Запутанный мозг. Путеводитель по нейропсихологии

Ники Хейз, 2018

Мозг дает нам возможность видеть, слышать и ощущать окружающий мир; он придает смысл всем нашим действиям и позволяет совершать эти самые действия: целенаправленно двигаться, делать то, что мы желаем или считаем нужным. Но его способности куда обширнее: мозг может разными способами запоминать и хранить информацию, связанную с нашими умениями, знаниями и навыками так, что мы действуем абсолютно автоматически; он же позволяет нам устанавливать взаимоотношения с окружающими и даже привязываться к ним. Кроме того, благодаря особенному развитию и устройству мозга мы обладаем эмоциями: испытываем гнев, страх, счастье и отвращение, откликаемся на похвалу и ласку; мы бываем взволнованными и бдительными или спокойными и расслабленными, а можем просто спать. Все эти состояния сознания – часть работы нашего мозга. «Запутанный мозг» – настоящее руководство по нейропсихологии для начинающих; Ники Хейз структурированно и на примерах объясняет все аспекты работы мозга человека – от нервной системы, его структур, передачи информации до способности к обучению – и подходит к определению того, что же значит быть человеком.

Оглавление

Из серии: PROмозг

* * *

Приведённый ознакомительный фрагмент книги Запутанный мозг. Путеводитель по нейропсихологии предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2. Как работает мозг

Из этой главы вы узнаете:

как с помощью химических веществ и электричества клетки мозга взаимодействуют между собой;

как мы обучаемся и какова природа нейропластичности;

что такое латерализация мозга;

что показывает изучение мозга;

что дает сканирование мозга.

Клетки мозга

В главе 1 мы рассмотрели в общем и целом, какими функциями заведуют различные части мозга. В этой же главе мы рассмотрим, как эти различные части передают друг другу послания и сообщения, комбинируя свои действия таким образом, что в результате получаемся мы, т. е. живые, наделенные дыханием человеческие существа. Путем комбинации химических веществ и с помощью электричества различные части мозга общаются с телом и между собой, поэтому нам представляется вполне разумным начать эту тему с рассмотрения клеток, входящих в состав мозга.

В предыдущей главе мы говорили о том, что поверхность мозга скомпонована из серого вещества, под которым находится масса белого вещества. Белое вещество состоит из нервных волокон, передающих сообщения из одной области мозга в другую; именно так все части и взаимодействуют между собой. Нервные волокна — волокна белого цвета, поскольку они миелинизированы (см. ниже).

Бо́льшая часть клеток, составляющих серое вещество, — это интернейроны, т. е. промежуточные, или, как их иногда называют, соединительные, нейроны. Основная их цель — соединять между собой нервные клетки, так что по своей структуре они относительно просты. Интернейрон состоит из клеточного тела, снабженного многочисленными отростками, которые, вытягиваясь вовне, образуют разветвления, или дендриты. Сам длинный «стебель», тянущийся от клеточного тела, обычно называют аксоном, а дендриты — это ответвления на его конце. Каждый дендрит заканчивается небольшим наростом, называемым синаптической шишкой, которая обеспечивает связь с другим нейроном.

В нервной системе имеются и другие типы нейронов, в частности сенсорные и моторные. Цель сенсорных нейронов — подхватить сигналы, воспринятые сенсорными рецепторами (глазами, кожей, носом, ушами и т. д.), и передать их дальше, мозгу. На конце этих нейронов имеются специальные рецепторные участки, которые передают эти сигналы клеточному телу. Отсюда послание по аксону поступает в соответствующие части мозга. Другие нейроны, моторные, воспринимают послание от мозга и передают его мышцам, вызывая их сокращение. На рисунке 2.1 приведена общая структура интернейрона, однако не стоит забывать о том, что все нейроны заканчиваются дендритами, снабженными на конце синаптическими шишками.

Рисунок 2.1. Интернейрон

Помимо нейронов в мозге имеется множество других клеток, называемых глиальными клетками, или глиоцитами. Их основная функция — удерживать нейроны на месте и подпитывать их кислородом и питательными веществами. Кроме того, они устраняют мертвую нервную ткань, выводят токсичные субстанции, помогают изолировать нейроны один от другого и играют важную роль в стимуляции роста клеток. Таким образом, мозг представляет собой плотно сбитую, неделимую клеточную массу, хотя, как было показано в главе 1, в ней наличествуют вполне различимые отдельные структуры. Однако есть в мозге и большие пространства — заполненные жидкостью участки, называемые желудочками (вентрикулами). Они расположены внутри мозга, но связаны со спинным каналом — остатком прежней нервной трубки. Желудочки заполнены прозрачной спинномозговой жидкостью, чье назначение — доставлять мозгу питательные вещества, обеспечивать иммунную защиту и выводить из него продукты жизнедеятельности. Желудочки могут действовать и как амортизаторы вроде воздушных подушек, защищая от ударов некоторые наиболее жизненно важные структуры мозга.

Химические вещества и электричество

Суть работы мозговых клеток сводится к тому, что они посредством химических веществ генерируют электричество. Как и у всех живых клеток, у них тоже есть электрическое поле, слегка отличающееся от электрического поля окружающих их клеток. Внутри мозговой клетки наблюдается несколько превышенная концентрация ионов калия с отрицательным электрическим зарядом. Обычно окружающая клетки мембрана препятствует проникновению в них других химических ионов, но если ее должным образом стимулировать, она меняет свою структуру и начинает пропускать ионы натрия. У ионов натрия положительный электрический заряд, и такой обмен положительными и отрицательными ионами вызывает в клетке неожиданный всплеск электричества. Этот неожиданный всплеск электричества мы называем электрическим импульсом. Электрические импульсы пронизывают ткань мозга, перемещаясь вдоль вытянутых «стеблей» (аксонов) нейронов. Иногда такое перемещение происходит относительно медленно, так как каждый импульс меняет очередную часть клеточной мембраны, деполяризуя ее за счет ионов натрия, обновляющих электрический импульс. Но это достаточно медленный и постепенный метод доставки информации. У нейронов, обеспечивающих быструю передачу, совершенно иная структура: их аксоны покрыты белым веществом, что способствует более высокой скорости передачи информации.

Белое вещество в таких клетках — это жировое покрытие, называемое миелиновой оболочкой. Она состоит из особых клеток, именуемых шванновскими. Шванновские клетки, или леммоциты, формируются вдоль аксонов и покрывают их миелиновой оболочкой, прерываясь крошечными щелями или зазорами в тех местах, где клеточная мембрана подвергается воздействию окружающей среды. Каждая шванновская клетка как бы изолирует аксон, препятствуя обмену положительно и отрицательно заряженных ионов. Следовательно, электрический импульс может обновляться лишь в местах зазоров между шванновскими клетками, поэтому и импульс распространяется вдоль аксона скачкообразно. Это значительно ускоряет передачу сообщения, и именно этой цели и служит белое вещество мозга. Оно состоит из миллиардов миелинизированных нервных волокон, гудящих подобно высоковольтным линиям и насыщенных электрическими импульсами, передающимися из одной части мозга в другую.

Рисунок 2.2. Шванновская клетка (леммоцит)

Именно так нейроны проводят и доставляют электрические сообщения. Но как эти сообщения передаются от одного нейрона другому? Чтобы ответить на этот вопрос, придется вернуться к упоминавшимся выше синаптическим шишкам. Синапс — это точка соединения двух нейронов, точнее говоря, зазор между двумя нейронами. Каждая синаптическая шишка соприкасается с рецепторным участком и через щель (синаптическое пространство) сообщается со следующим нейроном. В синаптических шишках имеются маленькие «кармашки», или везикулы, заполненные специальным химическим веществом — так называемым нейротрансмиттером (он же нейромедиатор). Когда электрический импульс достигает синаптической шишки, везикулы открываются и впрыскивают в синаптическое пространство нейротрансмиттер, который воспринимается рецепторным участком дендрита следующего нейрона, меняя электрическую полярность нервной мембраны. Везикулы каждого нейрона всегда содержат один и тот же нейротрансмиттер, но в нервной системе используется множество различных трансмиттерных веществ (действие некоторых из них мы рассмотрим в главе 13, когда коснемся такой темы, как психоактивные препараты и их воздействие на сознание человека).

Рисунок 2.3. Синапс

Воздействия химических веществ от одного синапса недостаточно для того, чтобы вызвать реакцию другого нейрона. Но если задействуется достаточное количество синапсов, их совокупное действие меняет клеточную мембрану следующего нейрона. Некоторые синапсы повышают вероятность активации следующей клетки, поэтому их так и называют — возбуждающие синапсы, поскольку они возбуждают и стимулируют нейрон. Но есть и другие синапсы — тормозные; как следует из названия, они не способствуют активации нейрона, а тормозят ее, т. е. препятствуют передаче информации. Эта комбинация возбуждающих и тормозных синапсов создает в мозге особые пути, которые проводят импульсы к одним областям мозга и отводят их от других.

Обучение и нейропластичность

Большой мозг — да и вообще весь человеческий мозг — пронизывают нервные проводящие пути, осуществляющие переброску электрических импульсов из одной области мозга в другую. Эти пути отчасти присутствуют у нас с рождения, а отчасти формируются в процессе накопления жизненного опыта. Сразу после рождения младенца связей между нейронами в его мозге гораздо больше, чем в любой другой период его жизни: в этот момент практически каждый вероятный синапс «оживает». Но в течение первых трех лет жизни количество этих связей сокращается: используемые связи укрепляются, а неиспользуемые — отмирают. Несмотря на это, в нашем распоряжении по-прежнему остаются миллиарды синаптических связей, т. е. сокращение числа связей совершается постепенно, а не резко. Почему это происходит? Все это непосредственно связано с нашим умением адаптироваться к окружающей среде: в какой мере мы как вид этим умением обладаем. Действительно, людям (или, по крайней мере, человеческим обществам) приходится существовать в самых разных природных условиях и средах — начиная с арктических зон вечной мерзлоты и заканчивая иссушающими пустынями и влажными джунглями; впрочем, и среднеконтинентальный климат ничем не лучше, ибо температура в некоторых регионах материка в течение года может колебаться от +40 до — 40 °C. И во всех этих условиях и средах мы способны выжить, хотя навыки, способствующие такому выживанию, весьма различны. Но мы выживаем не потому, что адаптируемся к этим условиям физически, а потому, что учимся этому. С момента рождения — и даже еще до рождения — ребенок учится жить в этом мире. Сразу после рождения он в основном ориентирован на то, чтобы учиться этому у других людей, и это обучение может принимать различные формы. К трем годам ребенок, как правило, прочно усваивает все необходимые навыки и прекрасно ладит с миром. А вот научиться ладить с социумом — процесс куда более сложный!

Люди наделены невероятной способностью к обучению, и именно для этого им и дарован мозг. Процесс обучения начинается с того самого момента, когда одни синапсы в клетках мозга усиливаются, а другие ослабляются, и передаваемые по неведомым путям нервные импульсы оказывают должное действие. Клетки нашего мозга реагируют на новое обучение и налагаемые им требования двояко. Во-первых, за счет формирования синапса — или по меньшей мере за счет усиления потенциала синаптической шишки и развития связанного с ней рецепторного участка, — вследствие чего выделяется и включается в оборот больше трансмиттеров, делая сообщение более сильным и устойчивым. Во-вторых, за счет миелинизации. Нейрон, активированный чисто случайно, обычно лишен миелиновой оболочки, поскольку не способен ее сформировать, но зато активные нейроны притягивают к себе шванновские клетки. Таким образом, если непрерывно стимулировать группу таких клеток, что обычно и происходит в процессе обучения чему-то новому, аксоны начинают обрастать шванновскими клетками. Как известно, миелинизация помогает более быстрому прохождению сообщения по нейрону, поэтому и то, чему мы учимся, запоминается легче, да и навык закрепляется быстрее.

Быстрее всего процесс обучения происходит в детские и отроческие годы, хотя, если говорить по существу, учиться мы продолжаем всю свою жизнь. Другими словами, мы постоянно предъявляем требования клеткам нашего мозга, побуждая их формировать новые связи. Мы, например, не рождаемся с умением читать; и эта способность не из тех, которые мы развили. В большинстве человеческих культур умение читать, если чтение вообще является элементом такой культуры, встречается крайне редко; это уникальный дар, присущий очень немногим индивидуумам. Однако все мы способны научиться читать. Хотя это требует изрядных усилий, терпения, усидчивости и продолжительных занятий с печатным словом. Большинство людей к тому времени, когда им исполняется 10–12 лет, уже могут читать, причем бегло. Правда, некоторым для этого требуется значительно больше времени, но здесь уже все зависит от жизненных обстоятельств, опыта и мотивации приложить необходимые усилия.

Кора головного мозга состоит из многочисленных групп нейронов, называемых ядрами. Когда мы учимся читать, определенные ядра мозга возбуждаются и начинают создавать новые связи. Вполне может быть и так, что некоторые из этих ядер, будучи уже достаточно развитыми, изначально оказываются восприимчивыми к тем знакам или символам, которыми полнится сама природа, и потому предупреждают нас, например, что красный цвет — знак опасности, поскольку это цвет крови. Но как бы ни были они развиты, при наличии должного опыта и должного обучения эти ядра столь же успешно адаптируются к адекватному восприятию и других природных символов. Если постоянно заниматься, нарабатывая привычку к письменному или печатному слову — и, что самое важное, к заключенному в нем смыслу, — то ядра постепенно адаптируются к нему, наделяя нас навыком беглого чтения. Чем чаще мы обращаемся к печатному слову, чем больше читаем, тем более активно развивается эта группа нейронов, пока наконец мы не получаем в свое распоряжение особую зону мозга, адаптированную к расшифровке печатных слов.

То же происходит по всему мозгу, когда мы учимся соответствовать требованиям, налагаемым на нас средой, окружением и опытом. Нередко случается так, что определенные зоны мозга развиваются особым образом, поскольку ядра предрасположены иметь дело с определенной информацией. Многие из них сформировались еще в ходе эволюции, вот почему подобные зоны мы часто находим в мозге млекопитающих. Но как бы далеко мы ни зашли в этом направлении и какими бы сложными ни были наши навыки и умения, все это непосредственно связано с нашей чисто человеческой способностью учиться. Эволюция требовала от нас, чтобы мы обучались новым навыкам, дающим нам умение приспосабливаться к вечно меняющейся внешней среде, поэтому мы и развили такие структуры мозга, которые наделяют нас этим умением.

Способность клеток мозга адаптироваться к внешней среде и внешним условиям называется нейропластичностью, и она сопровождает нас всю нашу жизнь. Раньше считалось, что мозг полностью адаптируется к внешней среде только к возрасту полового созревания и что после этого функции клеток нашего мозга в значительной степени закрепляются и остаются неизменными. Теперь же мы знаем, что это не так. Да, получив повреждение мозга, дети восстанавливаются гораздо быстрее, чем взрослые, и в некоторых случаях поврежденные участки мозга у них отрастают заново. Но взрослые, в отличие от детей, могут восстанавливаться от самых различных типов повреждений в самом широком спектре, перестраивая нервные импульсы так, что они формируют новые проводящие пути. Мы также знаем, что нейроны могут расти и развиваться в течение всей жизни до тех пор, пока они воспринимают умственные или физические нагрузки, необходимые для стимуляции их роста.

Случай из практики: история Ноя Уолла

Процесс роста нейронов прекрасно иллюстрируется историей Ноя Уолла — «мальчика, отрастившего мозг». У Ноя были врожденное расщепление позвоночника (спина бифида) и гидроцефалия (водянка головного мозга), так что места для собственно мозговой ткани оставалось очень мало. Больших полушарий мозга при рождении у него практически не было: внутричерепное пространство было заполнено цереброспинальной жидкостью, оказывавшей на неразвитый мозг существенное давление. Большинство младенцев в подобных обстоятельствах не выживают, но Ною очень повезло с родителями: это были очень любящие и решительные люди, которые в часы бодрствования всячески его стимулировали и занимались с ним различными видами активной деятельности. От давления жидкости удалось избавиться с помощью хирургического вмешательства, и, хотя с рождения мозг Ноя был очень маленьким, мозговая ткань, откликаясь на внешние нагрузки и активную среду, начала расти, и в конце концов у него сформировались большие полушария. К пяти годам они выросли почти до нормального размера, так что Ной во всех отношениях был абсолютно нормальным маленьким мальчиком.

Человеческий мозг тоже сохраняет способность адаптироваться к новым физическим условиям. Наблюдения за организмом астронавтов показали, что длительное нахождение в условиях невесомости способно привести к структурным изменениям в мозге. Согласно отчету, составленному командой исследователей под руководством В. Коппельманса (2016), для сравнения были взяты результаты магнитно-резонансной томографии (МРТ) мозга членов экипажа «Спейс шаттл» и астронавтов с Международной космической станции, сделанной перед отправлением в космос и после их возвращения. Оказалось, что в мозге астронавтов наросло большое количество серого вещества вокруг зон, которые отвечают за движения нижних конечностей. Чем больше времени они провели в космосе, тем более очевиден был этот образчик нейропластичности. Нижние конечности особо важны для передвижения по земле, в условиях земного тяготения, и менее важны в космосе, в условиях невесомости, поэтому исследователи пришли к разумному заключению, что нервные изменения обусловлены результатом работы головного мозга, пытавшегося приспособиться к новым условиям окружающей среды. Сходный, хотя и не совсем идентичный результат был получен при сравнении мозга здоровых людей с мозгом пациентов, которым был показан длительный постельный режим.

Другие исследования наглядно продемонстрировали, как мозг способен восстанавливаться после повреждения, полученного в результате сильного удара по голове, когда нарушается кровоснабжение того или иного участка мозга. Отсутствие кислорода приводит к гибели важнейших нервных клеток, в результате чего нарушаются такие функции, как движение или речь. Из медицинской практики нам известно, что организм человека способен восстановиться после столь серьезной травмы, и часто такие пациенты почти полностью возвращают себе эти функции, но для этого необходимо приложить немало усилий, если только они на это способны. Нервные клетки мозга реагируют на эти усилия тем, что полностью перестраиваются, минуя поврежденные участки и прокладывая новые проводящие пути в стремлении выполнить то действие или восстановить ту способность, которые требуются телу.

Даже люди, полностью лишившиеся целых участков мозга, могут иногда восстанавливать утраченные функции. В главе 10 мы рассмотрим те зоны и участки мозга, которые отвечают за речевую функцию и которые в большинстве своем (хотя далеко не всегда) находятся в левом полушарии. Повреждения, нанесенные этим участкам левого полушария, могут серьезно нарушить речевую способность человека — умение разговаривать или произносить слова или даже понимать их смысл. Но интересен следующий факт: в 1980 году Гуч привел отчет о наглядных результатах одной операции. Несколько пациентов были доставлены в больницу с такими серьезными повреждениями левого полушария мозга, что хирурги решили полностью удалить эту половину. До операции пациенты совершенно не владели речью, однако после того, как поврежденное полушарие было удалено, утраченная функция начинала восстанавливаться: люди снова начинали говорить, понимать и даже вспоминать слова старых песен. Языковые/речевые функции, прежде возложенные на левое полушарие, теперь брала на себя правая сторона их мозга. Прежде о таком уровне нейропластичности мозга никто даже не подозревал, и этот пример лишний раз доказывает, сколь ошибочно создавать упрощенные модели работы мозга. Она всегда гораздо сложнее, чем кажется поначалу!

Латерализация мозга

Отчет Гуча опроверг представление о том, что речевая способность сосредоточена только в левом полушарии, и показал, сколь пластичны полушария нашего мозга и какой сильной адаптивной способностью они наделены. Общее правило гласит, что нашему мозгу присуща определенная латерализация: одна сторона мозга отвечает за одни функции, а вторая — за другие. Например, левая сторона головного мозга контролирует правую сторону тела, а правая сторона мозга — левую сторону тела. Так, приказ выполнить то или иное действие, отданный правой стороной мозга руке, приведет в движение вашу левую руку, и наоборот.

Исключениями из этого правила являются лишь органы зрения и слуха, расположенные на голове: глаза и уши имеют взаимные точки пересечения, так что информация, поступающая от каждого глаза или уха, воспринимается обеими сторонами мозга. Для человека это жизненно важно, поскольку умение уловить разницу в звуках, воспринимаемых каждым ухом, позволяет нам узнать, с какой стороны находится источник этого звука. То же и с глазами: наличие перекрестного обзора означает, что информация, воспринимаемая левосторонней частью глаза от источника, находящегося в правой области его поля обзора, поступает в левое полушарие мозга, а информация, воспринимаемая правосторонней частью глаза, поступает в правое полушарие. Поэтому каждый глаз способен обозревать все визуальное поле, а мозг, кроме того, может сравнивать между собой два образа.

Исследователи сумели воспользоваться этой особенностью восприятия, для того чтобы изучить, как функционируют разные части мозга. С помощью экрана, заслонявшего одну сторону визуального поля, им удалось выяснить, что именно левая сторона мозга понимает (читает) письменные указания, тогда как правая сторона обычно читать не может, но зато может понимать другие обозначения. Здесь также налицо пересечение: если бы вы, например, написали слово «ключ» и предъявили его правой стороне мозга человека, дав его прочесть, то человек не смог бы сказать, что означают эти написанные буквы, но зато среди различных предметов, разложенных перед ним, он взял бы именно ключ, а не что-то другое. Таким образом, эта сторона мозга тоже способна улавливать некоторый смысл, хотя навыками чтения она не владеет.

Большинство людей предпочитают пользоваться одной из рук чаще, чем другой, а спортсмены знают, что то же самое можно сказать и о ногах: действительно, одной мы предпочитаем пользоваться чаще, чем другой, и не обязательно эти рука и нога будут совпадать. Большинство людей — правши, но многие — левши; у правшей обычно более развито левое полушарие мозга, зато у левшей полушария сбалансированы и равно активны как левая сторона мозга, так и правая. Они также выказывают больше вариативности в том, какое именно полушарие заведует основной речевой функцией — правое, левое или, как у некоторых людей, речевая деятельность одинаково распределена между ними. У правшей, как правило, речевой функцией заведует левое полушарие. Но никто еще не доказал, что существует некая связь между доминантным полушарием и познавательной способностью: какую бы сторону мозга вы ни использовали чаще, потенциал ваших способностей и навыков одинаков.

Ключевая идея

Кто вы: правша, левша или одинаково свободно владеете обеими руками? Большинство людей считают себя правшами, поскольку они пишут правой рукой, однако в действительности четверть из них — люди смешанного типа: они могут пользоваться правой рукой при выполнении сложных заданий, а для выполнения более простых функций пользуются левой. Все зависит от того, какую руку мы считаем рабочей и какими критериями при этом руководствуемся. Точно так же опрос населения с целью выяснения, сколько человек считают себя левшами, показал, что эта оценка колеблется от 4 до 30 % в зависимости от того, какие критерии мы предъявляем к левшам и насколько жестки эти критерии.

О правом и левом полушариях мозга ходит большое число расхожих мифов. Говорят, например, что правое полушарие в большей степени, чем левое, отвечает за творческий процесс, тогда как левое больше управляет аналитическими способностями; или что правое полушарие более склонно к мистике, тогда как левое более тяготеет к материализму. Все это по большому счету чепуха, типичное преувеличение куда более точных данных, полученных на основе научных наблюдений. Эти научные наблюдения показывают, что решение пространственных задач вроде вычерчивания графиков и диаграмм больше берет на себя правое полушарие мозга, тогда как арифметические задачи вроде сложения или подсчета в основном решаются левым полушарием.

Эти наблюдения, которые в любом случае лишь обозначают некую тенденцию, но при этом являются довольно общими и не могут быть приложимы ко всем и каждому, привели к общераспространенному мифу, который можно выразить примерно так: а) пространственное мышление = рисование = искусство = артистическая личность = творчество; б) арифметика = числа = вычисление = практичная личность = материализм.

Но эти выводы пока бездоказательны; в сущности, известно, что творчество, если оно опирается на навыки, воспоминания, способности и воображение, задействует оба полушария мозга. Точно так же и математики в процессе решения задач используют как правое, так и левое полушарие мозга. Поскольку мы говорим о латерализации функций мозга, важно помнить, что обе половины в целом дополняют друг друга. Они не противостоят друг другу, а работают согласованно, давая нам необходимый жизненный опыт. Одна сторона мозга может анализировать значение слов, тогда как другая в это время анализирует нюансы их произношения, тон, с которым они были произнесены, и время их произнесения — и вместе обе стороны дают нам возможность понять, о чем нам говорят.

Нельзя не упомянуть и об исследованиях, проведенных при работе с пациентами, у которых отсекли пучок волокон, называемый мозолистым телом, в попытке избавить их от тяжелой формы эпилепсии, которая начинается в одном полушарии, а затем распространяется по всему мозгу. Когда этих людей протестировали, оказалось, что обе половины их мозга могут действовать самостоятельно и что каждая наделена некоторыми из тех способностей, которые обычно закреплены за другой. Языковые функции, например, отводятся левому полушарию, но правое тоже наделено способностью читать простые слова. Точно так же считается, что правое полушарие лучше обрабатывает образы и картины, но и левое в известной мере тоже обладает этой способностью. Однако особый интерес представляют описания, данные некоторыми из этих людей. Одна женщина, например, описала, как ее левая рука достала из шкафа платье, которое она и не думала надевать и даже не помышляла о таком выборе, а, напротив, собиралась достать совершенно другое.

Изучение мозга

Исследования состояния расщепленного мозга проводились в 1960-х годах, и они являются прекрасной иллюстрацией того, сколь ограниченными были такие исследования в то время. Исследователи в основном полагались на результаты хирургических операций, опыты на животных и изучение мозга умерших людей. Поскольку мозг упакован в твердый короб (череп), мы не можем заглянуть внутрь (не прибегая к хирургическим методам), пока человек жив и его мозг функционирует, и даже если бы могли, то мало что увидели бы: клетки мозга работают на химико-электрическом уровне, а наличие электричества можно обнаружить только при помощи специальных приборов. Ученые, желавшие узнать, как работает мозг, должны были либо проводить внешние его измерения, либо изучать людей, получивших серьезные повреждения головного мозга или отдельных его частей.

Как же устроен мозг и как он работает? Человечеству на протяжении веков интересно было узнать это, но даже отсутствие возможности проводить эффективные исследования не останавливало людей, и они высказывали на этот счет различные теории. В XVIII и XIX веках царило всеобщее убеждение, что высокий уровень развития умственных способностей ведет к развитию отвечающих за эти способности частей мозга; что мозг в процессе роста наталкивается на стенки черепа и начинает давить на них, в результате чего на голове образуются шишки, хорошо прощупываемые снаружи. Так возникла френология — теория, многие десятилетия пользовавшаяся огромной популярностью. Хотя со временем она стала «наукой, которая покоится на прочном основании», как считают ее приверженцы, до сих пор нет никаких реальных доказательств ее истинности, поэтому постепенно она как наука сошла на нет.

Измерения электрической активности

Есть, однако, и другие способы измерения активности мозга извне, и самый распространенный из них (он возник, когда ученые поняли, что деятельность нервных клеток осуществляется в сфере электричества) — это электроэнцефалограмма (ЭЭГ), т. е. определение общей электрической активности мозга. Она измеряется путем считывания напряженности электрического поля в различных точках черепной коробки, и это считывание говорит нам о многом (в частности, в главе 13 мы расскажем о том, как психологи с помощью ЭЭГ определяют фазы сна человека и как на основании общих закономерностей деятельности мозга они устанавливают степень сознательности мысленных состояний).

Рисунок 2.4. ЭЭГ мозга

С помощью ЭЭГ выявляли также, что происходит в мозге пациента, подверженного эпилептическим припадкам, которые (так уж повелось испокон веков) рассматривались как нечто мистическое, иррациональное, не поддающееся объяснению. ЭЭГ ясно показала, например, что эпилептический припадок обычно начинается в височной доле левой стороны мозга и оттуда распространяется по всему мозгу, что и являлось причиной проведения операций по рассечению мозолистого тела, о которых упоминалось выше. Суть операции состояла в том, чтобы путем рассечения мозолистого тела ограничить электрическую активность одной стороны мозга, давая возможность другой действовать нормально, причем эта процедура применялась только при очень серьезных припадках. С помощью ЭЭГ удалось установить также, что существует множество различных уровней эпилепсии, и хотя некоторые из них едва заметны для наблюдателя, они тем не менее влияют на самого эпилептика.

По мере того как электрический мониторинг становился все более эффективным, возникали новые техники. Одна из них — это вызванный потенциал, измерение, показывающее, как та или иная область мозга реагирует на электрическую стимуляцию. Она, в частности, помогла нейрохирургам выявить некоторые основные проводящие пути и связи в мозге. В других техниках используются микроэлектроды, которые настолько малы, что могут управлять отдельным нейроном или стимулировать его. В ключевых исследованиях, в ходе которых было установлено, как отвечающие за зрение участки коры головного мозга дешифруют формы и образы, использовался именно этот метод. В конце концов открытия, сделанные за годы кропотливых микроскопических исследований, привели к тому, что два исследователя, работавших в этой области, — Дэвид Хьюбел и Торстен Визель — получили Нобелевскую премию (об этих открытиях мы расскажем подробнее в главе 3).

Хьюбел и Визель приступили к своим исследованиям в начале 1960-х годов, и за это десятилетие был сделан еще один важный шаг в понимании того, как работает мозг, ибо именно в этот период были выделены специфические нейротрансмиттеры (они же нейромедиаторы). Как мы уже знаем, электрическая активность мозга возникает под действием химических веществ при передаче сообщения от одной нервной клетки, или нейрона, другой. Открытие того, какие именно сообщения несли в себе некоторые из этих веществ, позволило ученым обнаружить и проследить в мозге нейрохимические пути. Из следующих глав мы узнаем, насколько большую роль это открытие сыграло для понимания, как именно работает мозг. Многие исследования проводились на животных, поскольку изучение мозга людей сводилось лишь к внешним наблюдениям, о которых мы говорили выше, или к изучению клинических пациентов, у которых был травмирован мозг. Практикующие врачи (клиницисты), отмечая те зоны мозга, которые были травмированы, пытались соотнести их с конечными психологическими сдвигами или переменами в личности человека. Иногда такие результаты были вполне очевидными: например, Брока и Вернике (о них мы расскажем в главе 10) сумели идентифицировать ключевые области мозга, управляющие языковой/речевой функцией, еще в XIX веке, изучая людей со специфическими речевыми недочетами, вызванными травмой мозга, и соотнося эти симптомы с теми повреждениями конкретных участков мозга этих людей, которые были выявлены в ходе вскрытия черепа после их смерти.

Что касается изучения более точечных изменений в личности человека, вызванных повреждением мозга, то тут дело обстояло гораздо сложнее, главным образом из-за того, что сравнения приходилось делать чисто ретроспективно, т. е. сопоставляя, каким человек стал после получения травмы, с тем, каким он был раньше по его собственным словам. Проблема в данном случае заключается в том, что у всех нас много самых разных психических состояний, и какую-либо психическую или личностную характеристику можно легко увязать с несчастным случаем, тогда как эта характеристика наличествовала постоянно, пусть даже все это время оставалась незамеченной. Например, старики часто замечают, что их память дает сбой, хотя, как показывают наблюдения, молодые люди страдают провалами в памяти так же часто или даже еще чаще, чем пожилые. Разница лишь в том, что молодые люди не фокусируются на этом и не уделяют этому феномену особого внимания, тогда как пожилые подмечают его и беспокоятся каждый раз, как что-то забывают, ибо связывают забывчивость со старостью или старением, хотя на деле они страдали этим всю свою жизнь. То же происходит и в случае, когда человек получает травму мозга: мы словно по-новому глядим на себя и начинаем подмечать признаки, которые у нас были и раньше, но которые мы прежде у себя не замечали. В силу этого мы считаем, что это что-то новое, и связываем их с повреждением мозга. Это, конечно же, не значит, что травма мозга не оказывает на нас никакого действия; разумеется, оказывает, но очень трудно определить, в чем именно заключается это воздействие, поскольку мы не записываем и не фиксируем на бумаге каждый аспект нашей обычной жизнедеятельности.

Сканирование мозга

Настоящий прорыв в изучении мозга был сделан в 1980-х годах с изобретением такого метода, как сканирование. Сканирование впервые в истории дало возможность изучать живой мозг в активном, действующем состоянии. Отпала надобность изучать отклонения в поведении человека с травмированным мозгом или полагаться на исследования мозга животных; теперь мы можем наблюдать за нормальными, здоровыми людьми и видеть, как работает их мозг, и это существенно обогащает наше понимание происходящего. Нейровизуализация дает нам картину мозга, на которой видно, какие его части активны в любой период времени и какие реагируют на различные стимулы.

Существует несколько типов сканирования мозга. В одной группе сканов для демонстрации работы мозга используется взаимодействие электричества и магнетизма; наиболее практичными и эффективными из них считаются МРТ-сканы. В основе этого метода — тот факт, что у молекул воды в клетках мозга, когда они активны, магнитное поле немного отличается от того, когда они пребывают в состоянии покоя. Томограф создает последовательный ряд электромагнитных волн, немного напоминающих радиоволны, и фиксирует, как активные клетки мозга реагируют на них. Сканер принимает и записывает эти реакции, создавая на их основе графическое изображение активности, происходящей в мозге в данный момент.

Существуют разные способы МРТ-сканирования. Самый распространенный — это функциональная МРТ (фМРТ), при которой исследуется активность мозга в привязке к специфическим функциям. Например, поскольку процесс сканирования занимает считанные секунды, исследователи получают возможность наблюдать, что происходит в мозге, когда люди заняты активной мыслительной деятельностью: читают, предаются воспоминаниям или решают головоломку. Последовательный ряд сканов формирует картину, отражающую изменения мозговой активности во время выполнения поставленной задачи.

Другой подобный способ сканирования — это событийная функциональная МРТ (сфМРТ). При таком типе сканирования сравниваются образцы электрической активности мозга, вызванной двумя-тремя разными событиями: например, активность мозга, зафиксированная в случае, когда человек дает правильный ответ на вопрос во время тестирования памяти, сравнивается с активностью мозга, зафиксированной, когда он же дает неправильный ответ.

Другие виды сканирования — это позитронно-эмиссионная (ПЭТ) и компьютерная аксиальная томография (КАТ). В первом случае отслеживается распространение небольшого количества радиоактивного вещества, введенного в кровь и поглощенного мозгом. Активные клетки мозга нуждаются в большем количестве крови, чем пассивные, поскольку нейроны после активации пополняют запас питательных веществ, поэтому приток крови к определенным участкам мозга указывает как раз на более активные клетки. В классических исследованиях, например в исследовании Тульвинга (1989), изучавшего свойства и функции памяти у людей, вспоминавших эпизоды из своих отпусков, использовались радиоактивные изотопы золота. Изотопы золота быстро распадаются и не задерживаются надолго в кровеносной системе, зато с их помощью можно быстро выявить, какие зоны мозга активны в данный момент. Медики используют с этой целью более простые вещества и субстанции, но принцип остается неизменным.

Во втором случае применяется серия рентгеновских или ультразвуковых изображений, сделанных фрагментарно, и из этих фрагментов затем комбинируется трехмерное изображение. При этом сравниваются различные уровни плотности мозга. Серое вещество, например, менее плотное, чем белое, поэтому на компьютерной томограмме оно выглядит иначе; аналогично дело обстоит с опухолями и тромбами. Изображение статично, но оно дает исследователю возможность выявить аномальные структуры или наросты, а кроме того, сравнивая время от времени томограммы, можно обнаружить масштабные положительные изменения, например восстановление мозга после повреждения, полученного после сильного удара или серьезной травмы головы.

В некоторых случаях рекомендуется вначале сделать ЭЭГ как первое или предварительное сканирование мозга, которое показывает общий уровень активности в различных его частях. Для этого к определенным точкам на голове прикрепляются датчики, очень чувствительные к электрическим излучениям мозга, — электроды (современные исследователи, вместо того чтобы прикреплять их прямо к коже головы, как это делалось раньше, предпочитают использовать электродную сетку, которая накидывается на голову). Технологический прогресс привел к тому, что сегодня ЭЭГ дает куда более правдивую картину работы мозга, чем раньше. Что касается старых ЭЭГ, то это все равно что стоять на улице за стенами фабрики, стараясь по доносящемуся оттуда шуму определить, что именно там происходит. Тем не менее, даже несмотря на их несовершенство, с помощью ЭЭГ удалось выявить общие симптомы и закономерности деятельности мозга, например альфа-, бета — и дельта-волны, связанные с различными психическими состояниями: альфа-волны — с расслабленным состоянием, бета-волны — с состояниями бдительности и бодрствования, а дельта-волны — с состоянием глубокого сна (более подробно мы рассмотрим их в главе 13).

У этого метода сканирования множество вариаций, таких, например, как магнитоэнцефалография (МЭГ), при которой для определения изменений в магнитной деятельности мозга используются так называемые сверхпроводящие квантовые интерференционные датчики (СКВИД). Эти датчики невероятно чувствительны и способны обнаружить мельчайшие отклонения в магнитном поле вокруг мозга, так что их можно закреплять даже на коже головы над определенными его участками. Потенциал вызванной реакции (ПВР) — это метод измерения, с помощью которого можно выявить изменения электрической активности какой-либо области мозга, реагирующей на стимул, раздражитель или событие, активизирующие работу мозга. Раньше, как уже отмечалось выше, с этой целью применялась несколько иная методика, именуемая вызванным потенциалом, при которой в качестве стимула использовался звук, реакция мозга на который и фиксировалась соответствующим датчиком.

Транскраниальная магнитная стимуляция (ТМС) — особенно интересный способ изучения мозга. Он связан с передачей в мозг магнитной стимуляции в виде короткого магнитного импульса. Этот импульс вмешивается в работу мозга и на короткое время прерывает процесс, происходящий там в этот момент, но прерывает без каких-либо последствий. ТМС достаточно легко контролировать, поскольку эта стимуляция точечная и не охватывает весь мозг: датчики размещаются на голове лишь над определенным участком. Размещать их на боковой части головы, на височных долях или на стыке теменной и височной долей, не рекомендуется, поскольку это может привести, например, к серьезному (хотя и временному) нарушению речевой функции, что неблагоприятно повлияет на выполнение таких действий, как, скажем, чтение вслух или заучивание стихотворений наизусть. Транскраниальная стимуляция постоянным током (ТСПТ) — очень простой процесс: непосредственно к коже головы прикрепляется электрическая катушка, наносящая виртуальное повреждение, которое мешает нормальному функционированию мозга. Существует два вида ТСПТ — катодный (снижает уровень активности мозга, препятствуя выполнению задачи) и анодный (повышает уровень активности, способствуя выполнению конкретных задач).

Мозг таит в себе немало и других сюрпризов. Сканирование, в частности, показало обилие в нашем мозге так называемых зеркальных нейронов. Первые зеркальные нейроны обнаружили в двигательных системах; с их помощью удалось установить, что деятельность нашего мозга отражает не только наши собственные действия и поступки, но и действия и поступки других людей. Когда мы наблюдаем за действиями других людей, соответствующие части нашего мозга реагируют на них точно так же (т. е. с той же степенью активности), как и на наши собственные действия. Но это происходит, разумеется, только в том случае, если мы обращаем на это внимание: если мы, к примеру, следим за действиями канатоходца и представляем, каково это — балансировать на тонком канате на страшной высоте, некоторые наши клетки мозга, отвечающие за равновесие и ходьбу, тут же активизируются. Со времени первого открытия зеркальных систем они были обнаружены во многих частях мозга, в частности в тех, которые отвечают за функции социального взаимодействия: речь, разговор, память и т. д. Когда мы общаемся с другими людьми или наблюдаем за их действиями, наш мозг структурирует свою деятельность таким образом, что мы до известной степени солидаризуемся с ними и даже симпатизируем им. Мы гораздо социальнее, нежели думаем! Если вы найдете в себе силы продолжить чтение этой книги, то убедитесь, что по ходу повествования мы довольно часто будем сталкиваться с зеркальными нейронами.

Фокусные точки

1. Мозг состоит из нервных клеток, называемых нейронами, которые, будучи связанными между собой, шлют и передают сообщения всему мозгу и остальным частям тела.

2. Сообщения в мозге передаются в форме электрических импульсов от одного нейрона другому при помощи особых химических веществ, называемых нейротрансмиттерами (или нейромедиаторами).

3. Нервные связи развиваются по мере того, как мы обучаемся чему-то новому, так что мозг обладает способностью адаптации к повреждениям даже в зрелом возрасте. Это его свойство известно как нейропластичность.

4. Левая сторона мозга контролирует правую сторону тела, и наоборот. Некоторые другие функции тоже латеризованы, т. е. управляются одной стороной мозга или другой, но их не так много, как принято считать.

5. Раньше ученым при исследованиях мозга приходилось лишь иметь дело с пациентами, получившими травму мозга, изучать мозг животных или полагаться на ЭЭГ. Сегодня же сканирование мозга позволяет изучать его в процессе функциональной деятельности. Существуют самые различные виды сканирования, среди которых наиболее употребимыми являются ПЭТ, КАТ и МРТ.

Следующий этап

В первых двух главах мы обрисовали общую картину мозга: что он собой представляет и как работает. Со следующей главы мы начинаем специфическое изучение различных его частей и того, как благодаря их совокупной работе мы ощущаем себя людьми. А начнем мы с рассмотрения того, каким нам видится этот мир с точки зрения его зрительного восприятия.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Запутанный мозг. Путеводитель по нейропсихологии предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я