√Жизнь. Математика как способ стать счастливее и жить дольше

Кристиан Гессе, 2018

«Равно как любовь и музыка, математика обладает даром делать людей счастливыми», – постулирует автор, немецкий математик Кристиан Гессе. Хотите, чтобы ваш брак был более счастливым? Просто воспользуйтесь формулой 5:1. Желаете продлить себе жизнь или по справедливости разделить торт? Выиграть в лотерею? Сделать умную ставку? Научиться предсказывать будущее? И это не проблема. Автор знакомит с простыми правилами, которые вполне компенсируют сложный анализ и быстрее выводят к верным решениям. Одолев 31 главу этой книги, вы усвоите вводный практический курс математических премудростей, которые помогут зажить по-новому. Математика – это не только грандиозный мысленный эксперимент, но и сформированный параллельно с древней человеческой культурой инструмент, который всегда следует держать под рукой. Отопление работает, самолет летит, мост стоит, только когда верны расчеты. Однако эта универсальная наука способна решать и вполне бытовые проблемы, в чем вам предстоит убедиться. В формате PDF A4 сохранен издательский макет книги.

Оглавление

Из серии: Наука для вундеркинда

* * *

Приведённый ознакомительный фрагмент книги √Жизнь. Математика как способ стать счастливее и жить дольше предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

3

Стремление к лучшей войне

В этой главе автор знакомит с формулой поиска справедливости и показывает, как эта формула позволяет избежать столкновений в ходе развода.

В западном мире каждый второй брак приводит к разводу. В Германии число разводов достигает более четверти миллиона ежегодно. Любой развод предполагает раздел имущества. Не всегда это происходит мирно. Наоборот. Иногда бракоразводные конфликты перерастают в фазу войны. Эмоциональный накал усиливается.

Заметка о профилактике разводов

Подтверждено статистикой: если имена супругов начинаются с одной буквы, брак будет более устойчивым.

Тяжба о разделе имущества… Еще в Библии приведен известный пример. Царь Соломон должен был примирить двух враждующих женщин. Обе утверждали, что они матери одного ребенка. Его решение было соломоновым. Он взял меч, чтобы рассечь ребенка пополам и передать каждой женщине по половине. Одна из них начала умолять его не делать этого. Этой женщине царь и отдал ребенка, так как стало очевидно, что она была матерью. Мудрое и правильное решение. Не всегда найдется такой мудрый судья.

Разделить ребенка между двумя женщинами было сравнительно легко. Но как при разводе разделить все имущество враждующей пары?

Возьмем Дональда Трампа. В 1991 году он был далеко не президентом США, а лишь одной из враждующих половин в бракоразводном процессе. Другой половиной была его прежняя жена Ивана. Предмет спора включал семейный особняк в Коннектикуте, курорт Мар-а-Лаго во Флориде, апартаменты в Нью-Йорке, комплекс в Трамп-тауэре плюс 60 миллионов долларов наличными.

Примерно здесь ничего не разделить. Процедура должна быть справедливой. Может быть, применить самую старую стратегию раздела имущества в мире? Она настолько проста, что вряд ли можно вести речь о стратегии «я делю, ты выбираешь».

Принцип «разделить и выбрать» — простой, но справедливый подход. Тем не менее тому, кто делит, легко манипулировать выбором. Тот, кто выбирает, вынужден смириться с тем, что имеет, если ему предстоит выбор из двух частей, каждая из которых ему не нравится.

Делению можно научиться

В одном эксперименте малышам было предложено разделить торт для себя и другого ребенка. Им было сказано: после того, как кусок торта будет разделен, они первыми смогут выбрать часть для себя. Кроме того, им было сказано, что выбранный для себя кусок торта будет возвращен обратно, если другой ребенок останется недоволен полученной частью торта. Только нескольким 5-летним детям удалось поделить кусок торта поровну. Большинство из них отрезали себе гораздо больший кусок.

Гораздо более успешным оказался принцип, придуманный 20 лет назад Стивеном Брэмсом и Аланом Тейлором. Политологом и математиком. Немного посчитаем в уме. Брэмс и Тейлор используют систему баллов. Участники составляют список, начисляют баллы, формируют две суммы, решают небольшое уравнение. Готово! Быстрее, чем готовят пятиминутный террин.

Конкретнее: оба визави располагают 100 баллами на одного. Они могут присваивать предметам, задействованным в споре, сколько угодно баллов в зависимости от собственных предпочтений. Если какой-либо предмет представляется вам более важным, ему присваивают больше баллов, что гарантированно позволит его получить. Менее важному предмету будет присвоено меньше баллов. Когда баллы присвоены, происходит первое распределение: каждая из сторон получает предметы, которым присвоены более высокие баллы, чем другим.

Каждый участник спора получает таким образом предметы на определенную сумму баллов. На следующем этапе тот, кто получил предметы на меньшую сумму, получает все объекты до достижения суммы баллов соперника. Если суммы баллов у обоих участников сравнялись, спор считается разрешенным. Если нет, то предпринимается еще один шаг.

На этом этапе участник, обладающий предметами на бо́льшую сумму баллов, должен уступить сопернику. Отдать какую-то долю наиболее сходного объекта или даже получившего равное количество баллов у обоих. То есть такого, которому оба участника выставили баллы, частное которых максимально приближено к 1. От этого объекта соперник передает ту долю, которая точно компенсирует недостающие баллы и уравновешивает суммы, полученные обеими сторонами.

В нашем примере с Дональдом и Иваной предположим, что Дональд присвоил пяти объектам — семейному особняку, отелю, квартире, этажу в башне Трамп-тауэр и денежной сумме — 10, 35, 20, 15 и 20 баллов соответственно. У Иваны порядок тот же, и объектам присвоено 35, 10, 25, 10 и 20 баллов соответственно.

Отель значит для Дональда больше. Для Иваны же важнее всего семейный особняк, который, наоборот, обладает для Дональда наименьшей ценностью. Денежную сумму оба оценили равнозначно, и ее «цена» находится примерно в центре шкалы.

Теперь выполним первое действие: Иване достанется семейный особняк и квартира, так как им она присвоила больше баллов, чем Дональд. Он же получит отель и комплекс в башне Трамп-тауэр. Ивана набрала 35 + 25 = 60 баллов. Выручка Дональда: 35 + 15 = 50 баллов.

Дональд отстает на 10 очков. Поэтому пока ему переходит последний предмет спора — все наличные. С дополнительными 20 баллами он поднялся до 70 баллов и опередил Ивану с ее 60 баллами. Сейчас предварительно все имущество распределено. Предварительно, так как количество баллов только примерно уравновешено.

Для достижения полного баланса необходимо предпринять еще несколько действий. Дональд наиболее близок к оценке Иваны и в то же количество баллов оценил наличные деньги. Если из всей наличности некоторая доля x перейдет Иване, то у Дональда останется сумма баллов, равная 70–20x. Ивана же приобретет уступленную долю и будет располагать суммой баллов, равной 60 + 20x. Сразу становится ясно, что x = 1/4 — такое соотношение было бы правильным для того, чтобы достичь равенства сумм, равных 65 баллам. Таким образом, Дональд должен уступить Иване четверть наличных денег от их общей суммы, равной 60 миллионам долларов. Дополнительно к семейному особняку и квартире ей перейдет 15 миллионов долларов. Остальное достанется Дональду.

Результат расчетов удивляет: практически полное совпадение с соглашением о разделе имущества при разводе. Кстати, вышеуказанный метод вряд ли использовали при разделе, так как в то время он еще не был сформулирован. Выполненное нами теоретическое, но правдоподобное распределение баллов привело к результату, который действительно получили Дональд и Ивана при разводе.

Метод обладает рядом положительных характеристик. Во-первых, он позволяет обеспечить соблюдение принципа справедливости: каждая из сторон получает более половины предметов имущества с максимальным баллом по личной шкале, а иногда даже более 65 %. Причем с обеих сторон! Кстати, как правило, каждой из сторон отходит около двух третей стоимости предметов спора по личной шкале оценки. То есть проигравший отсутствует: метод позволяет получить «двух победителей» при разделении предмета спора.

Конец ознакомительного фрагмента.

Оглавление

Из серии: Наука для вундеркинда

* * *

Приведённый ознакомительный фрагмент книги √Жизнь. Математика как способ стать счастливее и жить дольше предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я