В данной монографии демонстрируется глубокая взаимосвязь между структурой и свойствами материалов, которые используются в промышленности, энергетике, возобновляемой энергетике и способствуют повышению энергоэффективности применяемых технологий энергосбережению. Изучение указанной взаимосвязи базируется на представлениях об атомно-электронной структуре, механизмах фазовых превращений в материалах, которые были изложены в учебных пособиях. Монография рекомендована к печати Ученым советом ФерГУ.
Приведённый ознакомительный фрагмент книги Компоненты неметаллических материалов и их свойства. Монография предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПОЛИМЕРОВ И ПЛАСТМАСС
1.1. Общая характеристика и классификация
Состояние и тенденции развития отрасли. Полимерные материалы (полимеры и пластмассы) используют для производства весьма значительных по объему и номенклатуре групп товаров с разнообразным назначением, а следовательно, потребительскими и эксплуатационными свойствами. В настоящее время полимерные материалы (ПМ) используются во всех отраслях промышленности, например в строительстве (лакокрасочные, отделочные, теплоизоляционные и другие материалы), сельском хозяйстве (пленки, трубы и другие изделия), в производстве мебели, хозяйственных и других товаров, обеспечивающих комфортную жизнедеятельность людей.
Полимерные материалы являются высокоэффективными в технологическом, потребительском и экономическом планах. Технологичность ПМ определяется минимальной энергоемкостью процессов получения изделий, высокой производительностью оборудования и исключением дорогостоящих операций механической обработки готовых изделий. Поэтому производство изделий из пластмасс является высокорентабельным с коротким сроком окупаемости капиталовложений.
Из ПМ получают изделия с самыми разнообразными свойствами, удовлетворяющие самые разные потребности. Их экономичность определяется тем, что производство изделий из ПМ может быть полностью автоматизировано в пределах разумных затрат, что позволяет сократить расходы и, следовательно, себестоимость продукции, а также розничную цену товаров.
Вследствие вышеперечисленных особенностей ПМ, несмотря на короткий срок их применения (немногим более 100 лет), они получили широкое использование. Их производство и применение в последние 25 лет резко возросло. Особенно быстро прирост производства отмечается в Индии, Китае, Пакистане.
Мировое производство ПМ в настоящее время составляет около 150 млн т. Анализ ассортимента выпускаемых пластмасс показывает, что выпуск 10 видов пластмасс составляют около 90% общего производства ПМ. В группу полимеров общетехнического назначения, имеющих наибольшее применение, входят полиэтилен (ПЭ), полипропилен (ПП), поливинилхлорид (ПВХ), полистирол (ПС) и полиэтилентерефталат (ПЭТФ), акрилонитрил (АК).
Особенности отечественной отрасли пластмасс заключаются в том, что в производстве все еще сохраняется выпуск термореактивных полимеров: аминоформальдегидных — до 20% и фенолоформальдегидных (ФФС) — до 8% от общего объема. В структуре термопластичных полимеров основной объем приходится на вышеперечисленные полимеры общетехнического назначения.
В то же время растет использование импортных полимеров в производстве изделий из пластмасс, таких как полиамиды (ПА), полиэтилентерефталаты (ПЭТФ), а в последнее время полиэтилены низкого и высокого давления, ПП, ПС. Международная маркировка и область применения основных видов полимеров приведены в приложении 1.
Наибольший объем мирового потребления ПМ приходится на производство упаковки и тары. Затем следует строительство, транспорт, производство электроники, мебели, хозяйственных товаров. Так, около трети полимеров расходуется на производство тары и упаковки. Вследствие того что потребительская ценность упаковки теряется задолго до утраты первоначальных свойств полимеров, из которых они изготовлены, то остро стоит вопрос о вторичном использовании отходов полимеров. До недавнего времени использование вторичного сырья являлось прерогативой предприятий по производству изделий. Сейчас сформировалось новое самостоятельное направление — «рециклирование пластмасс, разрабатывающее технологические процессы по переработке отходов, прежде всего использованной тары. Это способствует решению не только сырьевых, но и экологических проблем.
Основными мероприятиями, направленными на снижение загрязнения окружающей среды, являются:
§вторичная переработка;
§утилизация сжиганием;
§термическое разложение путем пиролиза и деполимеризации с использованием низкомолекулярных продуктов;
§разработка и применение способов деструкции (разложения) полимеров под действием света, кислорода воздуха и микроорганизмов.
В последнее время большое внимание уделяется последнему способу. Для этого в полимер вводят биоразлагаемые добавки, которые разрушают межмолекулярные связи, в результате происходит окисление и деструкция молекул полимера.
Классификация полимеров и пластмасс. Изучению ассортимента и свойств готовых изделий из пластмасс предшествует изучение состава, ассортимента и свойств полимеров.
Полимеры — высокомолекулярные соединения, макромолекулы которых состоят из большого числа одинаковых (иногда различных) повторяющихся группировок, соединенных химическими связями.
По физическому состоянию полимеры могут быть твердыми — жесткими или эластичными (пленки) — материалами, волокнистыми (текстильные волокна) и вязкими жидкостями (лакокрасочные материалы, клеи).
По происхождению полимеры подразделяют на природные, выделенные из природных материалов, искусственные, полученные из природных полимеров путем их химической модификации, и синтетические, полученные путем синтеза из мономеров или олигомеров (низкомолекулярных полимеров). Примеры отнесения конкретных видов полимеров к указанным группировкам и классификация по другим признакам приведены в табл. 1.1.
Классификация полимеров
По составу основной цепи полимеры подразделяют на гомо — цепные, если состав основной цепи включает один и тот же атом, чаще всего углерод, и гетероцепные, если в состав входят кроме углерода другие атомы (кислород, азот и т. д.). По указанному признаку можно разделить полимеры, зная их химическую формулу.
По способу получения полимеры делят на три группы: по — лимеризационные, поликонденсационные и модифицированные
(табл. 1.1). Больше всего полимеров получают по реакции полимеризации. Способ получения используют при анализе производства лакокрасочных материалов и в стандартах, определяющих требования к ним.
Важным признаком, который определяет способ получения изделий из полимеров, а также используется при идентификации последних, является отношение их к нагреванию. Термопластичными (термопластами) называются полимеры, способные при нагревании переходить в вязко-текучее состояние, при охлаждении — — в твердое, что может повторяться неоднократно. Эта способность термопластов используется при переработке отходов производства или потребления (упаковки) путем их расплавления и последующего формования изделий.
К термореактивным (реактопластам) относят полимеры, нагревание которых сопровождается химическими реакциями образования трехмерного (сшитого) полимера (реакция отверждения), в результате чего полимеры переходят в твердое состояние и их способность переходить в вязко-текучее состояние необратимо утрачивается. Следовательно, термопласты имеют линейную или разветвленную форму макромолекул, а реактопласты — сшитую. Сшивка макромолекул может проводиться специально введенным в состав полимера веществом (отвердитель) или за счет реакционноспособных функциональных групп полимера.
Пластические массы (пластмассы) — материалы, основу которых составляют полимеры, в состав которых для придания им функциональных свойств вводят добавки: наполнители, армирующие материалы, пластификаторы, стабилизаторы, красители и т. п. Полимер связывает все остальные компоненты в единую более или менее однородную массу, поэтому полимер называют связующим.
Вид пластмасс определяется видом исходного связующего — полимера.
Введение наполнителей и красящих пигментов в полимер приводит к тому, что получаемый материал становится окрашенным и непрозрачным (гетерогенные пластмассы). Наполнители вводят в состав пластмасс для снижения их стоимости, придания негорючести, электропроводности, упрочнения (армирование) и других свойств. Введение только красителей приводит к образованию окрашенных прозрачных пластмасс.
В период формования изделий пластмассы находятся в вязко-текучем или высокоэластичном состоянии, а при эксплуатации — в стеклообразном или кристаллическом (твердом) состоянии.
Так как в состав пластмасс больше всего входит наполнителя, то классификация полимеров дополняется признаками, зависящими от наполнителя (табл. 1.2).
Термопластичные пластмассы чаще всего бывают гомогенными по составу, а изделия из термореактивных пластмасс, которые вырабатывают с наполнителем, — гетерогенными.
Наполнители, и, следовательно, пластмассы, подразделяют по физическому состоянию наполнителя. Чаще всего применяют твердый наполнитель, разнообразный по типу. В качестве органического наполнителя применяют древесные отходы, лигнин, измельченные отходы полимеров, волокон, бумагу. Неорганическими наполнителями могут быть мел, тальк, асбест, песок, вермикулит и др.
В зависимости от состава и назначения полимеры подразделяют на марки, которые указывают в стандартах. Сополимеры и полимеры специального назначения вырабатывают по техническим условиям (ТУ).
Свойства полимерных материалов и факторы, их определяющие. Наиболее важным фактором, определяющим потребительские свойства изделий из полимеров, является вид полимера и состав введенных в него добавок. Путем подбора соответствующих полимеров, наполнителей и других добавок можно изготовить пластмассы с различными потребительскими свойствами.
Спектр свойств полимеров достаточно широк. Полимеры могут быть хрупкими и ударопрочными; прозрачными и мутными; мягкими (пенопласты, поропласты, поливинилхлорид), полужесткими (капрон, полипропилен, полиэтилен) и жесткими (полистирол, полиметилметакрилат, фенопласты, аминопласты); горючими и огнестойкими, электропроводящими и электрическими изоляторами и др.
При комнатной температуре полимер находится в твердом состоянии, и он может быть либо аморфным (стеклообразным), либо кристаллическим. При введении в полимер пластификатора снижается температура стеклования и увеличивается эластичность полимера за счет уменьшения величины межмолекулярного взаимодействия. Например, непластифицированный поливинилхлорид — винипласт — имеет температуру стеклования 80 °С. Такой материал достаточно жесткий при комнатной температуре. Введение 5—10% пластификатора снижает температуру стеклования до 45—50 °С, а большее количество пластификатора (30—40%) приводит к образованию эластичного поливинилхлорида (пластикат), температура стеклования которого снижается до — 10…~20 °С и ниже. При комнатной температуре такой пластифицированный поливинилхлорид — эластичный и мягкий, характеризуется сильным удлинением при разрыве.
Часто пластмассы получают из смеси полимеров. Другой путь их получения — — химический (сополимеры). В таких случаях их свойства, как правило, имеют более высокие значения, чем исходных полимеров.
При проектировании состава пластмасс учитывают свойства полимеров, и от этого зависит область их применения. В приложениях 1 и 2 приведены область применения и основные свойства наиболее распространенных полимеров. Разработка рецептуры материала, наиболее пригодного для последующих условий эксплуатации, является главным этапом формирования свойств.
Следующим важным фактором, влияющим на свойства изделий, являются условия переработки полимеров в изделия. Переработке пластмасс предшествует проектирование рациональной формы и конструкции изделия, а также формующего инструмента (литьевой формы, экструзионной головки и др.), выбор оптимального способа переработки и условий его осуществления. Подробнее способы переработки рассмотрены в следующем разделе.
1.2. Свойства полимеров
Полимеры являются уникальной группой материалов, обладающие множеством полезных свойств при невысокой стоимости. Несмотря на то, что пластики вошли в жизнь людей совсем недавно — менее столетия назад — сегодня абсолютно невозможно представить жизнь без полимеров.
По своей природе они представляют из себя высокомолекулярные соединения, состоящие из многих тысяч повторяющихся групп атомов — мономеров. От химического строения мономеров и от их пространственного расположения и взаимодействия с другими атомами той же самой или прочих молекул полимера и зависят его свойства.
Рис.1.1. Наглядная схема макромолекулы
В данной монографии мы в общих чертах рассмотрим особенности основных полимеров, которые, конечно же очень многообразны. Полимеры являются гигантским классом материалов с безграничным количеством применений, причем постоянно появляются новые и новые.
Механические характеристики
Главное, что определяет качество полимера и возможность его применения в той или иной области — это механические свойства полимеров. Они зависят от атомного состава макромолекулы, ее молекулярной массы, пространственной и кристаллической структур и физического состояния. Все полимеры в той или иной степени характеризуются хорошими эластичностью и прочностью. Также они (в случае с термопластами) довольно легко и при невысоких температурах переходят в вязкотекучее состояние (плавятся) и принимают нужную форму изделия.
Гибкость макромолекулы и, соответственно, эластичность полимеров в общем случае снижается с ростом молекулярной массы. При этом некоторые мономеры повышают эластичность, такие как, например, диеновые углеводороды. В случае их введения в полимерную матрицу любого полимера, эластичность, как правило, повышается.
Полимеры обладают специальным состоянием вещества — высокоэластическим. В случае с термореактивными пластмассами их молекулы способны образовывать сшитые на элементарном уровне сетчатые структуры, не способные к повторному плавлению и переработке.
Прочностные свойства полимеров повышаются с ростом молекулярной массы, и кроме того, при сшивке — получении сначала разветвленных макромолекул, а затем трехмерных структур. Кристаллические полимеры обладают большей прочностью, чем аморфные, даже если по химическому составу они идентичны. Так, прочность при растяжении на разрыв кристаллического ПЭ на полтора-два порядка выше прочности аморфного ПЭ.
Прочность, рассчитанная исходя из площади высокомолекулярных соединений высокой кристалличности не очень отличается от аналогичной прочности стали, а при расчетах на единицу массы — выше нее. Стереорегулярные полимеры обладают лучшими прочностными характеристиками, чем неупорядоченные.
Электрические свойства полимеров
Как известно, любое вещество может в той или иной степени быть диэлектриком, либо полупроводником, либо проводником электрического тока.
Большая часть пластмасс — диэлектрики, но с очень различными свойствами, которые находятся в зависимости от химсостава и структуры полимерных молекул. Главным образом, электрические характеристики зависят от количества и состава полярных групп в макромолекулах. Если в составе есть галогенные, гидроксидные, карбоксидные и т. п. и другие полярные области молекул, то это ослабляет диэлектрические и электроизоляционные свойства.
Рис. 1.2. Кабели — одно из полимероемких направлений производства
Например, диэлектрическая проницаемость ПВХ в 1,5 раза меньше, а прочие электрические характеристики намного более низкие, чем у полиэтилена. Исходя из вышесказанного самые лучшие диэлектрики — это пластики, в мономерное звено которых не входят полярные звенья, например упомянутый выше ПЭ, фторопласты, полиизобутилен, полистирол.
При росте молекулярной массы диэлектрические характеристики пластмасс становятся выше. Обратное можно сказать про переход полимеров от стеклообразного к вязкотекучему состоянию через высокоэластичное. При этом удельная электрическая проводимость растет. Это происходит ввиду более интенсивного перемещения ионов, которые получаются при разложении макромолекул на более мелкие составные части (термодеструкции при нагреве). Свой вклад в повышение электропроводности дает и диссоциация примеси, которые могут состоять из остатков веществ после поликонденсации, растворителей, эмульгаторов, инициаторов и катализаторов реакции синтеза. Из описанного следует, что при необходимости повышения диэлектрических качеств полимеров нужно как можно лучше очищать их от примесей.
Важно, что наличие определенных атомных групп, таких как гидроксигруппа, повышает гидрофильность полимеров. Полимеры с гидроксигруппами в составе лучше поглощают воду, что в свою очередь ведет к росту их электропроводности.
Полимерными полупроводникам называют соединения, обладающие более высокой электропроводимостью. Чаще всего это полимеры, имеющие в составе наличие сопряженных двойных связей С=С. Полупроводниковые качества у них связаны с образованием свободных электронов этих двойных связей. При попадании в электрическое поле такие электроны иногда имеют возможность перемещения вдоль полимерной цепи, таким образом перенося электрический заряд. Так, полимерами-полупроводниками являются полиацетилен, поливинилены, полинитрилы и некоторые другие.
Значение проводимости полупроводниковых полимеров также растет не только при повышении температуры, но и при действии света.
Не так давно было обнаружено важное качество полиацетилена и некоторых более редких полимеров резко повышать свою электропроводность при добавлении в систему положительно заряженных ионов, например Li+, или, наоборот, отрицательных ионов, например СlO4-. Такие полупроводники называются легированными и пригодны для использования в аккумуляторах и конденсаторах даже для замены металлов, которым пока не было альтернативы в этой области.
Оптические свойства полимеров
С точки зрения светопропускания и прочих оптических свойств полимеры ведут себя очень дифференцированно. В науке и промышленности известны как пластики с превосходными оптическими характеристиками, так и не имеющие такие качеств.
К первой группе можно отнести прежде всего поликарбонат, широко применяющийся в качестве замены силикатному стеклу, и полиметиметакрилат (ПММА), много десятилетий известный потребителям под именем «оргстекло». Кроме того, разработано множество типов прозрачных стирольных пластиков, начиная с полистирола общего назначения и заканчивая прозрачным АБС и стирольными эластомерами. В стирольной группе по широкому набору полезных свойств и хорошей перерабатываемости стоит отметить SAN и другие сополимеры стирола.
Рис.1.3. Пластики все чаще используют в оптике
Большие успехи достигнуты в направлении получения прозрачных полиолефинов, являющихся одними из наиболее дешевых полимеров. Если гомо-полипропилен и особенно полиэтилен являются непрозрачными, то некоторые этилен — пропиленовые сополимеры обладают этим ценным качеством.
Главные типы полимеров
Рассмотрим кратко особенности основных крупнотоннажных пластмасс, широко использующихся на сегодняшний день.
Полиэтилен — простейший из термопластов и полиолефинов, имеющий формулу ( — СН2 — СН2—) n, где n — здесь и далее равна степени полимеризации. Материал подразделяется на несколько видов, свойства которых существенно отличаются. Наиболее употребляемыми являются полиэтилен низкого давления (высокой плотности) и полиэтилен высокого давления (низкой плотности), которые получаются при разных условиях синтеза и наличия специальных катализаторов. Плотность ПЭВД — около 920 кг/куб. м, плотность ПЭНД — около 960 кг/куб. м.
ПЭНД — более кристаллический полимер, он обладает лучшими прочностными характеристиками, жесткостью и более высокой температурой размягчения. Полиэтилен имеет хорошие химические характеристики, стоек к воде органике и хлорорганике, но нестоек к сильным окислителям и фотодеструкции. ПЭ обладает отличными диэлектрическими характеристиками и широким диапазоном температур эксплуатации.
Полипропилен, имеющий формулу ( — СН (СН3) — СН2 — ) n — также относится к классу полиолефинов. Это вид полимеров, имеющих значительную степень кристалличности, при примерно равной стоимости с полиэтиленом выигрывает у него за счет более низкой плотности, которая составляет около 900 кг/куб. м.
ПП имеет лучшую термостойкость, чем полиэтилен и может эксплуатироваться до 140 градусов С (для некоторых марок). Также он славится хорошей прочностью и жесткостью, стоек к истиранию, эластичен.
В современной промышленности используется всё меньше полипропилена гомополимера и все больше различных сополимеров пропилена и этилена, для простоты именующихся также «полипропилен».
Полистирол — термопласт, который синтезируют путем полимеризации стирола. В чистом виде ПС является хрупким прозрачным пластиком. ПС имеет хорошие диэлектрические данные и применяется для электроизоляции. Полистирол, как и описанные выше полиолефины хорошо перерабатывается в изделия всеми способами переработки.
В современной промышленности используются в основном сополимеры стирола, так называемые стирольные пластики. В их перечень входят как ударопрочные марки полистирола (на самом деле сополимеры главным образом с каучуками), так и широко известный АБС-пластик, полимеры SAN, ASA и многие другие.
Поливинилхлорид или ПВХ — простейший из группы хлорорганических полимеров, имеющий формулу ( — СН2 — СНСl — ) n. Этот известный всем термопласт, получается при полимеризации простейшего хлорсодержащего ненасыщенного органического соединения винилхлорида (хлорэтилена). В чистом виде называется «смола ПВХ». Существует две основные группы ПВХ материалов, получаемые из одной и той же смолы и отличающиеся составом композиции, главным образом количеством пластификатора, это — жесткий ПВХ и пластикат.
Важнейшее качество ПВХ — его трудногорючесть. Поливинилхлорид не поддерживает горение, поэтому широко используется в строительстве. Этот полимер обладает хорошими физико-механическими данными. Хотя как диэлектрик поливинилхлорид уступает ПЭ и ПС он гораздо чаще используется (в качестве пластиката) для изоляции проводов и кабелей ввиду своей негорючести. Недостатком ПВХ является сложность его переработки в изделия, т.к. он склонен к деструкции уже при температурах около 100 градусов С, тогда как плавится при гораздо более высоких значениях.
Политетрафторэтилен (простейший и наиболее используемый фторопласт, также известный как фторопласт-4), обладающий формулой ( — CF2—CF2 — ) n является термопластичным полимером, который получают полимеризацией тетрафторэтилена. Фторопласт имеет отличную химическую стойкость, диэлектрические характеристики и одни из самых широких возможностей эксплуатации по температуре — от — 270 градусов С до 260 градусов С. ПТФЭ не растворим в органических растворителях. Материал имеет прекрасные антифрикционные и гидрофобные свойства, что обеспечивает его применение для выпуска различных покрытий и изделий для снижения их коэффициентов трения до минимальных значений.
Полиметилметакрилат (ПММА, оргстекло) — также термопласт, получаемый полимеризацией ММА. Материал обладает хорошей прочностью, хим — и маслобензостойкостью.
Главным достоинством ПММА является его оптическая прозрачность, что позволяет применять материал в светотехнике, а также электротехнике, лазерной технике и в качестве клеевой основы.
Полиамиды — категория термопластичных полимеров, имеющих в цепи макромолекулы амидогруппу — NH — СО — (вместо Н возможен другой радикал). Плотность полиамидов варьируется от 1000 до 1300 кг/куб. м.
ПА имеют высокую прочность, которая в сочетании с волокнистыми наполнителями дает этому виду полимеров успешно замещать металлические детали. Также полиамиды обладают износостойкостью, маслобензостойкостью, хорошими диэлектрическими качествами. Отличная химическая резистентность также присуща почти всем полиамидам.
Реактопласты (термореактивные смолы) — группа материалов, отличная от термопластов тем, что после первоначального синтеза и получения изделий не способна к повторной переработке ввиду образования неплавкой сетчатой структуры между макромолекулами. Такой процесс также называют сшивкой. Существует много вариантов термореактивных полимеров, например резольные, новолачные, эпоксидные, полиэфирные смолы и т. д.
Термореактопласты, благодаря своей природе, характеризуются очень высокими химсвойствами, хорошими термо-механическими и диэлектрическими характеристиками.
1.3. Пластмассы
Пластмассы (пластические массы, пластики). Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия.
Эти вещества состоят в основном из углерода (C), водорода (H), кислорода (O) и азота (N). Все полимеры имеют высокую молекулярную массу, от 10 000 до 500 000 и более; для сравнения, кислород (O2) имеет молекулярную массу 32. Таким образом, одна молекула полимера содержит очень большое число атомов.
Некоторые органические пластические материалы встречаются в природе, например асфальт, битум, шеллак, смола хвойных деревьев и копал (твердая ископаемая природная смола). Обычно такие природные органические формуемые вещества называют смолами. В ряде случаев в качестве сырья применяются природные полимеры — целлюлоза, каучук или канифоль; чтобы достичь желаемой эластичности, их подвергают различным химическим реакциям. Например, целлюлозу посредством разнообразных реакций можно превратить в бумагу, моющие средства и другие ценные материалы; из каучука можно получить резину и изолирующие материалы, используемые как покрытия; канифоль после химической модификации становится более прочной и устойчивой к действию растворителей.
Хотя модифицированные природные полимеры и находят промышленное применение, большинство используемых пластмасс являются синтетическими. Органическое вещество с небольшой молекулярной массой (мономер) сначала превращают в полимер, который затем прядут, отливают, прессуют или формуют в готовое изделие. Сырьем обычно являются простые, легко доступные побочные продукты угольной и нефтяной промышленности или производства удобрений.
Полимеризация.
Слово «полимер» — греческого происхождения. Буквально, полимер — это молекула, состоящая из многих (поли-) частей (мерос), каждая из которых представляет собой мономерное, т.е. состоящее из одной (монос) части, звено полимерной цепи. Реакция получения полимера из мономера называется полимеризацией. Полимерные молекулы обычно представляют собой очень длинные цепи, линейные или разветвленные. Образование этих молекул возможно благодаря тому, что атомы углерода легко и прочно соединяются друг с другом и со многими другими атомами.
Известно много типов полимеризации, однако наиболее распространены два из них: присоединительная (аддиционная) полимеризация и поликонденсация.
В присоединительной полимеризации мономеры присоединяются друг к другу непосредственно, без изменения состава. Например, молекулы этилена H2C=CH2, состоящие из 6 атомов каждая, соединяются, образуя полиэтилен. Фрагмент полиэтиленовой цепи выглядит следующим образом:
Вся цепь содержит более 6000 атомов. Углеродные атомы цепи соединены простыми (одинарными), а не двойными связями (рис. 1). Эту реакцию можно записать как nH2C=CH2® [—CH2—CH2—] n, где n (число составных звеньев) может достигать 1000 и более, т.е. структура в скобках должна повторяться 1000 и более раз. Сходным образом этиленоксид C2H4O превращается в полиэтиленоксид согласно схеме:
Эти структуры возможны, поскольку углеродный атом образует четыре связи с другими атомами, кислород — две, а водород — одну связь.
Присоединительная полимеризация редко идет самопроизвольно. Она может быть инициирована определенными катализаторами, обычно свободнорадикальными, катионными или анионными. Инициированные ими реакции — экзотермические (идущие с выделением тепла). Промышленные полимеризационные процессы, проводимые в интервале температур от — 80° до 120° С, дают большие выходы полимеров за короткое время.
При поликонденсации два или несколько различных мономеров реагируют, образуя цепь. При этом от их молекул отщепляются небольшие фрагменты, которые, соединяясь друг с другом, обычно образуют воду, т.е. в конечном полимерном продукте присутствуют не все атомы мономеров. Важное условие поликонденсации состоит в том, чтобы каждый мономер был бифункциональным, т.е. содержал две функциональные группы; обе они могут реагировать с функциональными группами другого компонента. Функциональные группы — это те части молекулы, которые непосредственно участвуют в химической реакции, т.е. места, где атомы, ионы, радикалы или другие группы могут либо отщепляться от молекулы, либо присоединяться к ней.
Например, гексаметилендиамин H2N (CH2) 6NH2 имеет две аминогруппы NH2, поэтому его называют диамином. Адипиновая кислота HOOC (CH2) 4COOH имеет две карбоксильные группы COOH, поэтому ее называют дикарбоновой или двухосновной кислотой. В реакции поликонденсации, типичной для всех диаминов и двухосновных кислот, гексаметилендиамин и адипиновая кислота, отщепляя воду, образуют цепь:
Реакция на этом не заканчивается, поскольку образующиеся промежуточные соединения также бифункциональны и могут реагировать с мономерами или друг с другом. Конечным результатом являются длинные линейные цепи повторяющихся звеньев — HN (CH2) 6NH (O) C (CH2) 4CO—. Схема реакции показана ниже. Полимеры такого типа называют полиамидами, поскольку они содержат много амидных групп C (O) — NH; они более известны под общим названием найлоны.
Другим большим семейством продуктов поликонденсации являются полиэфиры. Из них особенно важен полимер, получаемый взаимодействием терефталевой кислоты HOOC—C6H4—COOH и этиленгликоля HO—CH2—CH2—OH. Этот полимер, известный как терилен или дакрон, состоит из повторяющихся звеньев следующего строения:
Ермопласты.
Все линейные или слегка разветвленные полимеры термопластичны. Это означает, что они могут многократно размягчаться при нагревании и затвердевать при охлаждении. При этом, в сущности, физическом процессе, похожем на повторяющиеся расплавление и кристаллизацию металла, химических изменений не происходит.
Реактопласты
(термореактивные, или термоотверждающиеся, пластмассы). Если процесс полимеризации протекает более чем в двух направлениях, то возникают молекулы, образующие не линейные цепи, а трехмерную сетку. Эти полимеры можно размягчить нагреванием, но при охлаждении они превращаются в твердые неплавящиеся тела, которые невозможно снова размягчить без химического разложения. Материалы такого рода называют реактопластами. Необратимое затвердевание вызывается химической реакцией сшивки цепей.
Важным процессом этого типа является присоединительная полимеризация дивинилбензола:
В дивинилбензоле две двойные винильные связи. В ходе полимеризации они образуют трехмерную сетчатую структуру. При нагревании полученный полимер медленно разлагается.
Хорошо известный реактопласт — феноло-формальдегидную смолу — получают поликонденсацией фенола с формальдегидом. Первая стадия выглядит следующим образом:
Тригидроксиметилфенол, реагируя с фенолом, способен отщеплять воду и образовывать трехмерную сетчатую структуру:
Из вышесказанного следует простой и логичный вывод: все линейные полимеры термопластичны, а все сшитые сетчатые полимеры реактопластичны (термореактивны). Очевидно, структура мономерных единиц и их функциональных групп позволяют предсказать тип пластмассы, получаемой при полимеризации.
Основные свойства пластмасс.
Химические свойства.
С точки зрения химического поведения полимер похож на мономер (или мономеры), из которого (или которых) он получен. Углеводороды этилен H2C=CH2, пропилен H2C=CH—CH3 и стирол H2C=CH—C6H5 претерпевают присоединительную полимеризацию, образуя полиэтилен, полипропилен и полистирол со следующими структурами:
Эти полимеры ведут себя как углеводороды. Они, например, растворимы в углеводородах, не смачиваются водой, не реагируют с кислотами и основаниями, горят, подобно углеводородам, могут хлорироваться, бромироваться и — в случае полистирола — нитроваться и сульфироваться.
Виниловый спирт CH2=CHOH полимеризуется в поливиниловый спирт
проявляющий свойства спирта: он растворим в воде, не смачивается маслами, устойчив к действию кислот и щелочей, подвергается этерификации, с альдегидами и a-оксидами реагирует подобно другим спиртам.
Полиэфиры, например, состава
растворимы в некоторых высококипящих растворителях. Они не набухают в воде, но постепенно гидролизуются и разрушаются кислотами и щелочами, особенно при повышенных температурах. Эти реакции и свойства характерны для всех эфиров.
Полиамиды (например, найлон-6,6; см. выше) ведут себя подобно амидам. Они еще более труднорастворимы, чем полиэфиры, не набухают в воде и гидролизуются под воздействием кислот и оснований при повышенных температурах, но гораздо медленнее, чем полиэфиры.
Из изложенного ясно, что все главные химические свойства полимеров можно предсказать на основе их формул, рассматриваемых с точки зрения классической органической химии.
Физические свойства
полимера, напротив, зависят не только от характера мономера, но в большей степени от среднего количества мономерных звеньев в цепи и от того, как цепи расположены в конечной макромолекуле.
Все синтетические и используемые в промышленности природные полимеры содержат цепи с различным числом мономерных единиц. Это число называют степенью полимеризации (СП) и обычно пользуются его средним значением, поскольку цепи не одинаковы по длине. Средняя длина цепи и СП может быть определена экспериментально несколькими методами (например, осмометрией — измерением осмотического давления различных растворов; вискозиметрией — измерением вязкости; оптическими методами — измерением светорассеяния различными растворами; ультрацентрифугированием, при котором вещества разделяются по их плотности). СП особенно важна при определении механических свойств полимера, поскольку при прочих равных условиях более длинные цепи налагаются друг на друга более эффективно и порождают большие силы сцепления. Можно сказать, что заметная механическая прочность наблюдается уже при СП 50—100, достигая максимума при СП выше 1000.
Термические и механические свойства
в сильной мере зависят от расположения мономерных звеньев в полимерных цепях, поскольку полимеры могут кристаллизоваться, если цепи имеют регулярное строение и расположены параллельно друг другу, что достигается процессом, называемым ориентационным вытягиванием с отжигом. Чем выше степень кристалличности, тем тверже продукт, тем выше его температура размягчения и больше устойчивость к набуханию и растворению; низкой степенью кристалличности характеризуются более мягкие продукты с более низкими температурами тепловой деформации и более легкой растворимостью (рис. 2).
Рис. 1.4. Молекулярная движение полимер
Молекулярному движению в полимерах подвержена не вся цепь. Движение происходит в отдельных сегментах, которые колеблются, вращаются и извиваются независимо друг от друга. Это движение зависит от температуры. При низких температурах движение происходит медленно или почти отсутствует, так что некристаллический или аморфный полимер при низких температурах хрупок и тверд, как стекло. Если материал содержит области кристалличности, они в целом действуют как армирующие элементы, и при низких температурах образец жесткий, твердый и труднорастворимый. Нагревание аморфного полимера ускоряет движение сегментов; по мере повышения температуры это движение становится столь сильным, что материал из твердого и хрупкого (стеклообразного) превращается в достаточно мягкий и пластичный. Температура такого перехода называется температурой стеклования Tст. В случае частично-кристаллического полимера это размягчение происходит только в некоторых местах структуры материала; кристаллические области остаются незатронутыми. Выше точки стеклования такие образцы становятся более гибкими и податливыми, но еще сохраняют свои армирующие кристаллические области, усиливающие жесткость. При дальнейшем нагревании достигается температура, когда плавятся кристаллические области; эта температура, Tпл, называется температурой плавления. Выше нее система ведет себя как очень вязкая жидкость. Такое поведение характерно для термопластов, у реактопластов подобных точек перехода нет.
В табл. 1 показаны критические температуры Tст и Tпл ряда важных промышленных термопластов. Все реактопласты после того, как произошла сшивка цепей, становятся твердыми и жесткими. Температура стеклования tст и температура плавления tпл некоторых пластических полимерных материалов.
Ниже Tст пластмассы хрупки и тверды, между Tст и Tпл — гибки и податливы, выше Tпл они являются вязкими расплавами.
Оптические свойства.
Пластические материалы бывают различной степени прозрачности — от совершенно прозрачных до матовых. Все аморфные полимеры прозрачны, тогда как в частично-кристаллических полимерах появляется некоторая мутность из-за различий в показателях преломления кристаллических и аморфных областей, которые неодинаково отклоняют световые лучи; при этом свет рассеивается и материал выглядит мутным. Если степень кристалличности низка и средний размер кристаллических областей мал, менее 500 Å (1 Å = 10—10 м), тонкая пленка материала еще прозрачна (например, майлар, саран, профакс). Высокая же степень кристалличности и более крупные кристаллические области придают дымчатость даже тонким пленкам (например, полиэтилен, найлон-6, найлон-6,6).
Электрические свойства.
Все органические пластмассы являются изоляторами, а потому находят применение в электротехнике и электронике. В табл. 2 приведены некоторые важные электрические свойства ряда промышленных пластмасс.
Свойства пластмасс зависят от их основных характеристик: а) природы мономеров; б) средней СП; в) степени кристалличности системы. Электрические свойства некоторых промышленных пластмасс.
1.4. Термопластические материалы
Полиэтилен
(ПЭ) [—CH2—CH2—] n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена CH2=CH2. В одной из форм мономеры связаны в линейные цепи (см. рис. 1) с СП обычно 5000 и более; в другой — разветвления из 4—6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150° С) и давлениях (до 20 атм).
Линейные полиэтилены образуют области кристалличности (рис. 2), которые сильно влияют на физические свойства образцов. Этот тип полиэтилена (см. таблицу) обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования (см. ниже) емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.
Разветвленные полиэтилены первоначально получали нагреванием этилена (со следами кислорода в качестве инициатора) до температур порядка 200° С при очень высоких давлениях (свыше 1500 атм). Разветвления уменьшают способность полиэтилена к кристаллизации, в результате эта разновидность полиэтилена имеет следующие свойства:
Этот полиэтилен обычно называют полиэтиленом низкой плотности. Разработаны методы получения полиэтилена низкой плотности при низком давлении и умеренных температурах сополимеризацией этилена с другим олефином, например, бутиленом CH2=CH—CH2—CH3. Там, где в цепь встраивается бутиленовая единица, образуется короткая боковая цепь:
В этом случае упаковка цепей не может быть столь же плотной, как для «чистого» полиэтилена. Полиэтилен низкой плотности представляет собой прочный, очень гибкий и слегка упругий термопласт, несколько более мягкий, легче формуемый и выдавливаемый, чем полиэтилен высокой плотности; полиэтилен низкой плотности находит широкое применение в производстве покрытий, упаковочных материалов и изделий, изготовляемых методом литьевого формования.
Полиэтилен — один из наиболее полезных и важных пластических материалов. Детали электронных устройств, покрытие картонных молочных пакетов, упаковочные пленки и игрушки — вот далеко не полный перечень того, что делают из полиэтилена.
Полипропилен
(ПП) [—CH2—CH (CH3) — ] n получают из пропилена C3H6. В 1954 Дж. Натта (Италия) определил его молекулярную структуру, открыв важный класс стереорегулярных полимеров. Боковые метильные группы CH3 могут располагаться в цепи полипропилена случайным образом
или регулярно
Натта назвал полимеры первого типа атактическими, а второго — тактическими, в данном специфическом случае — изотактическими (что значит «на одной стороне»).
В атактическом полипропилене беспорядочное расположение метильных групп препятствует кристаллизации, в результате получается мягкий, резиноподобный материал, который легко растворим в органических растворителях и размягчается при невысоких температурах. Он используется для получения различных изделий методом экструзии, а также в качестве клея для пластмасс.
В тактическом полипропилене метильные группы расположены регулярно вдоль цепи. Вследствие этого из тактического полипропилена получаются прочные жесткие термопласты с высокими температурами плавления и отличной устойчивостью к растворителям. Изотактический полипропилен — важный промышленный продукт. Он широко используется для получения волокон и пленок и как материал для литьевого и выдувного формования емкостей.
СП"> Тпл»> Тст»> Плотность"> Кристалличность"> Растворимость»>
Полистирол
(ПС) [—CH2—CH (C6H5) — ] n синтезируют из стирола C8H8 с пероксидными или азоинициаторами при температурах 60—150° С в жидкой фазе (в растворе, суспензии или эмульсии). Расположение бензольных колец по бокам линейной цепи препятствует кристаллизации настолько, что термопластический полимер получается аморфным, прозрачным, жестким и несколько хрупким.
Несмотря на чувствительность к воздействию растворителей и некристаллический характер, полистирол — один из наиболее важных термопластов, благодаря своей прозрачности, легкой формуемости и прекрасным электроизолирующим свойствам. Полистирол широко используется в электрическом оборудовании, предметах обихода, игрушках и особенно как теплоизоляционный пенопласт. В последние годы получен полистирол с более высокой ударопрочностью благодаря добавкам эластических компонентов; новые сорта расширили сферу применения этого полимера.
Полиметилметакрилат
(ПММА) [—CH2—C (COOCH3) (CH3) — ] n — аморфный прозрачный термопласт, имеющий важное промышленное значение. Его синтезируют из метилметакрилата C5H8O2 так же, как полистирол получают из стирола. Он тверд (несколько тверже полистирола), абсолютно бесцветен и кристально прозрачен, Tст ок. 100° С. Полиметилметакрилат широко используют для изготовления украшений, оптики и других товаров, где желательно высокое качество.
Поливинилхлорид
(ПВХ) [—CH2—CHCl—] n получают из его мономера, винилхлорида CH2=CHCl при температурах от 20° С до 100° С с пероксидными инициаторами (синтез аналогичен синтезу полистирола). Поливинилхлорид состоит из линейных цепей и является атактическим полимером, а следовательно, аморфным, твердым, жестким, устойчивым к воздействию растворителей термопластом.
Особенно важное свойство поливинилхлорида — огнестойкость, связанная с присутствием хлора в его молекуле (ок. 55%). Хлор придает поливинилхлориду жесткость, полимер размягчается лишь при высоких температурах; по этой причине в некоторых случаях приходится вводить пластификаторы (10—40%), чтобы сделать его более легко формуемым, выдавливаемым и выдуваемым. Поливинилхлорид используется в больших количествах в производстве волокон, пленок, труб, резины, формованных изделий, искусственной кожи и покрытий.
Родственным термопластом является поливинилиденхлорид [—CH2—CCl2—] n. Это кристалличный, высокоплавкий, устойчивый к воздействию растворителей материал, из него изготавливают пленки и грубые ткани.
Полиакрилонитрил
(ПАН) [—CH2—CH (CN) — ] n синтезируют из акрилонитрила C3H3N аналогично получению полистирола и поливинилхлорида. Он состоит из линейных цепей, аморфен и имеет такую высокую температуру стеклования, что с трудом поддается формованию. Однако включение других мономеров в цепь полимеров на основе акрилонитрила делает их более пластичными и понижает Tст. Получаемые сополимеры легко обрабатываются и сочетают твердость и прозрачность с высокой устойчивостью к воздействию растворителей. Полиакрилонитрил и сополимеры широко используются в производстве синтетических волокон (орлон, динел, акрилан), пленок, резин, формованных изделий (из акрилонитрил-бутадиен-стирольных смол) и покрытий.
Поливинилацетат
(ПВА) [—CH2—CH (OCOCH3) — ] n синтезируют из соответствующего мономера аналогично получению полистирола и поливинилхлорида. Этот относительно дешевый термопласт находит широкое применение. Он аморфен, имеет низкую температуру размягчения, легко растворим и используется главным образом для покрытий и как клей.
Политетрафторэтилен
[—CF2—CF2—] n, более известен как тефлон. Его получают газофазной полимеризацией тетрафторэтилена CF2=CF2. Это высококристалличный, линейный термопласт с очень низкой Tст (ок. — 110° С); очень высокая Tпл (ок. 330° С, много выше, чем у большинства пластмасс) позволяет использовать тефлон при относительно высоких температурах. Тефлон инертен по отношению к химическим и физическим воздействиям; это прекрасный электроизолятор, кроме того, он обладает наибольшей стойкостью к растворителям среди известных полимеров. К тефлону ничего не прилипает; у него наименьший коэффициент трения из всех твердых материалов. По этим причинам он широко используется в производстве электронного оборудования, прокладок и подшипников.
Полиоксиметилен
(ПОМ, полиформальдегид) [—CH2—O—] n получают газофазной полимеризацией формальдегида CH2O. Это твердый, жесткий, высококристалличный, линейный термопласт с Tпл ок. 180° С и Tст -85° С. Он не отличается высокой термической и химической стабильностью, но благодаря своей твердости, высокой температуре плавления и стойкости по отношению к органическим растворителям широко применяется для литьевого формования.
Полиоксиэтилен
(ПОЭ, полиэтиленоксид) [—CH2—CH2—O—] n получают каталитической полимеризацией этиленоксида C2H4O. Это мягкий, кристаллический, линейный термопласт с Tпл ок. 70° С. Полиоксиэтилен легко растворим в воде и поэтому широко используется как загуститель в клеях для текстиля, в лосьонах и шампунях.
Полиамиды
больше известны как найлоны. Их получение обсуждалось выше при описании поликонденсации. Создатель найлона американский химик У. Карозерс предложил числовые обозначения для полиамидов, в которых первая цифра соответствует числу углеродных атомов в диамине, а вторая — числу углеродных атомов в дикарбоновой кислоте. Эти цифры определяют структуру углеродной цепи и положение амидных групп.
Самые важные представители этого класса линейных термопластов — найлон-6 (поликапролактам, получаемый из e-капролактама; в Узбекистане его называют капроном), найлон-6,6 и найлон-6,10. Все они — твердые, прочные, высококристалличные и высокоплавкие материалы с высокой устойчивостью к воздействию растворителей, химически инертные. Наиболее важными для получения синтетических волокон являются найлон-6 (капрон) и найлон-6,6. Некоторые их количества используются также для производства пленок и формованных изделий, хотя здесь предпочтительнее найлон-6,10 благодаря его более низкой точке плавления (ок. 200° С) и меньшей склонности поглощать влагу. Получен также полиамид, состоящий из изофталевой кислоты и мета-фенилендиамина. Это очень твердый и прочный линейный термопласт с температурой плавления ок. 400° С, используемый для производства таких специальных изделий, как парашюты, буксирные канаты и ремни безопасности на транспорте.
Поли-пара-фенилентерефталамид, ароматический найлон (арамил), является продуктом поликонденсации пара-фенилендиамина и терефталевой кислоты:
Он выпускается компанией «Дюпон» под названием «кевлар». Этот кристаллический термопласт с исключительно высокой Tпл (выше 500° С) используется для изготовления крученых волокон, усиливающих такие реактопласты, как эпоксидные смолы (бисмалеимиды). Композитные материалы этого типа перспективны для применения в конструкциях авиакосмической промышленности.
Полиэфиры
получают из органических кислот и спиртов, обычно полифункциональных мономеров; линейные полиэфиры — из двухосновных кислот и гликолей. Наиболее важный линейный полиэфир — полиэтилентерефталат (или полиэтиленгликольтерефталат) с высокой СП — получается по реакции терефталевой кислоты с этиленгликолем в присутствии катализатора при повышенной температуре в вакууме:
Продукт представляет собой белый высококристалличный материал, плавящийся ок. 260° С, очень устойчивый по отношению ко всем обычным органическим растворителям даже при нагревании. Из него производятся прочные волокна (терилен, дакрон) и жесткие, прозрачные пленки (майлар) экструзией расплава с последующей ориентацией вытягиванием. Очень тонкий, прочный майлар с магнитным покрытием применяют для изготовления пленки для аудио — и видеомагнитофонов.
Поликарбонаты
— еще одна группа линейных полиэфиров, получаемых в промышленных масштабах. Их производят реакцией фосгена COCl2 c бифункциональными фенолами. Поликарбонат лексан синтезируют согласно следующей схеме:
Это белый, в основном аморфный, очень прочный и жесткий материал с хорошей термостойкостью до 150° С. Путем литьевого формования из него делают пластины, стержни, шестерни и другие предметы сложной конфигурации, которые успешно заменяют литые металлические детали.
Полисилоксаны
Растет спрос на термопластические материалы с достаточно высокой жесткостью (более 14 000 МПа) и высокой температурой размягчения (выше 500° С), чтобы заменить металлы в производстве двигателей, а также космических кораблей, самолетов, автомобилей, железнодорожных вагонов и судов. От новых материалов требуется легкость (низкая плотность), относительная простота обработки и повышенная коррозионная стойкость. Этим требованиям лучше всего удовлетворяют линейные макромолекулы со многими ароматическими звеньями в цепи. Примерами могут служить:
К таким конструкционным пластикам относятся также линейные ароматические полиэфиры и полиимиды.
1.5. Реактопластические материалы
Феноло-формальдегидные смолы — одни из первых термореактивных смол, которые все еще находят широкое применение. Они представляют собой пластмассы, образующиеся при реакции фенола с формальдегидом и другими альдегидами, как описано выше при общем обсуждении реактопластов, получаемых поликонденсацией. Эти первые полностью синтетические пластмассы предложил под названием «бакелит» Л. Бакеланд (1909). Поликонденсация, проводимая в воде, сначала ведет к водорастворимому или диспергированному в воде промежуточному веществу, используемому для пропитки дерева, бумаги, картона или ткани. На следующей стадии получают смолообразную массу, которую можно превратить в тонкий сухой порошок и затем придать ему окончательную конфигурацию с помощью сшивок, что достигается прямым прессованием при нагревании под давлением.
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Компоненты неметаллических материалов и их свойства. Монография предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других