Монография посвящена вопросам адаптации атомной энергетики к климатическим изменениям. Рассматриваются причины изменения климата, его прогнозируемые последствия для энергетики и решения для минимизации рисков. Оценены экономические аспекты климатических угроз и возможности международного сотрудничества для обеспечения устойчивости атомных электростанций.Рецензент: кандидат экономических наук, доцент кафедры экологической и промышленной безопасности РТУ МИРЭА — Эпштейн Александр Дмитриевич.
Приведённый ознакомительный фрагмент книги «Безопасное развитие атомной энергетики в меняющихся климатических условиях» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Обзор литературы
История развития атомной энергетики
Атомная энергетика, как один из важнейших источников энергии, имеет относительно короткую, но насыщенную историю, неразрывно связанную с развитием науки и технологий XX и XXI веков. Истоки ядерной физики и понимания атомных процессов восходят к началу XX века, когда фундаментальные открытия в области физики заложили основу для разработки технологий, позволяющих использовать энергию атомного ядра для мирных целей.
Период до Второй мировой войны: первые шаги
Первым крупным научным прорывом, сделавшим возможным развитие атомной энергетики, стало открытие радиоактивности французскими учеными Марией и Пьером Кюри в конце XIX века. В 1896 году Антуан Анри Беккерель обнаружил радиоактивное излучение у соединений урана, что привлекло внимание научного сообщества к изучению свойств атомного ядра. В последующие годы Эрнест Резерфорд и его ученики внесли значительный вклад в развитие теории строения атома. В 1911 году Резерфорд предложил модель атома, которая подтвердила существование ядра как центральной части атома.
Ключевым этапом стало открытие ядерного деления в 1938 году. Немецкие физики Отто Ган и Фриц Штрассман продемонстрировали, что ядра урана могут расщепляться на более легкие элементы при облучении нейтронами. Это открытие показало, что при делении атомного ядра выделяется огромная энергия, что в дальнейшем стало основой для развития как атомной энергетики, так и атомного оружия.
Вторая мировая война и проект «Манхэттен»
В годы Второй мировой войны исследования в области ядерной физики активно развивались, но главным образом в рамках военных проектов. Одним из ключевых событий стало создание проекта «Манхэттен» — секретной американской программы по разработке атомного оружия. Под руководством физика Роберта Оппенгеймера, проект, начавшийся в 1942 году, объединил ведущих учёных из США, Великобритании и Канады. В рамках проекта впервые были построены реакторы для получения плутония, и в 1945 году были проведены испытания первой атомной бомбы.
Использование атомных бомб в Хиросиме и Нагасаки в августе 1945 года продемонстрировало разрушительную силу ядерного оружия, но также подчеркнуло колоссальный энергетический потенциал, заключённый в атоме. После окончания войны внимание учёных и инженеров было обращено на мирное использование атомной энергии, что привело к рождению атомной энергетики как новой отрасли.
Развитие мирного атома: 1940—1960-е годы
Первый шаг к мирному использованию атомной энергии был сделан в 1951 году в США, когда на экспериментальной установке в Национальной лаборатории Айдахо впервые был произведен электрический ток с использованием энергии ядерного деления. Этот эксперимент продемонстрировал возможность использования ядерной энергии для выработки электроэнергии.
Однако значительным этапом стало создание первой в мире атомной электростанции — Обнинской АЭС в Советском Союзе, которая начала работу 27 июня 1954 года. Мощность реактора составила 5 МВт, и это событие стало важнейшим шагом в развитии атомной энергетики. Советский Союз стал первой страной, которая доказала возможность использования ядерных реакторов для гражданских нужд, обеспечивая электроэнергией небольшие населенные пункты.
Одновременно с этим в США в 1957 году заработала первая коммерческая атомная электростанция в Шиппингпорте, штат Пенсильвания. Этот реактор стал первым, который был подключен к национальной электрической сети, что продемонстрировало перспективы промышленного использования атомной энергии. В этот период на международной арене был запущен процесс создания правовой и организационной базы для мирного использования атомной энергии. В 1957 году была основана Международная организация по атомной энергии (МАГАТЭ), целью которой стало обеспечение безопасности и развитие атомной энергетики.
Эра быстрого роста: 1960—1980-е годы
С начала 1960-х годов атомная энергетика начала стремительно развиваться по всему миру. Ведущие страны, такие как США, СССР, Великобритания, Франция, Канада и Япония, активно строили атомные электростанции. В этот период были разработаны различные типы ядерных реакторов, включая реакторы на лёгкой воде (PWR и BWR), тяжёлой воде (CANDU), а также реакторы на быстрых нейтронах.
В 1970-е годы атомная энергетика переживала расцвет, чему способствовали несколько факторов:
— Нефтяной кризис 1973 года продемонстрировал уязвимость мировой энергетики, зависимой от ископаемого топлива. Это привело к увеличению интереса к атомной энергетике как к стабильному и независимому источнику энергии.
— Повышение экологических стандартов в развитых странах способствовало развитию атомной энергетики, так как она рассматривалась как чистая альтернатива угольным электростанциям с точки зрения выбросов углекислого газа.
Однако развитие атомной энергетики не обошлось без трудностей. Аварии на АЭС продемонстрировали потенциальные опасности этого источника энергии. Авария на АЭС Три-Майл-Айленд в США в 1979 году стала первой крупной аварией на атомной электростанции, вызвав общественное беспокойство о безопасности атомной энергии.
Период замедления и переоценки: 1980—2000-е годы
К 1980-м годам темпы строительства новых АЭС начали снижаться, особенно после Чернобыльской катастрофы в 1986 году. Эта авария, произошедшая в Советском Союзе, оказала глубокое влияние на восприятие атомной энергетики во всем мире. Взрыв на Чернобыльской АЭС привёл к выбросу огромного количества радиоактивных веществ, что вызвало экологические и социальные последствия на глобальном уровне.
Чернобыльская авария стала причиной пересмотра подходов к безопасности АЭС. Многие страны приостановили строительство новых реакторов, и общественное мнение во многих странах стало более скептическим по отношению к атомной энергетике. Возникли движения за отказ от ядерной энергии, особенно в Западной Европе.
Тем не менее, в некоторых странах, таких как Франция и Япония, атомная энергетика продолжала играть важную роль. Франция, в частности, сделала ставку на атомную энергетику и стала мировым лидером по доле атомной энергии в своём энергобалансе — около 70% электроэнергии вырабатывается на АЭС.
Возрождение интереса к атомной энергетике: 2000-е годы и современность
К началу XXI века интерес к атомной энергетике начал восстанавливаться. В связи с глобальной борьбой с изменением климата и необходимостью сокращения выбросов углекислого газа атомная энергетика снова начала рассматриваться как важный элемент устойчивого энергетического будущего. МАГАТЭ и другие международные организации активно продвигают атомную энергетику как часть решения проблемы изменения климата.
Однако авария на АЭС Фукусима в 2011 году вновь вызвала волну критики и опасений. Япония временно закрыла все свои атомные электростанции, а в Германии был принят план по поэтапному отказу от атомной энергетики к 2022 году.
Тем не менее, некоторые страны, такие как Россия, Китай и Индия, продолжают активно развивать атомную энергетику. В Китае ведется строительство десятков новых реакторов, а Россия разрабатывает передовые технологии, такие как малые модульные реакторы и быстрые нейтронные реакторы.
Современная атомная энергетика находится на этапе переоценки. Сегодня страны делают упор на безопасность и развитие новых технологий, включая инновационные реакторы с улучшенными характеристиками безопасности и экономической эффективности.
Современные исследования по климатическим изменениям
Климатические изменения являются одной из наиболее активно изучаемых проблем современности, поскольку их последствия затрагивают все аспекты жизни на планете. По данным Межправительственной группы экспертов по изменению климата (IPCC), начиная с конца XIX века, глобальная средняя температура повысилась на 1,1° C. Это потепление наблюдается с нарастающей скоростью: последние три десятилетия были самыми жаркими за всю историю наблюдений, а 2020 год стал одним из трех самых теплых за последние 150 лет. Если текущие тенденции сохранятся, к 2100 году температура может повыситься на 2,7° C — это более чем вдвое превысит цель Парижского соглашения, которое стремится ограничить потепление на уровне 1,5° C.
Современные исследования показывают, что такие климатические изменения уже оказывают значительное влияние на природные экосистемы. В частности, объем ледников в Гренландии и Антарктиде продолжает уменьшаться, что вызывает подъем уровня мирового океана на 3,3 мм в год. По данным NASA, с 1993 года уровень моря повысился на 90 мм, и этот процесс ускоряется: прогнозы показывают, что к концу XXI века он может вырасти на 1—2 метра, что поставит под угрозу прибрежные территории, на которых проживает около 680 миллионов человек.
Частота и интенсивность экстремальных погодных явлений также увеличиваются. В 2023 году Национальное управление океанических и атмосферных исследований США (NOAA) зафиксировало рекордное количество ураганов в Атлантическом океане — 30, что значительно превышает среднегодовой показатель в 12—15 штормов. Более того, исследования показывают, что эти ураганы становятся сильнее и наносят больший экономический ущерб. Например, в 2017 году ураган «Харви» привел к убыткам на сумму более 125 миллиардов долларов, затронув миллионы жителей Техаса.
Изменение климата также оказывает влияние на сельское хозяйство, водные ресурсы и биоразнообразие. По данным Продовольственной и сельскохозяйственной организации ООН (FAO), изменение температурных режимов и увеличение частоты засух приведет к снижению урожайности основных сельскохозяйственных культур на 10—25% к 2050 году, особенно в регионах с высокими температурами, таких как Африка и Южная Азия. В Мексике, например, по прогнозам, к 2050 году производство кукурузы может сократиться на 30%, что создаст серьезные проблемы для продовольственной безопасности страны.
Исследования показывают, что климатические изменения увеличивают риски для здоровья населения. По оценкам Всемирной организации здравоохранения (ВОЗ), к 2030 году дополнительные 250 000 смертей в год могут быть вызваны болезнями, связанными с изменением климата, такими как малярия, тепловые удары и недоедание. В частности, повышение температур и влажности создает благоприятные условия для размножения переносчиков инфекционных заболеваний, таких как комары, что увеличивает распространение малярии и денге в странах тропического и субтропического поясов.
В ответ на такие вызовы международное сообщество активно разрабатывает стратегии адаптации и снижения выбросов парниковых газов. Парижское соглашение 2015 года стало важным этапом в борьбе с изменением климата, так как оно поставило целью удержание глобального потепления на уровне 1,5—2° C. Для достижения этих целей к 2030 году необходимо сократить выбросы углекислого газа на 45% по сравнению с уровнями 2010 года, а к середине столетия — добиться их полного прекращения. По данным Международного энергетического агентства (МЭА), для этого требуется ежегодно инвестировать около 3 триллионов долларов в развитие возобновляемых источников энергии и технологии захвата и хранения углерода.
Современные исследования также фокусируются на разработке технологий для смягчения последствий климатических изменений. Например, к 2022 году суммарные глобальные инвестиции в возобновляемую энергетику превысили 750 миллиардов долларов. Это позволило значительно снизить стоимость технологий солнечной и ветровой энергии: по данным Bloomberg, с 2010 по 2020 годы цены на солнечные панели снизились на 85%, а стоимость производства электроэнергии на ветровых электростанциях — на 56%. В результате в 2021 году солнечная и ветровая энергетика обеспечили более 10% мировой электроэнергии.
Кроме того, большое внимание уделяется исследованиям в области адаптации инфраструктуры к изменяющимся климатическим условиям. В 2021 году Международное агентство по атомной энергии (МАГАТЭ) опубликовало рекомендации по усилению устойчивости атомных электростанций к экстремальным климатическим условиям, таким как наводнения, тепловые волны и повышение уровня моря. Эти рекомендации включают улучшение систем охлаждения, строительство защитных барьеров от наводнений и разработку новых стандартов проектирования атомных станций с учетом климатических рисков.
Одним из важнейших выводов современных исследований является необходимость скоординированных действий на глобальном уровне. Климатические изменения затрагивают весь мир, и их последствия будут продолжаться в течение следующих десятилетий. В связи с этим требуются значительные усилия по адаптации инфраструктуры, реформированию энергетической системы и разработке новых подходов к управлению рисками, связанными с изменением климата.
Влияние климатических изменений на энергетический сектор
Климатические изменения оказывают глубокое воздействие на энергетический сектор, вызывая значительные вызовы для его стабильности, надежности и эффективности. По мере увеличения глобальной температуры и изменения климатических условий энергетические системы по всему миру сталкиваются с рядом проблем, связанных с изменением спроса на энергию, уменьшением доступности ресурсов и увеличением рисков для критической инфраструктуры.
Одним из наиболее очевидных последствий изменения климата является увеличение частоты и интенсивности экстремальных погодных явлений, таких как ураганы, наводнения, тепловые волны и засухи. Эти события наносят значительный ущерб энергетической инфраструктуре. Например, ураган «Мария» в 2017 году вызвал катастрофические разрушения энергетической системы Пуэрто-Рико, оставив без электричества около 3,4 миллиона человек на срок до нескольких месяцев. Ущерб энергосистеме Пуэрто-Рико был оценен в 94 миллиарда долларов, что иллюстрирует масштаб воздействия климатических катастроф на энергетические системы.
Другой важный фактор — повышение уровня моря. По данным Национального управления океанических и атмосферных исследований США (NOAA), с 1880 года уровень моря повысился на 23 см, и этот процесс продолжается. Энергетическая инфраструктура, особенно атомные электростанции и нефтегазовые комплексы, расположенные в прибрежных районах, сталкиваются с повышенными рисками затопления. Например, атомные станции, расположенные вблизи моря, нуждаются в постоянном обновлении защитных систем и барьеров, чтобы противостоять риску наводнений. В некоторых странах, таких как Япония и Южная Корея, такие меры уже внедряются для минимизации последствий повышения уровня моря.
Тепловые волны также оказывают серьезное воздействие на энергетический сектор. Согласно данным Всемирной метеорологической организации, за последние 50 лет число дней с экстремальными температурами увеличилось в два раза. В Европе, в частности, во время аномальной жары в 2003 году, энергетические системы в таких странах, как Франция и Испания, испытывали серьезные проблемы из-за перегрузки сетей, поскольку спрос на электроэнергию для охлаждения резко возрос. Французская энергетическая компания EDF сообщила о снижении производства на своих атомных станциях на 5% в течение того года, что было связано с недостатком охлаждающей воды и увеличением температуры воды в реках. Тепловые волны продолжают оказывать воздействие на эффективность работы энергетических установок, особенно тех, которые зависят от воды для охлаждения.
Изменение климата также оказывает влияние на доступность возобновляемых источников энергии. Ветроэнергетика и гидроэнергетика зависят от природных условий, которые изменяются под воздействием климата. Например, в регионах, подверженных засухам, таких как западная часть США, Австралия и южная часть Африки, наблюдается снижение уровня водоемов, что приводит к сокращению мощностей гидроэлектростанций. По оценкам Международного энергетического агентства (МЭА), к 2050 году потери производства гидроэнергии могут составить до 5% из-за изменения гидрологических условий. Ветроэнергетика также сталкивается с изменениями: изменения в направлениях и скорости ветров могут повлиять на производительность ветровых электростанций в разных регионах.
Изменения климата также приводят к необходимости изменения структуры спроса на электроэнергию. Например, в жаркие периоды возрастает потребность в охлаждении, что увеличивает нагрузку на энергосистемы. По данным Международного энергетического агентства (МЭА), в 2020 году глобальный спрос на электроэнергию для кондиционирования воздуха вырос на 20% по сравнению с 2010 годом, что связано с увеличением числа жарких дней. В странах с жарким климатом, таких как Индия, это привело к необходимости строительства новых энергогенерирующих мощностей и модернизации сетей для обеспечения устойчивости к перегрузкам. В то же время в странах с холодным климатом изменение погодных условий может снизить потребление энергии в зимние месяцы, что создает новые вызовы для сбалансированности энергоснабжения.
Наряду с негативными последствиями, изменение климата также стимулирует развитие новых технологий в энергетическом секторе. Инвестиции в возобновляемые источники энергии и энергоэффективные технологии значительно выросли. В 2022 году глобальные инвестиции в зеленую энергетику достигли 750 миллиардов долларов, что почти в два раза больше, чем в 2015 году. Страны по всему миру, в том числе Китай, США и страны Европейского союза, активно развивают солнечную и ветровую энергетику как часть стратегии декарбонизации и адаптации к климатическим изменениям.
Климатические изменения оказывают комплексное влияние на энергетический сектор, создавая как новые вызовы, так и возможности для трансформации системы энергоснабжения. Энергетические компании и правительства по всему миру вынуждены адаптироваться к новым условиям, разрабатывая устойчивые стратегии, которые позволят минимизировать риски и повысить устойчивость критической инфраструктуры к экстремальным погодным условиям.
Примеры адаптации атомной энергетики к климатическим вызовам
Атомная энергетика, будучи важным источником стабильной и чистой энергии, сталкивается с вызовами, вызванными изменением климата. Рост температуры, участившиеся экстремальные погодные явления, повышение уровня моря и другие климатические изменения создают новые риски для работы атомных электростанций (АЭС). В ответ на эти вызовы отрасль атомной энергетики внедряет адаптационные меры, направленные на повышение устойчивости АЭС к климатическим воздействиям. Рассмотрим ключевые примеры адаптации атомной энергетики в разных странах.
1. Усиление систем охлаждения реакторов
Повышение температуры воды в реках и морях, используемых для охлаждения реакторов, представляет серьёзную проблему для атомных электростанций. Высокая температура охлаждающей воды снижает эффективность теплоотвода, что может приводить к необходимости временного отключения или снижения мощности реакторов. В ответ на эти вызовы внедряются различные меры:
— Франция. В летние месяцы Франция, где около 70% электроэнергии вырабатывается на атомных станциях, сталкивается с проблемами из-за повышения температуры рек. Например, АЭС на реках Гаронна и Рона вынуждены снижать мощность, чтобы не нарушать экологические нормы по температуре воды, сбрасываемой обратно в реки. Для решения этой проблемы на некоторых АЭС начали модернизировать системы охлаждения, добавляя дополнительные башни, которые снижают зависимость от температуры речной воды.
— Финляндия. АЭС Ловииса, расположенная на побережье Балтийского моря, испытывает проблемы с повышением температуры воды, особенно в летние периоды. В ответ на это были введены системы циркуляции воды с использованием глубинных вод, которые более холодные и стабильные по температуре, что позволяет поддерживать эффективное охлаждение реакторов даже в жаркие сезоны.
2. Защита от наводнений и повышения уровня моря
Повышение уровня моря и учащение наводнений представляют серьёзную угрозу для АЭС, особенно тех, которые расположены на побережьях. Повышение уровня воды может вызвать подтопление важной инфраструктуры станции, что создаёт риск отказа систем безопасности.
— Япония. После аварии на АЭС «Фукусима» в 2011 году Япония приняла радикальные меры по повышению устойчивости своих атомных станций к наводнениям и цунами. Одним из ключевых шагов стало строительство защитных волнорезов и укрепление береговой линии вокруг АЭС. Например, на АЭС Ои и Такахама построили защитные стены высотой до 20 метров, чтобы предотвратить повторение сценария с Фукусимой.
— США. В США особое внимание уделяется защите АЭС от наводнений. В частности, АЭС на реке Миссури (Форт-Кэлхунская станция) была модернизирована после наводнений 2011 года. В рамках модернизации были построены дополнительные барьеры для защиты станции от подъема уровня воды, а также обновлены системы водоотведения, что позволяет станции безопасно работать при экстремальных осадках и высоком уровне воды.
3. Устойчивость к экстремальным погодным условиям
Экстремальные погодные явления, такие как ураганы, наводнения, засухи и сильные штормы, становятся всё более частыми и интенсивными из-за изменения климата. АЭС, расположенные в зонах, подверженных таким явлениям, должны адаптироваться к новым условиям.
— АЭС Turkey Point, США. Эта станция, расположенная во Флориде, успешно прошла через несколько крупных ураганов, включая ураган Ирма в 2017 году. Благодаря модернизации инфраструктуры и повышению устойчивости к ураганам, станция продолжила функционировать даже во время сильнейших штормов. На станции были установлены дополнительные защитные сооружения, обновлены системы электропитания, а также внедрены системы для быстрого реагирования на экстремальные погодные явления.
— Франция. Некоторые французские АЭС, расположенные в регионах с высоким риском экстремальных погодных условий, адаптировали свои системы защиты от штормов и наводнений. Например, на АЭС в Бюже были установлены резервные генераторы на случай перебоев с основным электроснабжением, а также построены усиленные хранилища для отработанного ядерного топлива.
4. Модернизация систем аварийной безопасности
Одним из важных аспектов адаптации атомных станций к климатическим вызовам является модернизация систем аварийной безопасности и повышения готовности к нештатным ситуациям.
— Германия. После аварии на Фукусиме Германия пересмотрела свои стандарты безопасности на АЭС. Были внедрены дополнительные меры, включая обновление систем аварийного охлаждения, обеспечение резервного питания, а также создание автономных резервных источников воды для охлаждения реакторов. Эти меры были направлены на минимизацию последствий потенциальных катастрофических событий, связанных с климатическими рисками.
— Швеция. АЭС Форсмарк в Швеции, расположенная на побережье Балтийского моря, была модернизирована для обеспечения безопасности в условиях экстремальных климатических событий. Были внедрены дополнительные системы аварийного охлаждения и резервные источники питания, способные поддерживать работу критических систем станции в случае чрезвычайных ситуаций, вызванных экстремальными погодными условиями.
5. Разработка инновационных технологий и новых типов реакторов
Перспективным направлением адаптации атомной энергетики к климатическим вызовам является разработка новых типов реакторов, которые менее уязвимы к климатическим рискам.
— Малые модульные реакторы (SMR). SMR считаются перспективным направлением для атомной энергетики, особенно в условиях изменения климата. Эти реакторы имеют более компактный размер, могут быть размещены в удалённых и труднодоступных регионах и менее подвержены климатическим угрозам. SMR обладают повышенной гибкостью в управлении мощностью, что делает их более адаптивными к нестабильным условиям энергоснабжения, вызванным изменением климата. Россия и США активно развивают проекты SMR как часть стратегии устойчивого развития энергетики.
— Технологии реакторов с замкнутым топливным циклом. Разработка реакторов с замкнутым циклом использования топлива, таких как быстрые нейтронные реакторы, может стать важной частью адаптации атомной энергетики к новым климатическим условиям. Такие реакторы эффективнее используют ядерное топливо, производят меньше отходов и могут работать на отработанном топливе, что делает их более устойчивыми и безопасными в долгосрочной перспективе.
6. Адаптация инфраструктуры к росту температуры
С учётом увеличения частоты тепловых волн, атомные электростанции адаптируют свои процессы и инфраструктуру для работы при высоких температурах.
— Канада. В связи с повышением температуры в летний период канадские атомные станции (особенно те, что работают на системе тяжёлой воды) внедрили инновационные технологии управления теплом, позволяющие минимизировать влияние высокой температуры на охлаждающие системы. Эти технологии включают в себя более эффективные системы теплообмена и дополнительные меры по защите ключевых компонентов станции от перегрева.
Данные примеры демонстрируют, что адаптация атомной энергетики к климатическим вызовам становится важным приоритетом для стран, инвестирующих в развитие этого сектора. Разработка новых технологий, модернизация существующих систем и внедрение инновационных подходов помогают повысить устойчивость атомных станций к изменениям климата и обеспечивают надёжность их работы в долгосрочной перспективе.
Приведённый ознакомительный фрагмент книги «Безопасное развитие атомной энергетики в меняющихся климатических условиях» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других