууме, обусловленных квантовыми флуктуациями. Эти процессы формируют нижнее (вакуумное) состояние систем взаимодействующих квантовых полей.
Дипо́ль — идеализированная система, служащая для приближённого описания поля, создаваемого более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы. Дипольное приближение, выполнение которого обычно подразумевается, когда говорится о поле диполя, основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка. Полученные функции будут эффективно...
Сверхтонкая структура — структура уровней энергии атомов, молекул и ионов и, соответственно, спектральных линий, обусловленная взаимодействием магнитного момента ядра с магнитным полем электронов. Энергия этого взаимодействия зависит от возможных взаимных ориентаций спина ядра и спинов электронов.
Магнитная ловушка — пространственная конфигурация магнитного поля, созданная для ограничения движения какого-либо объекта.
Спин-орбитальное взаимодействие — в квантовой физике взаимодействие между движущейся частицей и её собственным магнитным моментом, обусловленным спином частицы. Наиболее часто встречающимся примером такого взаимодействия является взаимодействие электрона, находящегося на одной из орбит в атоме, с собственным спином. Такое взаимодействие, в частности, приводит к возникновению так называемой тонкой структуры энергетического спектра электрона и расщеплению спектроскопических линий атома.
Во́лны де Бро́йля — волны вероятности (или волны амплитуды вероятности), определяющие плотность вероятности обнаружения объекта в заданной точке конфигурационного пространства. В соответствии с принятой терминологией говорят, что волны де Бройля связаны с любыми частицами и отражают их волновую природу.
Теплово́е движе́ние — процесс хаотичного (беспорядочного) движения частиц, образующих вещество. Чем выше температура, тем больше скорость движения частиц. Чаще всего рассматривается тепловое движение атомов и молекул.
В теории поля представление системы зарядов в виде некоторых квадрупо́лей, аналогично представлению её в виде системы диполей, используется для приближённого расчёта создаваемого ей поля и излучения. Более общим представлением является разложение системы на мультиполи, соответствующее разложению потенциалов в ряд Тейлора по некоторым переменным. Квадруполь — частный случай мультиполя. Квадрупольное рассмотрение системы оказывается особенно важным в том случае, когда её дипольный момент и заряд равны...
Подробнее: Квадруполь
Магни́тный моме́нт , магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества (источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки; элементарным источником магнетизма считают замкнутый ток).
Тонкая структура (мультиплетное расщепление) — явление в атомной физике, описывающее расщепление спектральных линий (уровней энергии, спектральных терм) атома.
Ионизацио́нный калори́метр (от лат. calor — тепло и …метр) в физике элементарных частиц и ядерной физике — прибор, который измеряет энергию частиц. Большинство частиц, попадающих в калориметр, при взаимодействии с его веществом инициируют возникновение вторичных частиц, передавая им часть своей энергии. Вторичные частицы образуют ливень, который поглощается в объёме калориметра и его энергия измеряется с помощью полупроводниковых, ионизационных детекторов, пропорциональных камер, детекторов черенковского...
Фоно́н — квазичастица, введённая советским учёным Игорем Таммом. Фонон представляет собой квант колебательного движения атомов кристалла.
Флуктуа́ция (от лат. fluctuatio — колебание) — любое случайное отклонение какой-либо величины.
Рекомбинация — исчезновение пары свободных носителей противоположного заряда в среде с выделением энергии.
Эффе́кт Шта́рка — смещение и расщепление электронных термов атомов во внешнем электрическом поле.
Диспе́рсия волн — в теории волн различие фазовых скоростей линейных волн в зависимости от их частоты. Дисперсия волн приводит к тому, что волновое возмущение произвольной негармонической формы претерпевает изменения (диспергирует) по мере его распространения.
Ри́дберговские а́томы (названы в честь Й. Р. Ридберга) — водородоподобные атомы и атомы щелочных металлов, у которых внешний электрон находится в высоковозбуждённом состоянии (вплоть до уровней n порядка 1000). Для перевода атома из основного в возбуждённое состояние его облучают резонансным лазерным светом или инициируют радиочастотный разряд. Размер ридберговского атома может превышать размер находящегося в основном состоянии того же самого атома почти в 106 раз для n = 1000 (см. таблицу ниже...
Спонтанное излучение или спонтанное испускание — процесс самопроизвольного испускания электромагнитного излучения квантовыми системами (атомами, молекулами) при их переходе из возбуждённого состояния в стабильное.
Детектор элементарных частиц , детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметров элементарных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях.
Рассе́яние части́ц — изменение направления движения частиц в результате столкновений с другими частицами.
Диссипа́ция энергии (лат. dissipatio «рассеяние») — переход части энергии упорядоченных процессов (кинетической энергии движущегося тела, энергии электрического тока и т. п.) в энергию неупорядоченных процессов, в конечном счёте — в теплоту. Системы, в которых энергия упорядоченного движения с течением времени убывает за счёт диссипации, переходя в другие виды энергии, например в теплоту или излучение, называются диссипативными. Для учёта процессов диссипации энергии в таких системах при определённых...
Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») — элементарная частица, квант электромагнитного излучения (в узком смысле — света) в виде поперечных электромагнитных волн и переносчик электромагнитного взаимодействия. Это безмассовая частица, способная существовать в вакууме, только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. В физике фотоны обозначаются...
Геликон (др.-греч. ἕλιξ, род. падеж. ἕλικος — кольцо, спираль) — низкочастотная электромагнитная волна, которая возникает в некомпенсированной плазме, находящейся во внешнем постоянном магнитном поле.
Радиационное затухание — сокращение амплитуды поперечных бетатронных колебаний заряженной частицы в циклическом ускорителе, а также эмиттанса пучка частиц, связанное с синхротронным излучением. Поскольку интенсивность синхротронного излучения очень сильно зависит от энергии частицы (~γ4), радиационное затухание важно для ускорителей лёгких ультрарелятивистских частиц (электронные синхротроны), и несущественно для адронных машин.
Магни́тное ква́нтовое число ́ (m) — квантовое число, параметр, который вводится при решении уравнения Шрёдингера для электрона в водородоподобном атоме (и вообще для любого движения заряженной частицы). Магнитное квантовое число характеризует ориентацию в пространстве орбитального момента импульса электрона или пространственное расположение атомной орбитали. Оно принимает целые значения от -l до +l, где l — орбитальное квантовое число, то есть имеет ровно столько значений, сколько орбиталей существует...
Возбуждение в физике — переход системы из основного энергетического состояния в состояние с большей энергией.
Энергетический уровень — собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики. Каждый уровень характеризуется определённым состоянием системы, или подмножеством таковых в случае вырождения. Понятие применимо к атомам (электронные уровни), молекулам (различные уровни, соответствующие колебаниям и вращениям — колебательные и вращательные уровни), атомным ядрам (внутриядерные...
Уда́рная иониза́ция — физическая модель, описывающая ионизацию атома при «ударе о него» электрона или другой заряженной частицы — например, позитрона, иона или «дырки». Явление может наблюдаться как в газах, так и в твёрдых телах (в частности, в полупроводниках).
Эксито́н (лат. excito — «возбуждаю») — квазичастица, представляющая собой электронное возбуждение в диэлектрике, полупроводнике или металле, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы. Понятие об экситоне и сам термин введены советским физиком Я. И. Френкелем в 1931 году, а экспериментально спектр экситона впервые наблюдался в 1952 году советским физиком Е. Ф. Гроссом. Представляет собой связанное состояние электрона и дырки. При этом его следует считать самостоятельной...
Волново́й фронт — поверхность, до которой дошёл волновой процесс к данному моменту времени.
Потенциа́льная я́ма — область пространства, где присутствует локальный минимум потенциальной энергии частицы.
Электронное нейтрино (обозначаются как νe) — элементарная частица, являющаяся одним из трёх видов нейтрино. Вместе с электроном составляет первое поколение лептонов.
Ку́перовская па́ра — связанное состояние двух взаимодействующих через фонон электронов. Обладает нулевым спином и зарядом, равным удвоенному заряду электрона. Впервые подобное состояние было описано Леоном Купером в 1956 году, рассмотревшим лишь упрощенную двухчастичную задачу. Коррелированные пары электронов ответственны за явление сверхпроводимости.
Фотопроводи́мость — явление изменения электропроводности вещества при поглощении электромагнитного излучения, такого как видимое, инфракрасное, ультрафиолетовое или рентгеновское излучение.
Электро́нный га́з — модель в физике твердого тела, описывающая поведение электронов в телах с электронной проводимостью. В электронном газе пренебрегается кулоновским взаимодействием между частицами, а сами электроны слабо связаны с ионами кристаллической решетки. Соответствующим понятием для материалов с дырочной проводимостью является дырочный газ.
Иониза́ция — эндотермический процесс образования ионов из нейтральных атомов или молекул.
Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.
Эффект Фарадея (продольный магнитооптический эффект Фарадея) — магнитооптический эффект, который заключается в том, что при распространении линейно-поляризованного света через оптически неактивное вещество, находящееся в магнитном поле, наблюдается вращение плоскости поляризации света. Теоретически, эффект Фарадея может проявляться и в вакууме в магнитных полях порядка 1011—1012 Гс.
Электро́н (от др.-греч. ἤλεκτρον — янтарь) — стабильная отрицательно заряженная элементарная частица. Считается фундаментальной (не имеющей, насколько это известно, составных частей) и является одной из основных структурных единиц вещества. Классифицируется как фермион (обладает спином, равным ½) и как лептон. Единственный (наравне со своей античастицей — позитроном) из известных заряженных лептонов, являющийся стабильным. Электроны образуют электронные оболочки атомов, строение которых определяет...
Самофокусировка света — один из эффектов самовоздействия света, состоящий в концентрации энергии светового пучка в нелинейной среде, показатель преломления которой возрастает при увеличении интенсивности света. Явление самофокусировки было предсказано советским физиком-теоретиком Г. А. Аскарьяном в 1961 году и впервые наблюдалось Н. Ф. Пилипецким и А. Р. Рустамовым в 1965 году. Основы математически строгого описания теории были заложены В. И. Талановым.
Безма́ссовые части́цы (люксо́ны) — частицы, масса покоя которых равна нулю. Не имеют аналога в нерелятивистской механике.
Упоминания в литературе (продолжение)
Исследования Лоренца были направлены на изучение структуры вещества, разложении его на мельчайшие составляющие. Лоренц первым высказал предположение о существовании крайне малых электрически
заряженных частиц – электронов – которые имеются в любом материальном теле.
Хитрая природа для этого предусмотрела еще один вид взаимодействия в микромире. Первый вид взаимодействия частиц мы с вами уже прошли – это электромагнитное взаимодействие, когда одноименно
заряженные частицы отталкиваются, а разноименные притягиваются. Не забыли? Отлично… А второй вид взаимодействия называется сильным взаимодействием. Потому что оно сильнее, чем отталкивание положительно заряженных протонов. Плюсовые протоны хотят разлететься из ядра, но что-то им не дает. Это «что-то» и есть сильное взаимодействие. Оно короткодействующее, то есть работает только и исключительно на коротких расстояниях, в отличие от сил электромагнитных, которые работают на любых расстояниях, правда, ослабевая с удалением. Иногда сильное взаимодействие по-другому называют ядерным взаимодействием, потому что именно оно связывает частицы в ядре атомов.
Механизм образования и разрушения двойного электрического слоя в клеевом соединении объясняет электронная теория адгезии, предложенная Н.А. Кротовой и Б.В. Дерягиным. По современным представлениям, двойной электрический слой образуется в результате ориентирования
заряженных частиц клея и поверхности твердого тела с возникновением затем разности потенциалов между ними. Однако, в отличие от электростатического взаимодействия при образовании двойного электрического слоя происходит взаимный переход электронов между функциональными группами молекул полимера и принятие ими электронов от поверхности твердого тела.
Выдающиеся русские ученые и Г. И. Шипов и А. Е. Акимов разработали теорию и математическими расчетами подтвердили передачу информации в физическом вакууме. Вся информация, в т. ч. и психическая энергия, события, выделяют
заряженные частицы и вызывают «возмущение», окружающих частиц физического вакуума, создавая завихрения. В результате получается поле, в котором вращаются волновые пакеты электронов и позитронов. Волновые пакеты взаимно согласованы – это и есть торсионные поля. Вихри несут информацию (структуру частиц) со скоростью 109 километров в секунду по расчетам Г.И. Шипова и А.Е. Акимова. Информация распространяется во Вселенной со скоростью больше чем скорость света в 10000 раз. Вихри, структура частиц, распространяется в субстанции ФВ и взаимодействуют друг с другом, образуя узоры интерферекции. Узоры интерферекции есть информация всех событий и объектов во Вселенной.
Саму возможность существования антивещества предсказал в 1898 году британский физик Артур Шустер в заметке, опубликованной в журнале Nature. Это произошло вскоре после открытия Томсоном электрона, обнаружившего, что катодные лучи образованы входящими в состав вещества тождественными отрицательно
заряженными частицами . Шустер предположил, что существует симметричный аналог электрона, заряженный положительно: ведь природа должна была позаботиться о симметрии между положительным и отрицательным… И лишь спустя 30 лет замечательный английский физик Поль Дирак заново открыл антиматерию, найдя антиэлектрон (позитрон) в своем уравнении! С этого времени изучением свойств антивещества всерьез занялись физики, и в течение прошлого века не один десяток ученых со всего мира был удостоен Нобелевской премии за свои выдающиеся исследования, поднимающие человечество по ступеням цивилизации.
Модель шаровой молнии для объяснения наблюдения Е. Л. Хилла, сконструированная Ф. Классом, представляет собою «электрически
заряженные частицы и группы молекул, которые каким-то образом электрически разделены на положительно и отрицательно заряженные связки действием самого хода молнии». Ученые вряд ли найдут такую модель перспективной. Однако в ней есть пыль и вращение, а это то направление, по которому Ф. Класс тянет дальше свою цепь рассуждений.
Многими учёными признаётся, что информация в головном мозге передаётся по плазматическим мембранам нейронов и их отросткам нервными импульсами, которые ни что иное как движение электрических зарядов, потенциал которых достигает 70 мкв. Перемещение электрических зарядов приводит к образованию магнитных полей. Нейроны головного мозга окружены мозговой жидкостью, которая облает свойствами коллоидного раствора, а, по сути, представляет собой смесь электролитов. Все эти
заряженные частицы взаимодействуют между собой и с внешним магнитным полем.
Можно было бы еще много говорить о замечательных свойствах пульсаров. Например, изучая поляризацию их радиоизлучения, как оказывается, можно определить напряженность межзвездного магнитного поля. Это, пожалуй, лучший из существующих методов определения этой важнейшей характеристики межзвездной среды. Сложнейшие вопросы ставят пульсары и перед теоретиками. Так, внутренние слои пульсара должны находиться в сверXIIроводящем и в сверхтекучем состоянии. Для двух самых молодых пульсаров, находящихся в оболочках сверхновых, наблюдались внезапные «сбои» в периодах, что неизбежно должно быть связано с изменением периода вращения. Эти так называемые звездотрясения, по-видимому, связаны с какой-то перестройкой внутренней структуры пульсаров. Их природа, как и многое другое, касающееся пульсаров, пока неизвестна. Почему, например, оптические кванты излучает только самый молодой пульсар NP 0532, находящийся в «Крабе»? Похоже на то, что генерация
заряженных частиц сверхвысоких энергий должна быстро затухать со временем. Но почему?
Методом динамического светорассеяния и спектрофотометрии изучена самоорганизация хитозана с анионным ПАВ в водно-спиртовых средах. Показано, что ассоциативное взаимодействие в системе приводит к формированию
заряженных частиц полимер-коллоидного комплекса хитозан-ПАВ с размером 70-200 нм.
Сварочные аэрозоли получают электрический заряд еще в зоне дуги. Установлено, что из общего количества пылевых частиц, которые заносятся с воздухом в дыхательные пути, задерживаются слизистой оболочкой преимущественно
заряженные частицы .
На рис. 3.28 б отчетливо видно, что распределение астероидов между суперклассами примитивных, метаморфных и вулканических четко коррелирует со значением большой полуоси орбиты a (некоторой характеристикой расстояния от Солнца): вулканические преобладают на внутреннем краю пояса, в то время как примитивные – на внешнем, а метаморфные представлены в зоне от 2,0 до 4,0 а.е. Это наводит на мысль, что разогрев вещества астероидов, который обеспечил выплавку железоникелевой фракции и ахондритного вещества, быстро убывал с расстоянием от Солнца. Известно два сценария для обеспечения эффективного разогрева планетезималей на ранней стадии формирования Солнечной системы. Первый из них – это радиоактивный распад короткоживущего изотопа алюминия 26Al. Этот сценарий может обеспечить наблюдаемое соотношение астероидов различных классов, если процесс формирования планетезималей начался вблизи Солнца и быстро распространился до орбиты Юпитера за время, сравнимое с периодом полураспада 26Al (720 000 лет). Правда, для этого требуется, чтобы протопланетное облако непосредственно перед началом формирования планетезималей было обогащено короткоживущим изотопом алюминия (взрыв сверхновой?). Другой сценарий – это магнитно-индукционный разогрев планетезималей потоками
заряженных частиц , выбрасываемых Солнцем во время прохождения им ранней стадии развития.
Кроме того, планета с недостаточной массой не может удержать внутреннее тепло и быстро остывает. Железное расплавленное ядро планеты создает магнитное поле, защищающее ее биосферу от губительного воздействия космических лучей,
заряженных частиц солнечного ветра, жесткого рентгеновского излучения. Наша планета уникальна и своей атмосферой – соотношением в ней объемов кислорода и азота, уровнями углекислого газа, водяного пара, озона. При меньшем количестве кислорода в воздухе (менее 21 % атмосферы) задохнулись бы крупные млекопитающие, при увеличении количества кислорода планета страдала бы от постоянных пожаров. Особенный состав земной атмосферы (в частности, наличие озона) обеспечивает поглощение рентгеновского и ультрафиолетового излучения. Уникальны наши морская и пресная вода, при этом многие полезные для жизни вещества очень хорошо растворяются в воде, а вредные растворяются плохо. Пары воды легче сухого воздуха, что важно для переноса теплоты и круговорота воды на планете, а атмосфера не дает воде улетучиться в космос.
Второй ключ к происхождению Солнечной системы кроется в характерном расположении восьми основных ее планет. Ближайшие к Солнцу планеты – Меркурий, Венера, Земля и Марс – представляют собой сравнительно небольшие твердотельные образования, состоящие преимущественно из кремния, кислорода, магния и железа. Плотные горные породы, вроде черного вулканического базальта, встречаются в основном на поверхности этих планет. В отличие от них четыре внешних планеты: Юпитер, Сатурн, Уран и Нептун – являются газовыми гигантами, главным образом состоящими из водорода и гелия. Эти громадные шары не имеют твердой поверхности и уплотняются по мере углубления в нижние слои атмосферы. Такое деление планет позволяет предположить, что в начальный период существования Солнечной системы, в течение нескольких тысяч лет после образования Солнца солнечный ветер – интенсивный поток
заряженных частиц – выталкивал оставшийся водород и гелий во внешние, более холодные области. На достаточном удалении от излучения Солнца эти летучие газы, остывая, уплотнялись, образуя независимые сгущения. Напротив, более крупные, богатые минералами частицы звездной пыли, оставшиеся поблизости от раскаленной звезды, быстро уплотнялись, образуя твердотельные внутренние планеты.
Солнечный ветер – это поток плазмы, истекающий от Солнца. Для Солнца это небольшая потеря (лишь около одной миллиардной доли полной массы за 40 000 лет), но поток
заряженных частиц может оказывать серьезное воздействие на тела Солнечной системы – именно он несет ответственность за полярные сияния и появление хвостов у комет. Выделяют две компоненты солнечного ветра: быстрый ветер (со скоростью 700–800 км/с) и медленный (400 км/с). Обе компоненты зарождаются в солнечной короне.