Антитромботическая терапия в клинике внутренних болезней

Руслан Линчак, 2021

Каждый клиницист, работающий в поликлинике или стационаре, рано или поздно столкнется с пациентом, для которого ключевым вопросом станет предупреждение и/или лечение тромбозов и тромбоэмболических осложнений. В данном справочнике просто и доступно рассказано о сложном: современных представлениях о физиологии систем свертывания и противосвертывания крови, классификации и характеристиках основных фармакологических средств, влияющих на гемостаз, предпосылки, представлена доказательная база и основные положения современных клинических руководств для назначения антитромботической терапии европейских и отечественных профессиональных экспертных сообществ при широком круге состояний и заболеваний (первичная кардиоваскулярная профилактика, острая и хроническая ИБС, фибрилляция предсердий, венозные тромбоэмболические осложнения, протезированные клапаны сердца, пандемия COVID-19), наиболее часто встречающихся в практике врача-интерниста.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Антитромботическая терапия в клинике внутренних болезней предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава первая. Основы физиологии системы свертывания и противосвертывания крови

1.1 Система свертывания (коагуляции, гемостаза)

— биологическая система, основная функция которой заключается в сохранении жидкого состояния циркулирующей крови, купировании и предупреждении кровотечений [1, 2]. Гемостаз представляет собой последовательность сложных реакций, направленных на остановку кровотечения при повреждении сосуда. Его основными взаимодействующими между собой функционально-структурными компонентами являются:

А. Стенка кровеносных сосудов;

Б. Клетки крови;

В. Плазменные ферментные факторы.

А. СТЕНКА КРОВЕНОСНЫХ СОСУДОВ.

ЭНДОТЕЛИЙ, выстилающий внутреннюю поверхность кровеносных сосудов, является аутокринным, паракринным и эндокринным органом, осуществляющим многочисленные регуляторные функции [1, 3]. Он обладает высокой тромборезистентностью и играет важную роль в поддержании жидкого состояния крови и предупреждении тромбозов. Это свойство эндотелия обеспечивается:

контактной инертностью внутренней, обращенной в просвет сосуда, поверхности этих клеток, в силу чего она не активирует систему гемостаза;

синтезом мощного ингибитора агрегации тромбоцитов — простагландина I2 (простациклин PGI2);

высоким содержанием на внутренней поверхности кровеносных сосудов мукополисахаридов и фиксацией на эндотелии комплекса «гепарин-антитромбин III»

наличием на цитоплазматической мембране эндотелиальных клеток особого гликопротеина — тромбомодулина, связывающего тромбин, благодаря чему последний утрачивает способность вызывать свертывание крови, но сохраняет активирующее действие на систему двух важнейших антикоагулянтов — протеинов С и S;

элиминацией из крови активированных факторов свертывания крови и их метаболитов;

синтезом тканевого активатора плазминогена.

Совокупная масса эндотелиальных клеток у взрослого человека составляет 1600-1900 г, что превышает массу печени. Эндотелий обладает уникальной способностью менять свой антитромботический потенциал на тромбогенный. При гибели эндотелиальных клеток обнажается субэндотелиальный слой, содержащий большое количество коллагена, в контакте с которым происходят активация, адгезия и агрегация тромбоцитов, а также активация плазменного звена свертывания крови (см. ниже). Этот процесс реализуется при участии крупномолекулярных гликопротеинов, в первую очередь, фактора Виллебранда, фибронектина и фибриногена. Важная роль указанного механизма подтверждается тем, что при генетически обусловленных дефектах субэндотелия — истончении и уменьшении коллагена в его структуре (болезнь Рендю-Ослера, мезенхимальные дисплазии), как и при дефиците фактора Виллебранда, наблюдаются профузные и длительные кровотечения из поврежденных микрососудов [2, 3, 4].

Трансформация антитромботического потенциала эндотелия в тромбогенный происходит при снижении скорости кровотока, гипоксии, повреждении стенок сосудов физическими и химическими агентами, под влиянием экзо — и эндотоксинов, среди которых главенствующую роль играют бактериальные эндотоксины, иммунные комплексы, антиэндотелиальные и антифосфолипидные антитела, медиаторы воспаления (интерлейкины, фактор некроза опухоли и др.), а также клеточные и плазменные протеазы (эластаза, трипсин, тромбин и др.). Такая же трансформация наблюдается и при метаболических изменениях сосудистой стенки (атеросклероз, диабетическая ангиопатия).

ПРОСТАЦИКЛИН (PGI2) постоянно синтезируется стенкой сосудов и выделяется в кровь, препятствует адгезии и агрегации тромбоцитов на нормальной неповрежденной эндотелиальной выстилке сосудов. Он образуется в большинстве органов и тканей человека. Легкие являются мощным генератором простациклина, который, секретируясь в кровь, функционирует как циркулирующий гормон. В артериальной крови содержание простациклина выше, чем в венозной. Помимо более высокой скорости кровотока, с этим связано менее частое тромбообразование в артериях по сравнению с венами [2].

Простациклин является продуктом ферментативного распада арахидоновой и эйкозапентаеновой кислот. Медикаментозная блокада циклооксигеназы (ЦОГ) снижает уровень простациклина, что является одним из факторов повышения сердечно-сосудистой смертности пациентов, длительно принимающих нестероидные противовоспалительные препараты, за исключением аспирина в низких дозах [3].

Физиологическая роль простациклина заключается в его способности ингибировать агрегацию и, в меньшей степени, адгезию тромбоцитов, снижать тонус гладкомышечных клеток сосудов, что сопровождается вазодилатацией и снижением системного артериального давления, а также оказывать антиаритмическое, противосклеротическое и антиульцерогенное действие.

ГЛАДКОМЫШЕЧНЫЕ КЛЕТКИ СОСУДОВ обеспечивают регуляцию сосудистого тонуса, его соответствие реологическому составу протекающей крови. Взаимосвязь между факторами, регулирующими агрегатное состояние крови и влияющими на тонус сосудов, осуществляет калликреин-кининовая система (прекалликреин, высокомолекулярный кининоген, калликреин, кинины и др.) [1, 2]. Миоциты сосудов поддерживают ламинарный поток крови в сосуде, сужение просвета вызывает турбулентность потока с последующей активацией тромбоцитов. При нарушении целостности сосудистой стенки гладкомышечные клетки сокращаются, что вызывает уменьшение/перекрытие просвета сосуда, останавливая кровотечение. Микрососуды в ответ на повреждение отвечают спазмом, капилляры и венулы временно запустевают, и кровотечение из них в первые 20-30 секунд не возникает.

БАЗАЛЬНАЯ МЕМБРАНА СОСУДА влияет на реологию крови, регулируя скорость прохождения отдельных веществ из крови в ткани и обратно [2, 3]. Поры мембраны имеют краевой заряд, отталкивающий в норме крупномолекулярные соединения, при этом альбумин за счет онкотического давления удерживает воду в кровотоке, обеспечивая необходимую вязкость крови. Нарушения гемостаза изменяют порозность базальной мембраны.

Б. КЛЕТКИ КРОВИ

ТРОМБОЦИТЫ продуцируются в органах кроветворения гигантскими полиплоидными клетками — мегакариоцитами, от цитоплазмы которых они отшнуровываются в виде округлых или овальных плоских дисков диаметром от 2 до 4 мкм. Продолжительность жизни тромбоцитов человека составляет 7-10 дней. После выхода из костного мозга они циркулируют в крови и частично депонируются в селезенке и печени (около 20-25% всех клеток), откуда происходит их вторичный выход в кровоток [3, 5].

Тромбоцит окружен двухслойной фосфолипидной мембраной, в которую встроены рецепторные гликопротеины (ГП), взаимодействующие со стимуляторами (агонистами) адгезии и агрегации этих клеток. Ключевую роль в процессе усиления агрегации и адгезии тромбоцитов играют ГП Ib, взаимодействующие с фактором Фон Виллебранда (фФВ) и коллагеном, а также ГП IIb/IIIа, связывающиеся с АДФ, адреналином и другими агонистами агрегации. В процессе активации тромбоцитов меняется форма этих клеток, они становятся вначале шарообразными с большим количеством внутриклеточных секреторных гранул. В последующем на их поверхности появляются отростки — «псевдоподии», и многократно усиливается экспрессия рецепторов Ib и IIb/IIIa. Такие тромбоциты секретируют в кровь биологически активные вещества (АДФ, серотонин, адреналин и др.), находящиеся в гранулах, что значительно способствует адгезии тромбоцитов. Возрастает способность ГП IIb/IIIа соединяться с фибриногеном с образованием между клетками фибриногеновых и фибриновых мостиков [2].

Большая роль в регуляции тромбоцитарного гемостаза принадлежит производным арахидоновой кислоты. Адгезивно-агрегационная функция тромбоцитов в значительной степени зависит от транспорта ионов кальция в эти клетки. В тромбоцитах из арахидоновой кислоты с участием ЦОГ образуется мощный стимулятор агрегации и ангиоспазма — вазоконстриктор тромбоксан А2 (ТХА2). Кроме того, ТХА2 за счет инициации тромбообразования способствует развитию атеросклеротических бляшек и увеличению размеров поражения. ТХА2 может играть также роль медиатора ишемии, которая связана с агрегацией тромбоцитов. Дисбаланс между тромбоксаном и простациклином резко усиливает агрегацию и реакцию высвобождения гранул [1].

При ряде наследственных и приобретенных тромбоцитопатий нарушение образования ТХА2 в результате снижения активности или блокады ЦОГ или тромбоксан-синтетазы ведет к выраженному нарушению функции тромбоцитов, способствует развитию кровоточивости, что наблюдается при ряде наследственных и приобретенных тромбоцитопатий. Точно так же нарушение синтеза простациклина в сосудистой стенке или снижение его поступления в кровь ведет к повышенной склонности тромбоцитов к агрегации, создает тромбогенную опасность [4].

ЭРИТРОЦИТЫ занимают почти половину всего объема крови, в норме отталкиваются друг от друга за счет выраженного статического заряда на мембране. В процессе свертывания крови эритроциты служат матрицей для сборки фибрина, теряют поверхностный заряд. Крупные агрегаты эритроцитов, склеенных фибрином «заиливают» кровь (сладж-феномен). Нитями фибрина эритроциты рвутся на осколки, при разрушении фрагментированные клетки выбрасывают тканевой тромбопластин — активатор внутреннего пути свертывания [2].

Высокая способность к деформации обеспечивает способность эритроцита проникать в сосуды, диаметром меньше, чем сама клетка. Эритроциты с высоким содержанием фибрина и фибриногена на мембране не способны проникать в капилляры, сбрасываются по шунтам между артериолами и венулами. Это приводит к нарушению микроциркуляции, оксигенации тканей [4].

МАКРОФАГИ — ключевые клетки, ориентирующие иммунный ответ на активацию свертывания крови, призванную локализовать возбудителя тромбами и препятствовать его распространению по организму. Синтезируют многие факторы свертывания крови, фактор некроза опухоли, а гибель макрофага сопровождается выбросом тканевого тромбопластина [2].

В. ПЛАЗМЕННЫЕ ФЕРМЕНТНЫЕ ФАКТОРЫ СВЕРТЫВАНИЯ

Большинство факторов свертывания крови представляют собой белки или гликопротеиды, которые синтезируются в клетках печени, и после выхода в кровяное русло, при условии интактности сосудистой стенки, циркулируют в нем в неактивном состоянии. Соприкосновение факторов свертывания с инородной поверхностью (поврежденными тканями сосудов) служит пусковым механизмом для их активации. Формируется проферментно-ферментный каскад, в котором проферменты, переходя в активное состояние, способны активировать другие факторы свертывания [1, 4, 5].

По решению международного комитета факторы свертывания обозначаются римскими цифрами в порядке хронологии их открытия (таблица 2).

1.2. Этапы (механизмы) гемостаза

Различают два основных механизма свертывания крови — сосудисто-тромбоцитарный и коагуляционный. Деление в хронологическом порядке носит условный характер, т.к. ряд процессов протекают одномоментно [1, 3, 6].

А. СОСУДИСТО-ТРОМБОЦИТАРНЫЙ МЕХАНИЗМ КОАГУЛЯЦИИ

Обеспечивается взаимодействием тромбоцитов и сосудистой стенки. В результате формируется непрочный тромбоцитарный тромб, обеспечивающий остановку кровотечения только из мелких сосудов [1, 6].

В ответ на повреждения сосудистой стенки под влиянием адреналина и норадреналина, а также высвобождающихся из тромбоцитов тромбоксана А2, серотонина и других биологически активных веществ возникает кратковременный первичный спазм сосуда. К месту повреждения сосуда, изменившему свой потенциал с отрицательного на положительный, устремляются тромбоциты, происходит их прикрепление к поврежденной поверхности — адгезия тромбоцитов. Фактор Фон Виллебранда, находящийся в эндотелии, плазме и тромбоцитах, активирует несколько своих центров. С помощью одного из них связывается с рецепторами тромбоцитов ГП Ib, с помощью другого — с субэндотелием или коллагеновыми волокнами поврежденного сосуда. Таким образом, с помощью данного фактора тромбоцит оказывается, как бы «подвешенным» к травмированной поверхности сосуда. В дальнейшем наступает агрегация тромбоцитов — их склеивание между собой у места сосудистого повреждения под воздействием усиленно выбрасывающегося в кровь из тромбоцитов АДФ и других хемоаттрактантов. Под влиянием АДФ многократно усиливается экспрессия ГП IIb/IIIa на мембране тромбоцитов, к которым крепятся нити фибриногена, связывающие близлежащих тромбоциты между собой. Клетки также «цепляются» друг за друга образовавшимися псевдоподиями. В результате образуется рыхлая тромбоцитарная пробка, через которую может проходить плазма крови. Это обратимая волна агрегации тромбоцитов [1].

На следующем этапе между тромбоцитами разрушается мембрана, они сливаются в однообразную массу, образуя конгломерат, непроницаемый для плазмы крови. Реакция происходит под влиянием тромбина, разрушающего мембрану тромбоцитов, что, в свою очередь, ведет к выходу из тромбоцитов физиологически активных веществ: серотонина, гистамина, нуклеотидов, ферментов и факторов свертывания крови. Их выделение способствует вторичному спазму сосудов. Фактор 3 тромбоцитов посредством тромбоцитарной протромбиназы запускает механизм плазменного гемостаза. С этого момента наступает необратимая волна агрегации тромбоцитов [6].

В дальнейшем под действием АДФ тромбоцитов из тубулярной системы происходит выход Са в цитоплазму, сокращение их актомиозиового комплекса и в конечном итоге — ретракция тромбоцитарного тромба — сокращение и уплотнение тромбоцитарной пробки, закрепление ее в поврежденном сосуде. В мелких сосудах гемостаз на этом заканчивается. Тромбоцитарный тромб, будучи непрочным, не выдерживает большого кровяного давления в крупных сосудах и вымывается. Включение коагуляционного механизма обеспечивает образование уже более прочного фибринового тромба [4, 5].

Б. ПЛАЗМЕННЫЙ МЕХАНИЗМ КОАГУЛЯЦИИ

Реализуется цепью последовательных реакций активирования комплекса белков, находящихся в плазме (плазменные факторы гемокоагуляции). На основе тромбоцитарного тромба формируется прочный фибриновый тромб, противодействующий кровопотере в сосудах диаметром более 100 мкм [2].

Плазменный механизм включает 3 основных этапа [1, 2, 4]:

1. Комплекс последовательных реакций, приводящих к образованию протромбиназы (комплекс Xa+Va), которая во вторую фазу обеспечит протеолитическое расщепление протромбина в тромбин.

2. Переход протромбина (фактор II) в тромбин (фактор IIа).

3. Превращение фибриногена (фактор I) в фибрин-мономер (фактор Im) и дальнейшая полимеризация фибрина с образованием в конечном итоге труднорастворимого фибрина-полимера.

Первый этапобразование протромбиназы (Xa+Va) — осуществляется по внешнему и внутреннему пути (механизму). И при внешнем, и при внутреннем пути активация факторов свертывания происходит на фосфолипидных мембранах поврежденных тканей и/или тромбоцитов.

Активация по внешнему пути протекает в течение нескольких секунд и опосредуется тканевым фактором (ТФ) — белком фосфолипидных мембан, выполняющего функцию трансмембранного рецептора. ТФ в изобилии находится в клетках, окружающих сосуды извне, что и определило название «внешний» путь активации. Внутренний механизм инициируется факторами, высвобождающимися из поврежденных клеток крови, преимущественно тромбоцитов и эритроцитов, а его продолжительность активации — минуты. Оба пути замыкаются на факторе Xа, и далее протекают одинаковым образом, и обозначаются как общий путь свертывания [1].

Разделение на внешний и внутренний пути активации свертывания крови является достаточно условным, поскольку в организме оба процесса тесно взаимосвязаны. Например, через активацию фактора IX активным фактором VII, а также посредством плазменного калликреина, который одновременно активирует факторы XII и VII. Однако подобное разделение упрощает интерпретацию лабораторных тестов, используемых для оценки состояния свертывания крови, в которых искусственно создаются условия для активации фактора X по внешнему или по внутреннему пути [6].

Второй этапобразование тромбина — играет одну из ключевых ролей в процессе формирования тромба. Образование тромбина в небольшом количестве в начальной фазе, когда сформировалась только тромбоцитарная пробка, с одной стороны, способствует разрушению тромбоцитов, выбросу в кровь биологически активных веществ и вторичному спазму сосудов, с другой — инициации 3-й фазы плазменного пути коагуляции, т.е. превращения фибриногена в фибрин [4]. Это так называемая фаза инициации свертывания. В дальнейшем происходит волнообразное значительное увеличение концентрации тромбина в зоне повреждения («тромбиновый взрыв»), который по механизму положительной обратной связи активирует сразу четыре механизма тромбообразования: 1) теназный комплекс (IXа+VIIIа) на мембране тромбоцитов (внутренний путь); 2) фактор XI, который в дальнейшем активирует фактор IX теназного комплекса; 3) фактор V, при взаимодействии которого с фактором X (внутренний и внешний пути) образуется протромбиназа; 4) массивное разрушение тромбоцитов с выделением серотонина, катехоламинов и др. веществ, способствующих коагуляции. Это фаза усиления свертывания.

Под действием тромбина происходит третий этап — превращение фибриногена в фибрин. Фибриноген — плазменный глобулин из трех пар полипептидных цепей, относящийся к белкам острой фазы. Под воздействием тромбина от фибриногена отщепляются два фибринопептида А и два фибринопептида В, что приводит к образованию четырех свободных связей. Оставшийся фибрин-мономер с четырьмя свободными связями полимеризуется в димеры, тетрамеры и более крупные — олигомеры, остающиеся поначалу в растворимом виде. Далее растворимые олигомеры окончательно стабилизируются в фибрин под действием фактора XIIIа, благодаря чему фибрин становится нерастворимым [1, 3].

1.3. Система противосвертывания крови

В условиях здорового организма процессы тромбообразования контролируются противосвертывающей системой, которую представляют клеточные и гуморальные компоненты [5, 6].

А. КЛЕТКИ, ПРЕПЯТСТВУЮЩИЕ ТРОМБООБРАЗОВАНИЮ

К клеточным компонентам, обеспечивающим поддержание крови в жидком состоянии в циркуляции, относятся макрофаги печени, которые специфически удаляют активированные факторы свертывания крови и фибрин без какого-либо влияния на их предшественников. Кроме того, важную роль в предупреждении тромбообразования играет эндотелий сосудов, где синтезируется тканевой активатор плазминогена, простациклин, фиксируется комплекс"гепарин-антитромбин III", тромбомодулин, а также осуществляется элиминация из крови активированных факторов свертывания [4].

Б. ГУМОРАЛЬНЫЙ КОМПОНЕНТ ПРОТИВОСВЕРТЫВАЮЩЕЙ СИСТЕМЫ

Гуморальный компонент представлен физиологическими антикоагулянтами, которые тем или иным путем инактивируют или ингибируют активные формы факторов свертывания крови. Среди них наиболее значимыми для клинической практики являются антитромбин III (АТ-III), гепариновый кофактор II, протеины С и S, ингибитор пути тканевого фактора, протеаза нексия-1, С1-ингибитор, 1-антитрипсин, 2-макроглобулин и эндогенный гепарин.

Антитромбин III является основным ингибитором тромбина, факторов Xа и IXа. Совместно с гепарином АТ-III инактивирует сериновые протеазы, а именно тромбин и все предшествующие его образованию активированные факторы свертывания крови путем образования с ними неактивных стехиометрических комплексов. Скорость нейтрализации сериновых протеаз антитромбином III при отсутствии гепарина невелика и увеличивается в его присутствии в 1000 — 100000 раз [4].

1.4. Фибринолиз. Значение и этапы

Наряду с компонентами, проявляющими ингибиторное действие, гуморальная система также включает в себя и фибринолитический механизм, направленный уже на растворение фибринового сгустка. Фибринолиз является основным эндогенным механизмом, предотвращающим тромбообразование и являющимся конечной стадией в репаративном процессе. Активным его ферментом является плазмин, который образуется из своего предшественника плазминогена в результате ряда последовательных реакций, индуцируемых аналогично активации свертывания крови внешним и внутренним путем [6].

При внешнем пути активации плазминоген протеолитически превращается в плазмин под действием тканевого активатора плазминогена (t-PA), который синтезируется эндотелиальными клетками стенки сосуда и затем секретируется в плазму. Синтез t-PA происходит постоянно, однако под действием тромбина, адреналина, физической нагрузки, стресса его секреция усиливается в несколько раз. При внутреннем пути активация фибринолиза вызывается фактором XIIа, который активизируется при контакте крови с поверхностью поврежденного сосуда. В этом случае фактор XIIа в присутствии высокомолекулярного кининогена превращает плазминоген в плазмин. Кроме этого, активация плазминогена может происходить и за счет активатора урокиназного типа (u-РА), который, в отличие от тканевого активатора, не имеет сродства к фибрину. При этом он связывается со специфическими рецепторами на поверхности клеток, в частности, эндотелия и ряда форменных элементов крови, непосредственно участвующих в образовании тромба [4, 6].

Лизис нерастворимого фибрина под действием плазмина сопровождается образованием продуктов деградации фибрина (ПДФ) — D-D-димеры, D-E-D-тримеры, избыток содержания которых свидетельствует об активации фибриногенолиза. Степень нарастания ПДФ коррелирует с уровнем тромбинемии, выраженностью ДВС-синдрома и с массивностью поражения легочного русла при тромбоэмболии легочной артерии [5].

СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ I.

Основные принципы профилактики и лечения тромбозов: В таблицах и схемах / Под ред. О. Н. Ткачевой. — М.: Медицина, 2013. 206 с.

Клиническая фармакология по Гудману и Гилману. Под общей редакцией А.Г. Гилмана, редакторы Дж. Хардман и Л. Лимберд. Пер. с англ. — М., Практика, 2006. 1648 с.

Воробьев П.А. Актуальный гемостаз. — М.: Издательство «Ньюдиамед», 2004. 140 с.

Баркаган З.С., Момот А.П. — Диагностика и контролируемая терапия нарушений гемостаза. Издание 2-е дополненное. — М.:"Ньюдиамед", 2001. 296 с.

Основы клинической физиологии системы свертывания и противосвертывания. Методы медикаментозного управления гемостазом / Под ред. академика Ю.Л. Шевченко. — М., 2008. 96 с.

Панченко Е.П., Добровольский А.Б. Тромбозы в кардиологии. Механизмы развития и возможности терапии. — М.; изд. «Культура и спорт». 1999. 464 с.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Антитромботическая терапия в клинике внутренних болезней предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я