Что такое теория относительности, о которой все знают из школьного курса физики, но мало кто может кратко и точно объяснить ее суть? Можно ли доступно рассказать об основах этой современной науки, отметившей не так давно свой столетний юбилей? Эти и многие другие вопросы постарался решить автор, популярно рассказывая об элементарных основах одной из главных теорий современной физики. Изложение построено в виде занимательных очерков, позволяющих понять, что лежит в основе современных научных представлений о пространстве и времени, и как ученые пришли к современной картине окружающей физической реальности. Книга предназначена всем интересующимся историей возникновения теории относительности и последними достижениями релятивистской физики.
Приведённый ознакомительный фрагмент книги Удивительная относительность предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глава 1. Звездный год новой физики
Его работы имели очень специфический характер, индивидуальный почерк, который позволял их отличать от других работ, подобно тому как Пикассо — это всегда Пикассо, и он отличим от других художников. Эйнштейн давал волю своему воображению и распознавал важнейшие принципы с помощью мысленных экспериментов, а не методичного изучения экспериментальных результатов. Теории, которые в результате появлялись, временами были удивительными, таинственными и противоречащими интуиции.
В истории науки 1666 год известен как annus mirabilis, что на латыни означает «год чудес». Тогда Исаак Ньютон, спасаясь от чумы, свирепствовавшей в Кембридже и Лондоне, скрылся в своем родовом поместье, в Вулсторпе. Там, в материнском доме, великий физик и математик смог не только разработать основы дифференциального исчисления, но и разложить спектр белого света, а также открыть закон всемирного тяготения.
Никто даже не предполагал, что кто-либо когда-нибудь сможет повторить научный подвиг Ньютона. Тем более, что это окажется по плечу скромному служащему бернского Бюро патентов Альберту Эйнштейну, сумевшему сделать 1905 год новым annus mirabilis.
Сегодня историки науки с восхищением отмечают удивительную смелость недавнего выпускника цюрихского Политехникума, сумевшего отбросить все наслоения общепринятых теорий, скрывающие трещины в фундаменте физики. Кроме того, патентный эксперт третьего (низшего) класса еще и проявил живое воображение, позволившее совершить ему то, на что никак не могли отважиться даже ярчайшие мыслители того времени.
О результатах своей удивительной четырехмесячной работы с марта по июнь 1905 года Эйнштейн прежде всего рассказал своему другу Конраду Габихту в письме, ставшем достоянием истории научной мысли:
«Первая посвящена излучению и энергии света и очень революционна, как вы сами убедитесь, если сначала пришлете мне свою работу. Вторая работа содержит определение истинной величины атомов. Третья доказывает, что согласно молекулярной теории тепла тела́ величиной порядка 1/1000 мм, взвешенные в жидкости, испытывают видимое беспорядочное движение, обязанное тепловому движению молекул. Такое движение взвешенных тел уже наблюдали физиологи — они назвали его броуновским молекулярным движением. Четвертая работа пока еще находится в стадии черновика, она представляет собой электродинамику движущихся тел и меняет представление о пространстве и времени».
Альберт Эйнштейн (1879–1955)
Основные принципы теории: относительность времени, постоянство скорости света, привилегированное положение этой скорости как наибольшей из всех возможных — отклоняются от прежних представлений, однако не содержат в себе ничего произвольного. Идеи новой теории органически связаны с классической физикой и неизбежно должны были вырасти на ее почве.
Так, в престижном немецком журнале Annalen der Physik («Анналы физики») появилось пять научных статей малоизвестного автора, три из которых принадлежат к числу величайших работ в истории этой науки.
В одной из них, поданной 17 марта 1905 года под довольно необычным названием «Об одной эвристической точке зрения, касающейся возникновения и превращения света», давалось квантовое объяснение фотоэлектрического эффекта. За эту незамысловато написанную работу, о которой теперь рассказывается в школьном курсе физике, Эйнштейн через шестнадцать лет был удостоен высшей научной награды — Нобелевской премии.
Надо заметить, что начиная со своей первой «квантовой» публикации и до последней, вышедшей ровно через полстолетия, Эйнштейн всегда описывал концепцию квантов света — фотонов — лишь как эвристическую. При этом он всегда считал квантовую физику не совсем полной теорией, во многом противоречащей его собственным представлениям об основе мироздания.
В основу той пионерской статьи легли «вечные» вопросы, не решенные и поныне: что представляет собой окружающее пространство? Вселенную частиц, таких как электроны или протоны, — или неделимый континуум, насыщенный электромагнитным, гравитационным и прочими полями?
В шестидесятых годах позапрошлого века многие ученые-теплофизики исследовали излучение «абсолютно черного тела». Испокон веков кузнецы знали, что железо меняет свой цвет при нагреве. Сначала оно кажется красным, а затем по мере роста температуры — оранжевым, белым и, наконец, — голубым. В результате были получены графики зависимости интенсивности излучения от длины волны при разных температурах. Оказалось, что куполообразная форма подобных кривых зависит только от температуры, но никто не мог найти для них общую формулу.
В 1900 году профессор Берлинского университета Макс Планк вывел (по его словам, в результате случайной догадки) уравнение, которое описывало зависимость интенсивности от длины волны при каждой температуре. При этом он воспользовался статистическими методами Людвига Больцмана, которые до этого всячески критиковал. Уравнение получилось довольно странное, ведь в него входила чрезвычайно малая константа, равная 6,62607 × 10-34 Дж/с. Так в мир вошла еще одна фундаментальная константа природы, названная постоянной Планка и обозначаемая h.
Поскольку свою формулу Планк получил банальным методом «подгонки», что, конечно же, никак не умаляет ее достоинства, он не имел понятия, какой физический смысл скрывает его странная математическая константа. Лишь впоследствии он предположил, что любая поверхность, испускающая и поглощающая «лучистую энергию», в том числе абсолютно черное тело, содержит «вибрирующие по закону гармонических осцилляторов молекулы», напоминающие микроскопические пружинки. Эти гармонические осцилляторы могут поглощать или испускать энергию лишь в форме дискретных пакетов или сгустков энергии. Энергия этих пакетов может принимать только фиксированные значения, определяемые постоянной Планка.
Макс Планк (1858–1947)
Немецкий физик-теоретик. Применив к проблеме равновесного теплового излучения методы электро — и термодинамики, Планк получил закон распределения энергии в спектре абсолютно черного тела и обосновал этот закон, введя представление о квантах энергии и кванте действия. Это достижение положило начало развитию квантовой физики.
Изучая работы Планка, Эйнштейн понял, что квантовая теория никак не вписывается в основы классической физики. Вдобавок к загадочной природе постоянной Планка существовала еще одна проблема, связанная с фотоэлектрическим эффектом — испусканием электронов из металла при падении света на металлическую поверхность. Из самых общих соображений считалось, что падающий свет как бы «расшатывает» электроны, и они приобретают способность вырваться из металла.
Немецкий физик Филипп Ленард, работами которого восхищался Эйнштейн, в 1901 году обнаружил любопытную закономерность: при увеличении частоты света от инфракрасной части спектра к ультрафиолетовой энергия испускаемых электронов существенно увеличивается. Однако даже при тысячекратном увеличении интенсивности энергия выбитых электронов не менялась, возрастало лишь их количество пропорционально освещенности. Все это никак не могла объяснить классическая волновая теория света.
Первый шаг к квантовой теории фотоэффекта Эйнштейн сделал в 1904 году, опубликовав работу «К общей молекулярной теории теплоты». В ней были рассчитаны флуктуации (случайные отклонения) средней энергии системы молекул. Этот результат он сравнил с известными экспериментальными данными, в которых рассматривался объем черного тела, заполненный излучением. Вывод Эйнштейна звучала так: «Я думаю, что согласие <…> невозможно приписать случайности». Одновременно со статьей, направленной в редакцию «Анналов физики», он написал письмо своему другу Конраду Габихту, где отметил: «Теперь я нашел самое простое соотношение между величиной элементарных квантов материи и длиной волны излучения». Таким образом, Эйнштейн уже тогда склонялся к мысли, что поле излучения может состоять из квантов.
Следующий шаг и был сделан в статье 1905 года, где он взял математическую константу Планка и соотнес ее с результатами Ленарда по фотоэлектрическому эффекту. Так возникла идея о том, что свет не является непрерывной волной, а состоит из микроскопических частиц, названных Эйнштейном квантами света.
В работе он рассмотрел и так называемое броуновское движение — явление, поражавшее ученый мир уже почти восемь десятилетий. Действительно, даже сегодня удивительно видеть, как маленькие частицы беспорядочно скачут в разных направлениях, находясь во взвешенном состоянии в жидкости.
В 1828 году шотландский ботаник Роберт Броун опубликовал свои детальные наблюдения за очень мелкими частицами пыльцы, взвешенными в воде: под сильным микроскопом было видно, что они качаются и блуждают. Было предложено множество объяснений, например, наличие мелких течений в объеме воды или воздействие света. Но ни одна из теорий не казалась правдоподобной.
Когда в 1870 году была разработана кинетическая теория, в которой использовались случайные движения молекул для объяснения, например, поведения газов, многие пытались с ее помощью объяснить и броуновское движение. Но, поскольку частицы примеси были в тысяч раз крупнее молекул воды, казалось, что у молекул не хватит сил сдвинуть частицу с места.
Это исследование также имело свою историю, начавшуюся в 1901 году, через одиннадцать дней после завершения Эйнштейном диссертации. Тогда Эйнштейн написал статью, посвященную поискам свидетельств существования невидимых частиц. Чтобы показать, как невидимые частицы проявляют себя в видимом мире, он воспользовался статистическим анализом случайных взаимодействий.
Эйнштейн показал, что, хотя одна молекула за одно столкновение действительно не может сдвинуть частицу с места, миллионы случайных столкновений в секунду могут объяснить блуждание частиц, которое и наблюдал Броун.
Между тем, Эйнштейн при построении своей теории даже не был уверен, что законы движения, которые он получил в действительности, управляют колебаниями частиц, увиденных Броуном. На первый взгляд, отрицание Эйнштейном того, что его теория описывала броуновское движение, выглядит странным. Однако именно так во всей широте был продемонстрирован метод построения теории, выводимой из основных принципов и постулатов, а не сконструированной на основе анализа экспериментальных данных.
Эйнштейн показал, что удар одной молекулы воды не заставит взвешенную частичку пыльцы продвинуться на заметное расстояние. Однако в любой заданный момент времени частицу толкают со всех сторон тысячи молекул. В какой-то момент времени частица получит гораздо больше толчков с одной стороны, а в следующий момент залповые удары обрушатся на ее «тыл». В результате частицы будут двигаться, бросаясь из стороны в сторону, как говорят, случайно блуждая.
Эйнштейн понял, что невозможно, да и не нужно измерять каждый зигзаг броуновского движения, равно как и скорость частиц в каждый момент времени. Но расстояния, которые проходят случайно блуждающие частицы, оценить очень просто, поскольку они растут со временем.
В качестве примера он вычислил, что при температуре 17 °C для взвешенных в воде частиц диаметром в одну тысячную миллиметра среднее смещение за одну минуту будет равно примерно 6 микронам.
Теоретические выводы Эйнштейна спустя некоторое время подтвердил немецкий экспериментатор Генри Зидентопф, используя микроскоп с очень сильным увеличением. Так была окончательно доказана физическая реальность атомов и молекул, которую в то время признавали далеко не все светила науки.
Третья статья излагала специальную теорию относительности, соединявшую в одно целое материю, пространство и время. Это была довольно необычная научная робота, без ссылок, не говоря уже о цитатах, на другие признанные авторитеты. Между тем в данной области уже имелись значимые теоретические разработки. Их получили француз Анри Пуанкаре, голландец Хендрик Лоренц и ирландец Джордж Фицджеральд. Существовали также экспериментальные результаты американских физиков Альберта Майкельсона и Эдварда Морли. Однако в созревающей новой релятивистской парадигме не хватало главного: обобщения и сведения в единое целое того, что и станет названо теорией относительности.
В эйнштейновских статьях было сравнительно мало математических расчетов и много логического анализа. Приводимые в них доводы выглядели несокрушимыми, а парадоксальные выводы возникали с какой-то поразительной легкостью. Наверное, не скоро в истории появится гений, способный создать подобные шедевры научной мысли в течение лишь одного года…
Приведённый ознакомительный фрагмент книги Удивительная относительность предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других