Связанные понятия
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
Норма — функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
В математическом анализе, и прилегающих разделах математики, ограниченное множество — множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай произвольного метрического пространства, а также на случай произвольного частично упорядоченного множества. Понятие ограниченности множества не имеет смысла в общих топологических пространствах, без метрики.
Подробнее: Ограниченное множество
Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность сходится (к элементу этого же пространства).
Грани́ца мно́жества A — множество всех точек, расположенных сколь угодно близко как к точкам во множестве A, так и к точкам вне множества A.
Подмногообразие ― термин, используемый для нескольких схожих понятий в общей топологии, дифференциальной геометрии и алгебраической геометрии.
Гладкая функция , или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей - не является открытым.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма - однородным многочленом любой степени от двух переменных.
Разме́рность — количество независимых параметров, необходимых для описания состояния объекта, или количество степеней свободы системы.
Факторкольцо ́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.
Метри́ческим простра́нством называется непустое множество, в котором между любой парой элементов, обладающих определенными свойствами, определено расстояние, называемое ме́трикой.
Подробнее: Метрическое пространство
Лине́йная комбина́ция — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов (например, линейной комбинацией x и y будет выражение вида ax + by, где a и b — коэффициенты).
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Ба́зис (др.-греч. βασις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Окре́стность точки — множество, содержащее данную точку, и близкие (в каком-либо смысле) к ней. В разных разделах математики это понятие определяется по-разному.
Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.
Аффи́нное преобразование , иногда Афинное преобразование (от лат. affinis «соприкасающийся, близкий, смежный») — отображение плоскости или пространства в себя, при котором параллельные прямые переходят в параллельные прямые, пересекающиеся — в пересекающиеся, скрещивающиеся — в скрещивающиеся.
Тополо́гия Зари́сского , или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
В математике свободная абелева группа (свободный Z-модуль) — это абелева группа, имеющая базис, то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B. Свободные абелевы группы и формальные суммы используются в алгебраической топологии...
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
Проекти́вный мо́дуль — одно из основных понятий гомологической алгебры. С точки зрения теории категорий, проективные модули являются частным случаем проективных объектов.
Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно однозначным отображением (соответствием), одно-однозначным отображением.
Локально компактное пространство — топологическое пространство, у каждой точки которого существует открытая окрестность, замыкание которой компактно. Иногда используется более слабое определение: достаточно чтобы каждая точка имела компактную окрестность (открытость окрестности здесь не предполагается). В случае хаусдорфова пространства эти определения эквивалентны.
Действие группы на некотором множестве объектов позволяет изучать симметрии этих объектов с помощью аппарата теории групп.
Сепара́бельное пространство (от лат. separabilis — отделимый) — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Кольцо многочленов — кольцо, образованное многочленами от одной или нескольких переменных с коэффициентами из другого кольца. Изучение свойств колец многочленов оказало большое влияние на многие области современной математики; можно привести примеры теоремы Гильберта о базисе, конструкции поля разложения и изучения свойств линейных операторов.
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Топологическое векторное пространство , или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.