Химия навсегда. О гороховом супе, опасности утреннего кофе и пробе мистера Марша

Ларс Орстрём, 2013

Почему дирижабль «Гинденбург» был наполнен водородом, а не гелием и почему это привело к трагедии? Чем занимались зелейщики и почему крестьяне их не жаловали? Зачем ацетон был нужен военно-морскому флоту Великобритании? Действительно ли оловянные пуговицы сыграли фатальную роль в наполеоновской кампании 1812 года? Ларс Орстрём, шведский химик, специализирующийся в области неорганической химии, преподаватель и ведущий научно-популярного подкаста журнала Chemistry World, с непринужденностью и азартом настоящего ученого распутывает детективные сюжеты из литературы и из жизни, рассказывая захватывающие истории о химических элементах и нашем взаимодействии с ними. «Химия может быть математически сложной, но при этом такой же простой, как детский деревянный конструктор, полагающейся на такие элементарные вещи, как разница в размерах. Время от времени мы достаем свои конструкторы из ящика, однако теперь все чаще используем компьютер. И совсем как маленькие дети, которых зачаровывает цвет, форма и текстура набора шариков, химики испытывают потребность потрогать пальцем атомы и молекулы, чтобы выяснить, какими свойствами они обладают». (Ларс Орстрём). В формате PDF A4 сохранён издательский дизайн.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Химия навсегда. О гороховом супе, опасности утреннего кофе и пробе мистера Марша предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

2

Из Биттерфельда с любовью

В главе 2 мы попадем в обманчивый и мрачный мир разведки и шпионажа, а заодно узнаем, как добывать металл из горных пород.

В сентябре 1961 года Генри Лёвенхаупт бросил последние куски восточногерманского металлического кальция в реку Потомак и наблюдал за бурной реакцией, в результате которой вода закипела, поскольку металл передал два своих электрона в молекулы H2О, в результате чего выделился водород и большое количество тепла. Разбор химических реакций может показаться пугающе трудным занятием, но на самом деле это совсем несложно, и по мере своего рассказа я обязательно продемонстрирую вам парочку уравнений. Просто запомните, что атомы и электроны никогда никуда не исчезают, и вы во всем разберетесь.

В виде уравнения описанное выглядело бы так:

Ca + 2H2O → Ca2+ + H2 + 2OH.

Возможно, оно покажется вам немного похожим на реакцию металлического натрия с водой, которую многим из нас демонстрировали в школе; так оно и есть. Однако реакция с кальцием протекает немного медленнее, и в ней выделяется меньше энергии, потому что от атома отрываются два электрона, а не один, как в случае с натрием[30]. (Отрыв электронов представляет собой то, что мы называем окислением, и кальций изменил степень окисления с 0 на +2.)

Мистер Лёвенхаупт наверняка все это знал. Он окончил Йельский университет, принимал участие в Манхэттенском проекте по созданию первой атомной бомбы и посвятил оставшуюся часть своей карьеры работе в ЦРУ — с основания этой организации в 1947 году и до своей отставки в 1991-м[31]. Брошенный в Потомак металлический кальций был остатками проекта, который мог бы спасти ЦРУ от первой для них крупной неудачи и который был частью одной из самых изощренных диверсионных операций в истории — операции «Гаечный ключ»[32].

Как мы выяснили в главе 1, испытания первой советской атомной бомбы в 1949 году стали полной неожиданностью для ЦРУ и МИ6. Но к их чести — по крайней мере, к чести американцев — надо отметить: для русских стало полной неожиданностью, что их немедленно вычислили. (Устройство этой системы обнаружения уже само по себе является интереснейшей историей.) Так почему же разведки США и Соединенного Королевства так катастрофически недооценили скорость развития сталинской атомной программы? По существу, они неверно оценили способность Советского Союза производить уран. Для этого в дополнение к существующим запасам, захваченным у немцев, использовались бедные ураном руды из шахт в Уральских горах.

Шпионаж непосредственно на русских атомных объектах был исключен, однако большое количество информации можно было добыть из других источников. Одной из важных целей был Uranverein — «Урановый клуб» нацистской Германии: это кодовое название носила программа по созданию атомной энергии и ядерного оружия, которая попала под управление русских на оккупированной ими территории. Одним из ключевых вопросов было то, как именно русские собирались получать уран из урановых руд.

Согласно общему правилу, металлы нестабильны в своей нейтральной форме (с нулевой степенью окисления), с известными исключениями в виде благородных металлов — золота и серебра — и меди, которые, если вам повезет, можно обнаружить в виде самородков. Эти металлы очень крепко держатся за свои электроны, чем кардинально отличаются от натрия и кальция, которые только и ждут чего-то подходящего, чтобы сбросить туда электроны со своей последней заполненной орбитали[33].

При определенных обстоятельствах уран может быть так же хорош, как золото, но он ни в коем случае не является благородным металлом. В природе он обычно встречается в форме со степенью окисления +4, U4+, с четырьмя оторванными электронами, обычно соединяясь с кислородом в UO2 (или в минерал уранинит с примерной формулой U3O8, в котором сосуществуют ионы U4+ и U6+). Чтобы вернуть электроны на место и получить металлический уран, нам потребуется нечто, что очень хочет отдать свои электроны, — то, что мы называем сильным восстановителем.

Большинство химических реагентов, которые используются при производстве урана из урановой руды, ничем не примечательны и используются также и для других целей, но из-за того, что уран настолько неблагородный, ему требуется очень сильный восстановитель, чтобы стать металлом. Немцы использовали металлический кальций, производившийся в Биттерфельде — маленьком городке под Лейпцигом в Восточной Германии и неподалеку от старой урановой шахты в Йоахимстале (Яхимове) в Чехии. Поскольку Германия была разделена оккупационными державами, а появление Германской Демократической Республики с ее строгим пограничным контролем было еще впереди, получение разведданных с занятой русскими территории было по крайней мере осуществимо, и МИ6 и ЦРУ пристально наблюдали за заводом в Биттерфельде (и друг за другом).

В 1947 году были собраны доказательства того, что завод в Биттерфельде ежемесячно производит 30 тонн дистиллированного металлического кальция высокой чистоты. Дистилляция ассоциируется у нас с отделением этанола от воды и производством спирта на винокурнях. Этот метод основан на разных температурах кипения двух веществ: этанол закипает при 78 °C, а вода — при 100 °C; однако на самом деле дистилляция — это очень распространенный метод очистки в химической промышленности, применимый к самым разным веществам. Если охладить воздух до состояния жидкости (для этого он должен быть очень-очень холодным), его можно подвергнуть дистилляции и выделить разные его компоненты, такие как азот или неон[34]. Кальций плавится при 842 °C и кипит при 1484 °C, но эти температуры снижаются при понижении атмосферного давления. Однако для этого вовсе не обязательно строить химический завод в Гималаях, поскольку создать похожие условия на заводе довольно легко, и в 1946 году США уже внесли вакуумные насосы в «список контроля за экспортом», помешав торговой организации русских получить большой заказ.

Задача, стоявшая перед Лёвенхауптом и его коллегами, звучала так: им нужно было удостовериться, что 30 тонн кальция в месяц отправятся для использования в советской ядерной программе, а не для какого-либо понятного употребления в немецкой промышленности. Проведя расследование, они установили, что около 5 тонн не особенно чистого металла ежемесячно производилось во время войны для компаний Osram и Phillips — по всей видимости, для изготовления радиоламп; еще 20 тонн различных сплавов кальция с алюминием и цинком ежемесячно продавались немецким железным дорогам. Таким образом, получалось, что 30 тонн дистиллированного кальция никак не могли попасть к покупателям в немецкой промышленности, и, когда находившийся на заводе в Биттерфельде агент сообщил, что 26 июля 1947 года три железнодорожных вагона с дистиллированным кальцием отправились по адресу: Электросталь, Москва, п/я 3, Курская железная дорога, все должны были понять, что правда выплыла наружу.

Чтобы выяснить, что именно русские собирались делать с этим кальцием, агент на заводе в Биттерфельде похитил его образец, и, когда ЦРУ получили результаты полного анализа, стало ясно, что он обладает всеми техническими характеристиками, необходимыми для преобразования ионов урана в металлический уран высокой степени чистоты, готовый для применения в атомной энергетике. Добиться этого можно было следующим способом: сначала нужно было создать молекулы UF4, а затем провести их реакцию с металлическим кальцием, чтобы получить фторид кальция и металлический уран. Эту реакцию удобнее записать в виде вот такого уравнения:

2Ca + UF4 → 2CaF2 + U.

Вы не видите в подробностях, как электроны меняют свою принадлежность в этой реакции, но, поскольку фтор всегда считается имеющим степень окисления минус один, за исключением газообразной формы F2, легко понять, что уран стартует со степени окисления +4, а каждый из двух атомов кальция приходит к степени окисления +2.

Одно из полезных свойств уравнения химической реакции заключается в том, что теперь мы можем точно подсчитать, сколько урана русские могли производить каждый месяц. Не буду утомлять вас деталями[35], но этот процесс не особенно отличается от подсчета количества меренги и майонеза, которое вы можете приготовить из определенного числа яиц. Поскольку уран гораздо «тяжелее» кальция, теоретически можно получить почти 200 тонн урана из 30 тонн кальция. При реальном производстве эта цифра ниже, а кальций используется с большим избытком. Американцы подсчитали, что с техническим максимальным выходом, равным примерно 1:2,2, из 30 тонн кальция получится лишь 66 тонн урана.

И все же основанные на этих цифрах подсчеты демонстрировали, что у русских гораздо больше урана, чем предсказывалось на основании доступных им источников этого элемента. По неясным причинам (Лёвенхаупт винил в этом «спесь») эта информация не привела к соответствующим действиям, иначе дата первых испытаний русской атомной бомбы наверняка была бы пересмотрена. Неизвестно, привело бы это к каким-либо изменениям, но фактором, который, возможно, оказал некое влияние, стала операция «Гаечный ключ», разработанная легендарным офицером МИ6 и химиком Эриком Уэлшем.

Самой важной технической характеристикой металлического кальция можно считать содержание примесного бора. Бор — элемент с символом В и зарядовым числом 5 — существует в природе в двух формах, которые мы называем изотопами: одна с пятью протонами и пятью нейтронами в ядре,10В, и одна с дополнительным нейтроном,11В, или бор-11 (использование надстрочных и подстрочных индексов показано на рисунке 6). Для ученых-ядерщиков бор-10 представлял собой большую проблему, так как его атомы поглощали любые нейтроны, которыми обстреливали образец урана, чтобы расщепить его атомы (а также вторичные нейтроны, полученные в результате этого расщепления, где продуктом был плутоний), в итоге превращаясь в бор-11. Если в металлическом уране было слишком много бора-10, то ядерная реакция просто прекращалась.

Обычный химический анализ металлического кальция с завода в Биттерфельде не показал бы, сколько изотопов каждого типа в нем присутствует, поскольку их химические свойства идентичны: в обычных тестах проверялось лишь то, что содержание бора составляло менее одной части на миллион. Капитану Уэлшу пришла в голову идея заменить природный бор, в котором содержится лишь 20 % губительного бора-10, на искусственно обогащенный образец. При условии, что происхождение образца никогда не будет предано огласке, материал с 90 %-ным содержанием бора-10 (при таком его уровне ядерное применение металлического урана становится совершенно невозможным) можно было получить в Комиссии США по атомной энергии, которая, в свою очередь, получила его как побочный продукт Манхэттенского проекта.

Рисунок 6. Как пишутся массовое число и зарядовое число рядом с символом элемента? «5» и «В» говорят об одном и том же, но «11» обозначает конкретный изотоп, который мы также можем назвать бор-11.

Однако операция так и не была осуществлена, несмотря на то что обогащенный материал передали агенту на завод в Биттерфельд. Производство кальция на некоторое время остановилось, и агент опасался, что операцию разоблачили; а потом русские взорвали свою бомбу и построили собственные заводы по производству кальция, и всю операцию свернули. Но агент зря беспокоился. Уэлш настаивал на проведении операции под непосредственным руководством «С» («М» в романах о Джеймсе Бонде), в обход Кима Филби[36] и ему подобных, так что операция была бы вполне надежной — или, по крайней мере, настолько надежной, насколько это вообще возможно для подобных затей[37]. (Немецкого инженера и агента МИ6 вскоре эвакуировали и поселили в Аргентине под другим именем[38].)

Образец материала с примесями бора спокойно вернулся из Восточной Германии в Комиссию США по атомной энергии, и не существует никаких письменных свидетельств, что он когда-либо покидал отведенную ему полку в хранилище. Биттерфельд сыграл в истории урана центральную роль, но в нынешние времена ему приходится довольствоваться тем, что там проводится фестиваль хеви-метал музыки United Metal Maniacs.

Даже если мы не облучаем атомы урана нейтронами, они естественным образом разрушаются сами в процессе, известном как радиоактивный распад. Этот распад может происходить разными способами. В одном из вариантов распада излучается альфа-частица, больше известная как ион He2+. В противоположность металлическому кальцию — мощному восстановителю, который охотно отдает свои электроны, — He2+ является сильным окислителем и крадет электроны у любого атома, встретившегося у него на пути, чтобы стать нормальным газообразным гелием. Весь имеющийся на Земле гелий, включая тот, которым заполнены воздушные шарики, купленные детям на прогулке в парке, когда-то был частью атома урана или тория (торий, Th, с зарядовым числом 90 — это еще один важный природный радиоактивный элемент). Воздушный шар с гелием, или, вернее, его отсутствие, станет одной из главных тем в главе 3.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Химия навсегда. О гороховом супе, опасности утреннего кофе и пробе мистера Марша предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

30

При реакции с металлическим натрием выделяется такое количество тепла, что водород иногда воспламеняется.

31

Некролог Henry S. Lowenhaupt, 87; CIA Trailblazer // The Washington Post. 14 March 2006.

32

Lowenhaupt H.S. Chasing Bitterfeld Calcium // Studies in Intelligence, 1 (17). 1996 (подчищенная версия: оригинал опубликован в 1973 г.).

33

Мы использовали это слово в предисловии; возможно, в школе вы слышали другой термин — электронная оболочка.

34

Это важный промышленный процесс. Неон и другие благородные газы используются в самых разных целях, а жидкий азот очень важен для охлаждающих установок, но его нужно отделить от жидкого кислорода — весьма опасного вещества.

35

Тем не менее вот эти детали. На каждый атом урана вам требуется два атома кальция. Поскольку атомная масса урана — 238, а кальция — 40, это означает, что на 80 г кальция вы можете получить 238 г урана, а 30 тонн кальция дадут вам (по крайней мере, если теоретически предположить, что реакция пройдет хорошо) 30 × 238: 80 = 187 тонн урана.

36

Один из руководителей британской разведки, коммунист, агент советской разведки с 1933 года и член Кембриджской пятёрки.

37

Goodman M.S. Spying on the Nuclear Bear: Anglo-American Intelligence and the Soviet Bomb. Stanford University Press, 2007.

38

Campbell C. A Questing Life. iUniverse, 2006.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я