Книга расскажет, как оказать доврачебную помощь пострадавшим в аварии людям, как диагностировать неисправности вашего «железного коня» и как устранить «мелкие технические неувязки» прямо на дороге.В пособии вы найдете советы по поведению на дороге, при общении с другими участниками движения, поможет вам эффективно разрешать все конфликтные ситуации.Книгу можно использовать при самоподготовке к экзаменам в ГИБДД и в качестве учебника в учебных заведениях, занимающихся обучением водителей.
Приведённый ознакомительный фрагмент книги Первая помощь людям и автомобилям. А также психология водителя предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Устройство и техническое обслуживание транспортных средств
«Водитель — самый опасный узел машины»
Общее устройство транспортных средств
Основные части и агрегаты легкового автомобиля
Любой легковой автомобиль состоит из следующих элементов:
— двигателя; — трансмиссии (элементов, передающих вращение вала двигателя к колесам)
— ходовой части (колес, а также устройств их крепления и связи с кузовом);
— механизмов управления (рулевого и тормозного);
— электрооборудования;
— дополнительного оборудования;
— кузова (рамы).
Двигатель — это «сердце» машины устройство, которое превращает тепловую энергию топлива в механическую энергию, приводящую ТС в движение.
При движении водитель использует механизмы управления (поворачивает руль, разгоняется, тормозит), электрооборудование (включает свет фар и указатели поворотов, пользуется звуковым сигналом и т.д.), дополнительное оборудование (отопитель салона, стеклоомыватели, стеклоочистители и др.), а также кузов.
Современные автомобили можно классифицировать по нескольким признакам:
— по типу кузова (седан, хетчбэк, универсал, купе, вагон, джип, пикап, кабриолет, лимузин);
— по типу двигателя (бензиновые и дизельные);
— по рабочему объему двигателя (малолитражки, малый класс, средний класс и большой класс);
— типу привода колес (заднеприводные, переднеприводные и полноприводные);
— по габаритным размерам.
Классификация автомобилей по типу привода колес
Чтобы ТС поехало, что-то должно заставить вращаться его колеса. Причем у автомобиля должно быть хотя бы два ведущих колеса.
В зависимости от того, какие колеса приводят машину в движение, автомобили подразделяют на:
— заднеприводные;
— переднеприводные;
— полноприводные.
Заднеприводные автомобили — автомобили, которые движутся за счет вращения задних колес (т.е. крутящий момент от двигателя передается только на задние колеса). Задние колеса таких машин являются ведущими и толкают перед собой автомобиль. Передние колеса в этом случае нужны для опоры, изменения направления движения и снижения скорости (т.к. тормоза легкового автомобиля установлены на всех четырех колесах).
У переднеприводных автомобилей крутящий момент от двигателя передается на передние колеса. Задние (ведомые) колеса таких автомобилей выполняют опорные и тормозные функции, а передние колеса приводят машину в движение. В отличие от заднеприводного автомобиля, у которого ведущие колеса толкают автомобиль перед собой, у переднеприводного авто ведущие колеса тянут его за собой. При этом передние колеса еще и управляемые, сила тяги прикладывается в направлении поворота колес, из-за чего транспорт с передним приводом более устойчив на дороге, чем заднеприводный.
Полноприводные автомобили — автомобили, у которых ведущими являются как задние, так и передние колеса, а ведомых вообще нет. У них все четыре колеса одновременно тянут и толкают машину. Некоторые полноприводные автомобили имеют отключаемый передний и задний мост (т.е. по желанию водителя ведущими у них могут быть как четыре, так и два колеса). Определить, сколько у автомобиля ведущих колес, поможет так называемая колесная формула. Первая цифра в ней указывает общее количество колес, а вторая соответствует количеству ведущих колес.
Например, 4×2 — это легковой авто с 2-мя ведущими колесами, 4×4 — полноприводный легковой авто.
В таблице показаны свойства автомобилей с различными типами приводов.
Кузова автомобиля
Классификация легковых автомобилей по типу кузова, как и другие классификации, базирующиеся на объеме двигателя, габаритных размерах или размерах салона, не может претендовать на однозначность. Несмотря на понятные принципы такой классификации, путаница в названиях и терминах существовала на протяжении всей истории автомобильного дизайна.
Наиболее очевидным критерием классификации типов кузова является пространственная композиция, сочетание трех объемов: пассажирского салона, двигателя и багажного отделения. Важны также наличие крыши и центральной стойки, количество мест и дверей.
По конструкции кузова автомобилей подразделяются на закрытые, открытые и комбинированные.
Закрытые кузова со стационарной крышей
Легковые автомобили без крыши
Легковые автомобили с частично складывающимся или частично съемным верхом
Общее устройство и работа двигателя
Двигатели внутреннего сгорания в зависимости от их конструктивных особенностей могут работать на бензине (инжекторные и карбюраторные двигатели), на соляре (дизели) и на газе. Бензиновые двигатели являются самыми распространенными в мировом легковом автомобилестроении.
Они работают на жидком топливе (бензине) с принудительным зажиганием от свечей. Перед подачей в цилиндры двигателя бензин смешивается с воздухом в определенной пропорции с помощью специального устройства: карбюратора или инжектора, закрепляемых на двигателе снаружи. Поэтому бензиновые двигатели называют также двигателями с внешним смесеобразованием.
Иногда вместо бензина в таких двигателях используют газ (пропан-бутан). Для перевода бензинового двигателя на газ используется специальное оборудование.
Дизели — двигатели, работающие на соляре (дизельном топливе). В отличие от бензиновых двигателей в них применяется воспламенение от сжатия (в дизелях отсутствуют свечи зажигания). Смесеобразование (смешивание соляра с воздухом) в дизельных двигателях происходит непосредственно внутри цилиндров. Это двигатели с внутренним смесеобразованием.
Двигатель — это преобразователь тепловой энергии топлива в механическую.
ДВС, используемые на легковых автомобилях, состоят из двух механизмов:
— кривошипно-шатунного;
— газораспределительного.
Также следующих пяти систем:
— системы питания;
— системы зажигания;
— системы охлаждения;
— системы смазки;
— системы выпуска отработавших газов.
ГРМ и КШМ
Основные детали ДВС:
— головка блока цилиндров;
— цилиндры;
— поршни;
— поршневые кольца;
— поршневые пальцы;
— шатуны;
— коленчатый вал;
— маховик;
— распределительный вал с кулачками;
— клапаны;
— свечи зажигания.
Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня в цилиндре во вращательное движение коленчатого вала двигателя.
Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов.
Также он обеспечивает надежную изоляцию камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.
Система питания двигателя
Система питания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и подачи ее в цилиндры двигателя. Количество и качество этой смеси должно быть разным при различных режимах работы двигателя, что также находится «в компетенции» системы питания.
Подавляющее большинство легковых автомобилей оснащено бензиновыми двигателями.
В зависимости от вида устройства, осуществляющего подготовку топливовоздушной смеси, двигатели могут быть инжекторными (слово injector в переводе с английского означает «форсунка»), карбюраторными или оборудованными моновпрыском.
В состав топливной системы входят следующие элементы:
— топливный бак, предназначен для хранения топлива и представляет собой компактную емкость с устройством забора топлива (насос) и, в некоторых случаях, элементами грубой фильтрации;
— топливопроводы представляют собой комплекс топливных трубок, шлангов и предназначены для транспортировки топлива к устройству смесеобразования;
— устройства смесеобразования (карбюратор, моновпрыск, инжектор) — это механизм в котором происходит соединение топлива и воздуха (эмульсии) для дальнейшей подачи в цилиндры в такт работы двигателя (такт сжатия);
— блок управления работой устройства смесеобразования (инжекторные системы питания) — сложное электронное устройство для управления работой топливных форсунок, клапанов отсечки, датчиков контроля;
— топливный насос, обычно погружной, предназначен для закачивания топлива в топливопровод;
— дополнительные фильтры грубой и тонкой очистки.
Система зажигания
Система зажигания обеспечивает работу двигателя. В самом конце такта сжатия рабочую смесь необходимо поджечь, за это и отвечает система зажигания, которая используется только в бензиновых и газовых ДВС.
С ее помощью топливовоздушная смесь, попавшая в цилиндры двигателя, поджигается в строго определенный момент. Воспламенение смеси внутри цилиндра происходит при образовании высоковольтной искры между электродами свечи зажигания при подаче к ней напряжения 18000—20000 В.
С помощью свечи зажигания образуется искровой разряд, необходимый для воспламенения рабочей смеси в цилиндрах двигателя.
Известны три разновидности систем зажигания:
— контактная (на современных автомобилях не применяется, однако ранее была широко распространена);
— бесконтактная;
— микропроцессорная (широко применяется в современном автомотостроении, входящая в систему управления инжекторными двигателями).
Микропроцессорная система зажигания состоит из модуля зажигания, высоковольтных проводов и свечей зажигания. Устройство управления системой впрыска представляет собой автономный микропроцессорный блок управления зажиганием или блок управления двигателем с подсистемой управления зажиганием. Это устройство, пользуясь обратной связью, автоматически рассчитывает момент зажигания.
Электронный блок управления выполняет в микропроцессорной системе зажигания функции головного мозга. Его работа состоит в сборе информации от датчиков.
Датчик детонации во время работы двигателя генерирует сигнал с частотой и амплитудой, зависящей от частоты и амплитуды вибрации двигателя. Этот датчик устанавливают на блоке двигателя.
При возникновении детонации электронный блок управления корректирует угол опережения зажигания.
Ресурс современных свечей зажигания составляет около 20 млн. искр, что соответствует примерно 15 тысяч км пробега автомобиля. Поэтому заводы-изготовители предписывают замену свечей через 15—20 тысяч километров пробега. Кстати, некачественный бензин значительно сокращает жизнь свечи. Удобно и целесообразно заменять свечи при переходе на зимний режим эксплуатации (и наоборот). Бывалые водители рекомендуют возить с собой запасной комплект свечей. Много места в машине он не займет, зато в случае необходимости (при выходе из строя какой-либо свечи или значительном ухудшении ее работы) вы сможете быстро восстановить работоспособность двигателя.
Система охлаждения
Система охлаждения предназначена для поддержания нормального теплового режима двигателя.
При сгорании топливовоздушной смеси выделяется значительное количество тепла, способного вывести из строя агрегаты двигателя. При перегреве подвижные элементы расширятся, поршни заклинит в цилиндрах, а многие детали будут изогнуты или просто сломаны.
Для отвода избыточного тепла и предназначена система охлаждения. Она же поддерживает оптимальный тепловой режим работы двигателя. На автомобилях в подавляющем большинстве случаев применяется жидкостная система охлаждения.
Нормальная температура охлаждающей жидкости работающего двигателя составляет 80—95 °С. При пуске холодного двигателя система охлаждения помогает ему по возможности быстрее достичь рабочей температуры.
Жидкостная система охлаждения закрытого типа с принудительной циркуляцией и расширительным бачком состоит из следующих основных элементов:
— рубашки охлаждения (двойных стенок блока цилиндров и головок, пространство между которыми заполнено охлаждающей жидкостью);
— радиатора, выполняющего функцию теплообменника и состоящего из двух бачков, соединенных большим количеством трубок;
— расширительного бачка, поддерживающего постоянный объем циркулирующей жидкости и определенное давление в системе;
— насоса, обеспечивающего циркуляцию охлаждающей жидкости в системе;
— термостата (автоматического клапана, открывающегося при достижении охлаждающей жидкостью температуры 90—102 °С);
— вентилятора, обеспечивающего прокачку воздуха между трубками радиатора;
— трубопроводов.
В большинстве автомобилей в качестве охлаждающей жидкости применяют специальные составы с низкой температурой кристаллизации — антифризы (от англ. antifreeze — незамерзающий). Все охлаждающие жидкости ядовиты. Предприятия-изготовители присваивают антифризам фирменные названия (например, «Тосол», «Лена» и т. п.) и (или) указывают температуру их замерзания, точнее, кристаллизации (тосол А-40, ОЖ-40, ОЖ-65, где ОЖ — охлаждающая жидкость).
В процессе эксплуатации антифриз стареет (в нем снижается концентрация ингибиторов, ухудшается теплопередача, возрастает пенообразование, он начинает вступать в реакции с деталями системы охлаждения). Ресурс охлаждающий жидкости связан с пробегом автомобиля. Преждевременное старение наступает в том случае, если в систему охлаждения проникают отработавшие газы или регулярно попадает воздух. Поэтому необходимо своевременно обнаруживать утечки жидкости и следить за состоянием и креплением трубопроводов. Своевременно заменяйте антифриз. Сроки замены указаны в инструкции по эксплуатации вашего автомобиля. Уровень антифриза в системе охлаждения может понизиться при испарении из него воды или при утечках (негерметичности системы). В первом случае нужно доливать дистиллированную воду (если ее нет, то хотя бы прокипяченную), во втором — охлаждающую жидкость той же марки. Отечественные антифризы можно смешивать, если они произведены по одним техническим условиям (ТУ). Если номера ТУ различаются, то охлаждающие жидкости могут быть несовместимы. Поэтому в сомнительных случаях целесообразно использовать воду, а затем заменить всю жидкость в системе.
Охлаждающая жидкость циркулирует в системе:
— по малому кругу (при прогреве двигателя);
— по большому кругу (при его охлаждении).
При пуске холодного двигателя, чтобы охлаждающая жидкость не мешала ему быстрее достичь оптимальной температуры, предусмотрен специальный клапан, перекрывающий ее доступ из рубашки охлаждения к радиатору. Этот клапан называется термостатом.
При пуске холодного двигателя термостат остается закрытым и охлаждающая жидкость не может проходить через радиатор, она циркулирует только в головке блока и самом блоке цилиндров (движение жидкости по малому кругу). В результате двигатель быстро прогревается.
При достижении охлаждающей жидкостью установленной температуры термостат открывает ей доступ в радиатор для охлаждения (движение жидкости по большому кругу). Если радиатор не справляется с охлаждением жидкости до необходимой температуры, в дело вступает электровентилятор.
Обогреватель (отопитель) салона (печка) также относится к системе охлаждения. Главный его элемент — радиатор. Но не тот, который расположен перед двигателем и спрятан за декоративной отделкой передней части автомобиля, а другой, меньших размеров, расположенный за двигателем. Включая обогреватель, водитель открывает кран, и горячий антифриз попадает в радиатор. Так нагревается воздух, поступающий в салон автомобиля. Включать печку следует при прогретом двигателе. Включение обогревателя при холодном двигателе лишь увеличит время прогрева мотора.
Если двигатель перегревается, то включение обогревателя позволит снизить температуру охлаждающей жидкости и отвести избыток тепла от двигателя.
Перегрев весьма опасен для двигателя. Поэтому в поездке, бросая взгляд на приборный щиток, не оставляйте без внимания указатель температуры охлаждающей жидкости. К сожалению, подавляющее большинство легковых автомобилей не оборудовано сигнализатором, предупреждающим о начале повышения температуры охлаждающей жидкости свыше допустимого. Поэтому внимание и еще раз внимание.
Если температура растет, а электрический вентилятор не включается, то вот вам и причина. Правда выйти из строя может как он сам, так и его система управления и даже сгоревший предохранитель. Если неисправность не устранена на месте, то следовать к месту ремонта придется с продолжительными остановками, охлаждая двигатель. В такой ситуации поможет включение на полную мощность отопителя. Запомните самое главное: как только стрелка указателя температуры охлаждающей жидкости приближается к красной зоне, тотчас останавливаемся, глушим двигатель, открываем капот и ждем.
Еще одна причина перегрева — неисправность термостата. Обычно это его банальное заклинивание в закрытом положении. В результате охлаждающая жидкость циркулирует по малому кругу, не попадая в радиатор. В том, что термостат заклинило в закрытом положении, убедимся на ощупь. Если при перегревающемся двигателе радиатор остается холодным, то все дело в термостате. Надо его менять. Однако попробуйте постучать по его корпусу. Бывает, что после этого клапан термостата открывается. Но в дальнейшем при первой возможности заметите термостат. Если постукивание не помогает, то к месту ремонта вновь движемся, внимательно следя за датчиком температуры, даже в жару включив отопитель на полную мощность.
При перегреве двигателя все манипуляции проводите после его остановки с особой осторожностью. Берегитесь ожогов. Не спешите, дайте двигателю немного остыть. Не открывайте сразу крышку расширительного бачка или пробку радиатора. Кипящий антифриз в системе находится под давлением. Даже по прошествии времени открывайте пробку или крышку, взяв в руку тряпку и отвернув в сторону лицо. Сливайте антифриз только после того, как он остынет.
Система смазки
Система смазки служит для подачи масла к трущимся деталям, а также частично для их охлаждения и удаления продуктов износа.
При работе двигателя множество деталей контактируют друг с другом, образуя пары трения. Чтобы уменьшить износ (его называют фрикционным износом), двигатель и оборудуют системой смазки. Резервуар с маслом находится в картере двигателя. Масляный насос обеспечивает поступление масла через масляный фильтр к движущимся частям. В ДВС применяется система смазки комбинированного типа: часть деталей смазывается под давлением, часть — разбрызгиванием и окунанием, а часть — самотеком.
Кроме функций смазывания, масло может выполнять и функции охлаждения. Воздушный поток, проходящий под днищем движущегося автомобиля, обдувает картер двигателя, являющийся резервуаром для масла. Кроме того, на некоторых автомобилях и мотоциклах устанавливают специальные масляные радиаторы, призванные охлаждать масло. Это одновременно предохраняет масло от распада при высоких температурах.
Система смазки двигателя легкового автомобиля состоит из следующих основных элементов:
— поддона картера;
— масляного насоса с заборником;
— масляного фильтра;
— каналов и отверстий для подачи масла под давлением, просверленных в блоке цилиндров, в головке блока и в других деталях двигателя.
Поддон картера служит резервуаром для масла. Когда вы заливаете масло через маслозаливную горловину, оно проходит по пустотам внутри двигателя и опускается в поддон картера. Уровень масла в поддоне измеряется специальным масляным щупом, вставленным в отверстие в картере двигателя. По этому признаку систему смазки двигателей легковых автомобилей называют системой смазки с мокрым картером.
Система выпуска отработавших газов
Система выпуска отработавших газов состоит из следующих элементов:
— выпускного клапана;
— выпускного канала;
— приемной трубы глушителя;
— дополнительного глушителя (резонатора);
— основного глушителя;
— соединительных хомутов.
Система выпуска предназначена для отвода отработавших газов от цилиндров двигателя, их охлаждения и уменьшения шума при выбросе в атмосферу.
Двигатель выбрасывает через выпускной канал цилиндра отработавшие газы в выпускной коллектор. С этого момента начинается их движение по системе выпуска.
Система выпуска отработавших газов отечественного легкового автомобиля представлена на рисунке.
Продукты сгорания из выпускного коллектора направляются в приемную трубу резонатора (дополнительного глушителя), а потом и основного глушителя. Внутри обоих устройств установлены перегородки с большим количеством отверстий. Газы, с шумом попадающие в глушитель, вынуждены пройти длинный путь по его закоулкам. При этом звуковая волна существенно ослабевает, а газы охлаждаются.
На работу системы выпуска расходуется до 4% мощности двигателя. Все соединения в системе выпуска отработавших газов должны быть герметичны. Выпускные элементы двигателя соединяются с помощью специальных жаростойких прокладок, трубы глушителя вдеваются друг в друга и стягиваются хомутами.
В отличие от большинства отечественных автомобилей, системы выпуска многих иномарок снабжены еще одним элементом — катализатором (каталитическим дожигателем) отработавших газов, где происходит нейтрализация вредных веществ. Поэтому такой катализатор еще называют нейтрализатором. В нем дожигаются несгоревшие остатки топлива и фильтруются газы перед выбросом в атмосферу. В нейтрализаторе основные токсичные компоненты отработавших газов — оксид углерода (СО), углеводороды (СН) и оксид азота (NO) — в результате химических реакций превращаются в нетоксичные газы.
Катализаторы могут работать только с двигателями, потребляющими высококачественный неэтилированный бензин. В противном случае они тут же засоряются и выходят из строя.
Основные неисправности системы выпуска отработавших газов легко определить на слух. Повышенный шум в ее работе возникает из-за прогара или механического повреждения глушителей, труб или разгерметизации соединений. Не следует ставить автомобиль на высокой сухой траве или в других местах, где возможен контакт выпускных труб и глушителей с легковоспламеняющимися материалами.
Общее устройство трансмиссии
Основным назначением трансмиссии является передача, регулирование пошагово, распределение по ведущим колесам крутящего момента от маховика двигателя. Условно, трансмиссию, по способу передачи можно поделить на: механическую, электрическую, гидрообъемную, комбинированную. Самая распространенная, это механическая трансмиссия. На ее основе и рассмотрим работу узлов.
В состав трансмиссии входят несколько узлов:
Сцепление — предназначено для «мягкого» присоединения маховика к первичному валу коробки передач и передачи крутящего момента. Сцепление состоит из трех элементов — корзина сцепления, диск сцепления и выжимной подшипник.
Коробка передач — устройство, преобразующее крутящий момент. Предназначена для дальнейшей передачи крутящего момента к карданному валу или непосредственно к главной передаче, с возможностью его изменения (пошагово). Усилие двигателя передается посредством вторичного вала. Коробки передач бывают механические и автоматические.
Карданный вал (для заднеприводных авто), устройство передачи крутящего момента от вторичного вала коробки передач к главной передаче.
Главная передача, дифференциал — в совокупности составляют «мост», который предназначен для передачи силы двигателя через приводные валы (полуоси) к колесам, а также распределения усилия между колесами. Для заднего привода «мост» располагается в задней части автомобиля и имеет (в некоторых случаях) общий корпус с полуосями. Соответственно и система смазки общая.
Для переднего привода «мост» совмещен в одном корпусе с коробкой передач.
Приводной вал (полуось) — представляет собой металлический стержень из высоколегированной стали и устройством зацепления с дифференциалом и шарниром равных угловых скоростей (ШРУС). Это могут быть проточенные шлицы или устройство крепления крестовин.
Шарнир равных угловых скоростей (ШРУС) — предназначен для подачи силы вращения на ведущие колеса.
Есть несколько видов ШРУСов: шариковый и трипоид.
Раздаточный механизм — устройство распределения усилия двигателя по ведущим колесам, применяется в автомобилях с колесной формулой 4х4. «Раздатка» может быть размещена как в
Типы коробок передач
Существует много различных типов коробок передач, рассмотрим некоторые из них:
— механическая, или ручная;
— автоматическая;
— роботизированная «механика»;
— вариатор.
В механической коробке передачи переключаются вручную.
Автоматическая коробка с гидротрансформатором — типичный «автомат», устанавливаемый на многие иномарки.
Роботизированная «механика», аналогична «механике», но без педали сцепления. Включение сцепления и переключение передач осуществляется с помощью электромоторов, а передачи можно переключать как автоматически, так и вручную.
Вариатор — бесступенчатая коробка передач, обеспечивающая разгон автомобиля без пауз, которые возникают при переходе с одной передачи на другую на автомобилях с другими типами КП. Вариатор преимущественно устанавливают на автомобили для японского рынка.
На дорогах нашей страны чаще всего встречаются автомобили с механической либо автоматической коробкой передач, реже — с роботом. Причем два последних варианта очень похожи с точки зрения действий водителя: педаль сцепления отсутствует, переключение происходит автоматически.
Переключение передач служит для регулирования и поддержания оптимального числа оборотов коленчатого вала двигателя. Дело в том, что при изменении числа оборотов коленчатого вала изменяются характеристики двигателя (например, интенсивность ускорения, расход топлива). Поэтому для того, чтобы двигатель (а вместе с ним и автомобиль) на разных скоростях движения вел себя одинаково, нужно придерживаться определенных оборотов. Переключая передачи при изменении скорости, водитель поддерживает нужные ему обороты коленчатого вала, т.е. добивается нужного поведения машины.
Коробка переключения передач (КПП)
На современных автомобилях устанавливаются механические и автоматические КПП.
Водитель автомобиля самостоятельно переключает (выбирает) передачи с помощью рычага, руководствуясь текущей необходимостью, предварительно выжимая для этого сцепление. На современных легковых автомобилях чаще всего устанавливается пятиступенчатая КПП. Это означает, что машина имеет пять передач для движения вперед и одну — п для езды задним ходом.
В каждом легковом автомобиле действует такой принцип: чем ниже передача, тем она мощнее, но в то же время медленнее. Поэтому самыми сильными передачами, предназначенными для трогания с места и движения на малой скорости, являются первая и задняя. При их включении двигатель легко крутит колеса, однако с большой скоростью на них не поедешь: мотор будет работать на больших оборотах, громко реветь, но быстрее примерно 10—20 км/ч машина не поедет.
После того как автомобиль тронулся с места и немного разогнался, следует переключиться на вторую передачу — менее мощную, но зато более скоростную. На ней уже можно разогнать автомобиль еще больше, чтобы переключиться на третью передачу — еще более скоростную и менее мощную, и т. д.
На низких передачах двигатель потребляет больше топлива, чем на высоких. Т.е. чем выше передача, тем более экономичная езда.
В процессе езды водителю приходится не только повышать передачи, но и иногда переходить на пониженные. Например, при движении в гору мощности пятой или четвертой передачи может не хватить и необходимо перейти на более мощную пониженную передачу.
Ррычаг должен двигаться плавно, без рывков и резких движений, причем при прохождении нейтральной позиции следует делать маленькие (в пределах секунды) паузы.
Переключение передач в механической коробке
На большинстве механических КП передачи располагаются одинаково, за исключением задней передачи. Чаще всего на современных автомобилях пять передач для движения вперед, на старых машинах — четыре. Когда рычаг занимает центральное положение (т.е включена нейтральная передача), все передачи выключены, колеса автомобиля разъединены с двигателем. Обозначается такое положение буквой «N». Убедиться, что все передачи в этом положении и в самом деле выключены, легко: достаточно просто покачать рычаг переключения передач вправо-влево — при включенной передаче сделать это невозможно. Задняя передача «R» на разных автомобилях включается по-разному.
Расположение передач показано на рисунке. Как правило, схема расположения передач для каждого конкретного автомобиля нанесена на рычаг КП, также эту информацию вы всегда сможете найти в руководстве по эксплуатации вашего автомобиля.
Итак, для включения передачи нужно выжать педаль сцепления, переместить рычаг в положение, соответствующее нужной передаче, и отпустить педаль. Для выключения передачи тоже следует выжать педаль сцепления, перевести рычаг в положение «N» и отпустить педаль.
Главное правило переключения передач — делать это без усилия.
Правильное включение должно происходить без применения, как говорится, грубой физической силы
Передачи в движении лучше всего переключать по порядку: вверх — 1, II, III, IV и т.д., вниз — IV, III, II до полной остановки (не упомянута I передача, т.к. просто она обычно включается уже после остановки машины).
Упражнение. «Работа с рычагом переключения передач».
Потренируйтесь переключать передачи в машине с выключенным двигателем. Постарайтесь запомнить их положение. Для начала можно делать это, глядя на рычаг, но во время движения все переключения должны происходить вслепую, так как все внимание водителя приковано к дороге. Проще всего вам будет отыскать передачи «N», III и IV. Если из положения «N» просто перевести рычаг вверх, то он установится в положение, соответствующее III передаче, а если перевести его вниз, он окажется в положении IV передачи. Нейтральная передача «N» тоже включается «сама»: если вы просто «выдерните» рычаг из положения, соответствующего любой передаче (кроме «N», разумеется), он тут же попадет в нейтральное положение «N». Любое перемещение рычага КП должно происходить при выжатой педали сцепления. Помните, что после каждого переключения передачи (как вверх, так и вниз) нужно возвращать правую руку на рулевое колесо, а носок левой ноги — на площадку для отдыха. Еще одно правило
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Первая помощь людям и автомобилям. А также психология водителя предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других