Руководство по спортивной медицине

Коллектив авторов, 2011

Руководство рекомендовано Экспертным советом по лечебной физкультуре и спортивной медицине Министерства здравоохранения и социального развития РФ для специалистов по спортивной медицине, студентов медицинских и физкультурных вузов, преподавателей факультетов и вузов физической культуры и спорта, тренеров и методистов по оздоровительным формам физической культуры и спорта. Спортивная медицина – специальная дисциплина государственных образовательных стандартов по нескольким направлениям подготовки (здравоохранение, гуманитарные и социальные науки) и специальностям: 060101 «Лечебное дело», 060103 «Педиатрия», 032100 «Физическая культура», 032101 «Физическая культура и спорт», 032102 «Адаптивная физическая культура». В формате a4.pdf сохранен издательский макет.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Руководство по спортивной медицине предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

ЧАСТЬ I. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ СПОРТИВНОЙ МЕДИЦИНЫ

ГЛАВА 1.

ФИЗИОЛОГИЯ ДЕЯТЕЛЬНОСТИ И ОСНОВЫ БИОЭНЕРГЕТИКИ МЫШЦ

1.1. Структура и свойства скелетных мышц.

Механизм мышечного сокращения

Особенностью мышц является их способность избирательно трансформировать химическую энергию в механическую. Последняя проявляется в виде силы или движения. Механическая энергия мышц затрачивается на потребности вегетативных функций внутри организма или на выполнение функций, связанных с взаимодействием организма и внешней среды. В первом случае используется энергия гладких мышц, во втором случае — энергия поперечнополосатой мускулатуры.

Скелетная мышца состоит из множества функциональных единиц — мышечных волокон или клеток. Они имеют цилиндрическую форму и расположены параллельно друг другу. Это многоядерные клетки 0,01 — 0,1 мм в диаметре, достигающие нескольких сантиметров в длину. К каждому мышечному волокну через специальную зону контакта — синапс — присоединено окончание нервного волокна. В свою очередь, каждое мышечное волокно состоит из 1000 — 2000 параллельно расположенных субъединиц (диаметром около 1 мкм), называемых миофибриллами, которые включают в себя повторяющиеся в продольном направлении блоки — саркомеры. Оба конца мышечного волокна образованы соединительной тканью, посредством которой волокно прикрепляется к костям скелета. В целой мышце эта соединительная ткань образует сухожилие, или апоневроз. Нормальная функция мышцы зависит от тех влияний, которые она получает из нервных центров благодаря нервным волокнам. Функциональное единство поперечнополосатой скелетной мышцы обеспечивается, таким образом, нервным волокном и совокупностью иннервируемых им мышечных волокон. Каждое моторное нервное волокно (аксон), являющееся отростком двигательной клетки передних рогов спинного мозга, иннервирует не одно, а целую группу мышечных волокон. Такая группа получила название моторной (или двигательной) единицы (МЕ). Количество мышечных волокон, входящих в ее состав, варьируется от 10 до 3000 ME. Наименьшее число волокон содержится в быстрых мышцах, обеспечивающих точные тонкие движения. Так, в МЕ глазных мышц и мышц пальцев руки содержится по 10 — 25 мышечных волокон, причем каждое из них получает иннервацию от нескольких нервных волокон. С другой стороны, мышцы, обеспечивающие поддержание позы, состоят из МЕ, имеющих в своем составе 2000 — 3000 волокон.

Виды сокращений. В экспериментах над животными мышечное сокращение обычно вызывают электрическим раздражением. Раздражитель может состоять из одного изолированного электрического стимула (длительностью, например, 1 мc) или содержать серию электрических стимулов (повторяющаяся стимуляция).

У скелетных мышц выделяют соответственно одиночное сокращение и суммированное (тетанус).

Одиночное сокращение возникает в ответ на одиночный пороговый стимул. В нем выделяют три фазы: латентный период, фаза укорочения и фаза расслабления. Во время латентного периода не регистрируется никаких механических феноменов, по его прошествии наступает фаза укорочения, во время которой быстро нарастает напряжение мышцы. Фаза расслабления продолжается примерно в 2 раза дольше, чем фаза укорочения. Для одной и той же мышцы время сокращения увеличивается при снижении температуры или при утомлении мышцы. Для мышц с очень высокой быстротой сокращения, в частности для глазодвигательных мышц, время сокращения составляет 7 — 10 мc; для мышц конечностей это время длится от 25 до 40 мc. Для камбаловидной мышцы (M. soleus), играющей важную роль в сохранении позы и имеющей низкую быстроту сокращения, это время достигает 90 — 120 мc. Мышцы с высокой быстротой сокращения образуют бледные волокна, у мышц с малой быстротой сокращения волокна красные, богатые миоглобином. Мышцы-сгибатели принадлежат к первому типу, разгибатели, играющие важную роль в поддержании позы, — ко второму.

Сокращение, как и возбуждение, распространяется вдоль мышечных волокон. Скорость прохождения волн возбуждения и сокращения одинакова. Например, для двуглавой мышцы плеча скорость возбуждения составляет 3,5 — 5 м/с. Ввиду относительно большой длительности сокращения наступает момент, когда вся мышца сокращена, так как последние ее участки, до которых доходит волна возбуждения, уже сократились, а первые еще не расслабились. Этот момент соответствует моменту максимального укорочения.

Величина одиночного сокращения прямо пропорциональна силе раздражения. Однако при достижении определенной силы раздражения величина сокращения перестает расти, несмотря на дальнейшее повышение силы раздражения. Это объясняется тем, что каждое волокно обладает разной возбудимостью и реагирует по закону «все или ничего». При пороговой силе реагируют наиболее возбудимые волокна. Чем сильнее раздражитель, тем больше волокон возбуждается. При максимальном сокращении возбуждаются все волокна мышцы.

В естественных условиях в организме скелетная мышца получает обычно из нервной системы не одиночные раздражения, а ряд быстро следующих друг за другом нервных импульсов. Под влиянием ритмических раздражений наступает длительное и сильное укорочение мышцы, которое называется тетаническим сокращением, или тетанусом. То, что тетанус возникает в результате действия серии одиночных возбуждений, доказывает регистрация потенциалов действия в тетанически сокращенной мышце. Так, при произвольных движениях руки у человека число потенциалов действия достигает 50 — 70 в секунду.

Тетанические сокращения представляют собой результат суммации одиночных сокращений. Для искусственного воспроизведения тетануса на мышцу действуют серией раздражителей, следующих друг за другом. Если поступает несколько раздражений с интервалом большим, чем фаза укорочения, то возникает явление, которое называется зубчатым тетанусом. При частоте следования раздражений, которая меньше фазы укорочения или равна ей, возникает гладкий тетанус. Амплитуда гладкого тетануса зависит от частоты раздражения. Если каждый последующий раздражитель поступает в фазу экзальтации (повышенной возбудимости), то ответ мышцы будет достаточно большим. Если раздражитель поступает в период сниженной возбудимости (относительная рефрактерная фаза), то ответ мышцы будет много меньше. Такая зависимость амплитуды ответа от частоты раздражения получила название оптимума и пессимума частоты раздражения. Например, á-мотонейрон может посылать к мышце импульсы с частотой 20 имп/с, 40 имп/с, 50 имп/с. В зависимости от частоты величина сократительного ответа будет различной. Это один из способов регуляции силы мышечных сокращений. В реальных условиях все сокращения скелетных мышц возникают в ответ на периодическую стимуляцию и являются тетаническими. Сравнение отдельного мышечного сокращения с тетаническим показывает, что напряжение, развивающееся при тетанусе, выше максимального напряжения, регистрируемого во время одиночного; разница часто достигает соотношения 4: 1.

Для скелетной мышцы характерен еще один вид активности — контрактура. После прекращения тетанического раздражения мышечные волокна расслабляются вначале не полностью — их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется послететанической (остаточной) контрактурой. Природа контрактур заключается в остаточной длительной деполяризации мышечной мембраны. В целостном организме контрактура возникает при условиях патологии и проявляется в длительном слитом сокращении мышцы.

Режимы сокращения скелетных мышц. Для скелетных мышц характерны два основных режима сокращения: изометрический и изотонический. Изометрический режим проявляется тогда, когда в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы, например мышца пытается поднять непосильный груз, она не укорачивается. Изотонический режим проявляется, когда мышца первоначально развивает напряжение, способное выполнить работу, например поднять данный груз. Потом мышца укорачивается — меняет свою длину, сохраняя напряжение, равное весу поднятого груза. Так как изотоническое сокращение не является исключительно изотоническим (элементы изометрического сокращения имеют место в самом начале сокращения мышцы), как и изометрическое тоже не является полностью изометрическим (элементы смещения все-таки есть), то предложено употреблять термин ауксотоническое сокращение, т. е. смешанное по характеру.

В реальной практике оба режима могут переходить из одного в другой. Так, когда мышечная стенка полого органа начинает сокращаться, а орган содержит жидкость и выход из него закрыт сфинктером (сердце, мочевой пузырь), то возникает ситуация изометрического режима: давление внутри полого органа растет, а размеры его не могут измениться, так как жидкость не сжимается. На определенной величине давления сфинктер открывается и мышца переходит в изотонический режим сокращения на время изгнания жидкости из полости органа, когда напряжение сохраняется на постоянном уровне.

Механизм мышечного сокращения. Для того чтобы понять сущность процесса сокращения мышечного волокна, необходимо вспомнить, что каждое мышечное волокно состоит из миофибрилл, которые включают в себя повторяющиеся в продольном направлении блоки — саркомеры, отделенные друг от друга так называемыми Z-пластинками (сеть из переплетающихся белковых молекул). Сверху миофибриллы покрыты мембраной мышечного волокна — плазмалеммой, толщина которой порядка 10 нм. Функциональной единицей миофибриллы поперечнополосатой мышцы является саркомер. В обоих направлениях от Z-пластинки тянутся тонкие нити (филаменты), состоящие из белка актина. Они переплетаются с толстыми нитями белка миозина. Миозиновые нити образуют наиболее оптически плотную часть саркомера — А-диск. Светлый участок в середине А-диска называют зоной Н. Здесь находятся только миозиновые нити и нет актиновых. В середине Н-зоны располагается М-линия, в которой находятся ферменты (например, креатиназа), играющие важную роль в энергетическом метаболизме. На участках взаимного перекрытия каждая миозиновая нить окружена шестью актиновыми, а каждая актиновая — тремя миозиновыми. На миозиновых нитях обнаружены мелкие выступы, называемые поперечными мостиками. Они расположены вдоль миозиновых нитей в виде 2-нитчатой спирали. Во время сокращения эти мостики смыкаются с актиновыми нитями. Актиновая нить образована двумя спиральными тяжами из глобулярных молекул актина (G-актин), закрученными один вокруг другого. В продольных бороздках актиновой спирали находятся нитевидные молекулы белка тропомиозина. Это палочкообразный фибриллярный белок, палочки соединяются конец в конец и образуют два тяжа, закрученных в виде спирали вокруг актина. К каждой молекуле тропомиозина прикреплен комплекс молекул глобулярных белков под общим названием тропонин.

Молекула миозина состоит из двух частей: длинного палочкообразного участка, который подразделяют на шейку и хвост, и глобулярного участка, представленного двумя одинаковыми головками. Диаметр этого участка молекулы составляет 4 нм, длина — 20 нм. Если молекулу миозина обработать протеолитическим ферментом трипсином, то она распадется на две части: легкий меромиозин и тяжелый меромиозин. Последний, в основном образованный головкой и шейкой молекулы, обладает ферментативной и актинсвязывающей активностью. Миозиновые нити формируются объединением отдельных молекул. Хвосты молекул ориентированы к середине, а головки направлены в противоположные стороны и образуют выступы на нити. Молекулы миозина расположены в миозиновой нити так, что головки равномерно распределены по всей длине (кроме небольшого участка в середине).

При наблюдении в микроскоп было обнаружено, что при сокращении ширина А-дисков не изменяется, тогда как I-диски (изотропные) и зоны Н становятся более узкими, т. е. изменяется ширина взаимного перекрытия актиновых и миозиновых нитей. Исходя из этого, A. F. Huxley в 1954 г. предложил для объяснения механизма мышечного сокращения теорию скольжения нитей (рис. 1).

Рис. 1. Модель механизма сокращения — миозиновая нить с поперечными мостиками, прикрепленными к актиновым нитям:

а — схема сокращения мышечного волокна в пределах саркомера; Z — пластинка;

б — схема работы поперечного мостика (единицы соединения актина и миозина)

Согласно теории, укорочение саркомера происходит благодаря активному скольжению тонких актиновых нитей относительно толстых миозиновых в пределах саркомера. Длина самих нитей при этом не изменяется. Во время сокращения каждая головка миозина или поперечный мостик могут связывать миозиновую нить с актиновой. Наклоны головок создают объединенное усилие, и происходит «гребок», продвигающий актиновую нить к середине саркомера. Биполярная организация молекул миозина обеспечивает возможность скольжения актиновых нитей в противоположном направлении в обеих половинах саркомера.

Механизм этого процесса может быть объяснен за счет электромеханического сопряжения, т. е. передачи сигнала возбуждения с мембраны на миофибриллы. Ключевую роль при этом играют ионы Са2+. В расслабленном состоянии, т. е. при низкой концентрации ионов Са2+, регуляторные белки — тропомиозин и тропонин C — блокируют прикрепление поперечных мостиков миозина к актиновым нитям. Возбуждение вызывает высвобождение ионов Са2+ из саркоплазматической сети. Это ведет к тому, что концентрация Ca при возбуждении внутри волокна увеличивается и ионы Са2+ соединяются с молекулой тропонина. В результате происходит смещение молекулы тропомиозина, что обеспечивает возможность прикрепления миозиновых поперечных мостиков к актиновым нитям. Это конформационное изменение инициирует ряд процессов, приводящих к сокращению мышцы. Следовательно, в покое белки тропонин и тропомиозин препятствуют соединению мостиков миозина с актином. Активация Са2+ ведет к инактивации регуляторных белков, и происходит присоединение мостиков.

Следующий вопрос состоит в том, как мышца преобразует химическую энергию в механическую. Сами сократительные белки — актин и миозин не обладают аденозинтрифосфатазной (АТФазной) активностью. Однако, связавшись с актином, миозиновая головка поперечного мостика в присутствии ионов Мg2+ приобретает активность АТФазы и катализирует расщепление аденозинтрифосфорной кислоты (АТФ). Молекула АТФ связывается с активным АТФазным центром головки миозина и отделяет ее от актиновой нити. Гидролиз сопровождается конформационными изменениями головки молекулы миозина, переводя ее в высокоэнергетическое состояние.

Циклическая активность поперечных мостиков (ритмическое прикрепление и отсоединение), которая обеспечивает мышечное сокращение, возможна до тех пор, пока продолжается гидролиз АТФ, т. е. пока происходит активация АТФазы и существует достаточная концентрация ионов Са2+. В нормальных условиях расслабление мышцы происходит за счет того, что ионы Са2+, выделившиеся при возбуждении, начинают активно поглощаться саркоплазматическим ретикулумом (СПР). Уровень Са2+ в саркоплазме снижается, и тропомиозин начинает препятствовать присоединению поперечных мостиков. Мышца остается расслабленной до тех пор, пока вторично не произойдет следующая деполяризация мембраны.

1.2. Энергетика мышечной работы

Мышечную массу туловища составляют поперечнополосатые мышцы. Они являются самой объемной тканью тела человека, достигая у мужчин 50 % массы тела. Их деятельность контролируется сенсорными участками коры головного мозга и подкорковых центров движения.

Реализация движений и локомоций является основной функцией поперечнополосатых мышц. Кроме того, они являются самым крупным генератором биологической энергии в силу своей массы и выполняют функцию «второго сердца», способствуя возврату венозной крови в правое сердце, пропульсивно воздействуя на стенку периферических вен.

Все это в еще большей степени подчеркивает значимость движений для жизнедеятельности организма. Поперечнополосатые мышцы подвержены возрастной инволюции — устариков доля мышечной ткани уменьшается до 27 %, снижается тонус мышц и резко падает объем двигательной активности. С этим связано уменьшение роли мышц как генератора энергии и снижение выполняемой роли «второго сердца», что приводит к отекам, застоямит.д.

Коэффициент полезного действия (КПД) мышечной работы очень велик — 37 — 65 %. Энергия мышечного сокращения расходуется на изменение пространственного взаимоотношения сократительных белков.

Мышечная клетка. Наиболее значимыми белковыми фракциями мышечной клетки являются:

— белки миогеновой группы — в основном ферменты гликолиза и миоальбумин;

— миоглобин — красный хромопротеид, «родной брат» гемоглобина, определяющий красный цвет мышечной ткани; он содержит в своем составе свободный, легко окисляемый атом железа, связывает и транспортирует кислород в пределах цитоплазмы клетки;

— глобулины — ферменты и запасные белки, способные при тренировке преобразовываться в сократительные белки миофибрилл;

— миофибриллярные белки: миозин и актин, ферменты и др.;

— ядерные белки — нуклеопротеиды.

Наиболее значимыми из энергетических фракций являются такие водорастворимые азотистые соединения, как АТФ (0,25 — 0,4 % от сухого остатка клетки) и креатининфосфат (КрФ) — 0,4 — 1,0 % от сухого остатка клетки.

К важнейшим безазотистым энергетическим фракциям относится гликоген, который может составлять до 2 % сухого остатка клетки. Он может находиться в свободном и связанном состоянии, причем физическая тренировка значительно увеличивает количество свободного гликогена, что существенно повышает сократительную способность миофибрилл. Кроме этого, в механизме мышечного сокращения играют роль жиры, холестерин и минеральные соли.

Из других включений в цитоплазму клетки обращают на себя внимание митохондрии (митохондриальные кристы). Молекулярные биологи считают, что в них происходит аэробный синтез АТФ и синтез белков. В мембранах митохондриальных крист очень высок электрохимический потенциал ионов водорода, что позволяет рассматривать их как дополнительный источник внутриклеточной энергии, обеспечивающий эффективность перехода электролитов через клеточную мембрану.

Располагающиеся на клеточной мембране миоцита разноименно заряженные ионы металлов (калия, кальция, магния, натрия, кремния и др.) определяют работу «ионных мембранных насосов».

Мышечные волокна. Мышечные клетки структурно организованы в мышечные волокна. Общеизвестны два вида мышечных волокон (о них мы упоминали выше). Это белые мышечные волокна, называемые еще «быстрыми», и красные мышечные волокна — «медленные».

Белые волокна первыми откликаются на команду к деятельности со стороны центральной нервной системы (ЦНС), играя роль своеобразного стартера. В них преимущественно развиты анаэробные процессы ресинтеза АТФ, основным способом энергообеспечения является анаэробный гликолиз, который протекает в них с более высокой скоростью. Также белые волокна характеризуются относительно низким количеством митохондрий и миоглобина, высокой активностью миозиновой трифосфатазы, высокой буферной емкостью и хорошо развитым СПР. Они приспособлены к мощной, взрывной работе в короткий промежуток времени.

Красные мышечные волокна включаются в работу позднее белых, когда к тому возникнут определенные условия метаболизма. В этих волокнах низкая скорость гликолиза, но высокая интенсивность тканевого дыхания, высокое содержание миоглобина и митохондрий, низкая активность миозиновой АТФазы, низкая буферная емкость, значительно хуже развит СПР. Красные волокна предназначены для выполнения работы легкой либо умеренной мощности, но в течение длительного времени. При необходимости работа может выполняться часами.

Наличие красных и белых волокон в организме человека — фактор генетически обусловленный, тренировками ничего изменить нельзя. Образно говоря, всех людей на земле можно разделить на «спринтеров», у которых преимущественно развиты белые волокна и которыми легче переносится работа мощная и кратковременная, и «стайеров» — у них преимущественно развиты красные волокна, ими легче переносится работа маломощная и длительная. Именно этот факт лежал в основе выявления детей, предрасположенных к успехам в конкретных видах спорта.

Регуляция мышечного функционирования. Отмечается строгая последовательность смены энергетических реакций. Как только емкостные характеристики определенной реакции исчерпываются на 50 %, начинает разворачиваться следующая реакция. Некоторое время обе реакции работают вместе, затем первая прекращается и биоэнергетическое обеспечение мышечной деятельности осуществляется за счет второй реакции. Когда и эта реакция исчерпает свои емкостные характеристики на 50 %, начинает разворачиваться следующая по счету. Они также какое-то время работают вместе, затем вторая реакция угасает и биоэнергообеспечение мышечной деятельности идет за счет третьей реакции.

Выделившаяся в ходе гидролиза АТФ энергия расходуется на изменение пространственного взаимоотношения сократительных белков. По современным представлениям молекулярной биологии, при мышечном сокращении происходит повторяющееся образование и разрушение спаек между миозиновыми молекулами миозина и актина.

Расщепление АТФ в мышце происходит с очень большой скоростью — до 10 мкмоль/мин на 1 г мышцы.

1.2.1. Реакция гидролиза аденозинтрифосфорной кислоты

В анаэробных условиях АТФ вступает в гидролитическое расщепление:

где E — энергия.

Образовавшиеся в ходе гидролиза аденозиндифосфорная кислота (АДФ) и фосфорная кислота (H3PO4) служат в дальнейшем продуктами для синтетических процессов. Выделившаяся энергия преобразуется в механическую работу. АТФазная энергия обеспечивает такие виды спорта, как спринт, гольф, теннис.

Накапливать большее количество АТФ мышца не может. Между тем и минимальное количество АТФ не может опускаться ниже генетически определенного уровня. Если такое произойдет, то случится поломка «кальциевого насоса», и мышца будет сокращаться вплоть до полного исчерпания всех запасов АТФ и развития состояния стойкого мышечного сокращения.

Запасов АТФ в мышце обычно хватает для энергетического обеспечения 3 — 4 одиночных сокращений максимальной силы, т. е. на 0,5 — 1,0 с работы.

Тем не менее значительного снижения концентрации АТФ не происходит. Это объясняется тем, что по ходу работы АТФ восстанавливается из продуктов распада с той же скоростью, с которой она расщепляется. Для ресинтеза АТФ из продуктов ее распада необходима энергия.

АТФ в митохондриях образуется в цикле Кребса, где ацетил-коэнзим А (ацетил-КоА) окисляется с участием кислорода до CO2 и образования АТФ. С помощью фермента-переносчика адениннуклеотидтранслоказы АТФ перемещается из митохондрий в цитозоль, где используется в различных метаболических реакциях.

В истории апробировались три способа возможного повышения уровня АТФ.

1. Во времена Первой мировой войны считали, что назначение в пищу фосфатов (4 г/сут) может улучшить физическое состояние человека. Позднее контролируемые клинические исследования не подтвердили эффективности фосфатной нагрузки.

2. Введение инозина (аденозина, рибоксина). Также не имеет смысла, так как дефицита и излишков АДФ и аденозинмонофосфорной кислоты (АМФ) в клетке не наблюдается. У спортсменов применение инозина не влияло на аэробные возможности и ухудшало анаэробные. Инозин метаболизируется в мочевую кислоту и приводит к гиперурикемии. При внутривенном введении рибоксин распадется в доли секунды практически в месте инъекции.

3. Введение экзогенной АТФ составляло основу метаболической терапии в 60 — 80-х гг. прошлого столетия. Так как в клетке используется только митохондриальная АТФ, попытки улучшить мышечный метаболизм за счет введения экзогенной потерпели неудачу.

1.2.2. Ресинтез аденозинтрифосфорной кислоты в миокиназной реакции

Миокиназная реакция происходит в мышцах при значительном увеличении концентрации АДФ в цитоплазме клетки. Такая ситуация возникает при выраженном мышечном утомлении, когда скорость процессов ресинтеза АТФ не уравновешивает скорость ее гидролиза. С этой точки зрения миокиназную реакцию можно рассматривать как аварийный механизм, обеспечивающий ресинтез АТФ в условиях, когда его невозможно осуществить другим путем:

При усилении миокиназной реакции часть образующейся АМФ может необратимо дезаминироваться и выводиться из сферы энергетического обмена. Это очень невыгодно организму, поскольку дезаминирование АМФ ведет к уменьшению общих запасов АТФ в мышцах со всеми вытекающими отсюда последствиями. И, тем не менее, некоторое увеличение концентрации АМФ в цитоплазме оказывает активирующее влияние на ферменты гликолиза и тем самым способствует повышению скорости анаэробного ресинтеза АТФ.

1.2.3. Ресинтез аденозинтрифосфорной кислоты в креатининфосфатазной реакции

В спортивной биохимии креатининфосфатазную реакцию называют реакцией энергетического буфера, или реакцией перефосфорилирования:

где Кр — креатин.

В мышцах человека креатининфосфокиназа обладает большой активностью, а исходные вещества реакции — АДФ и КрФ — проявляют высокое химическое сродство, поэтому и начинается реакция параллельно с началом гидролиза. Наивысшей скорости эта реакция достигает уже ко второй секунде. Ферментативное обеспечение реакции активизируется ионами Ca и, как это ни странно, креатинином — конечным продуктом реакции, что предотвращает ослабление ее интенсивности.

Эта реакция первой включается в процесс ресинтеза АТФ и протекает со значительной интенсивностью до тех пор, пока не будут исчерпаны запасы КрФ в мышцах. Реакцией «энергетического буфера» она называется за то, что обеспечивает постоянство содержания АТФ в мышцах при резких перепадах в скорости ее использования.

Содержание КрФ в мышцах примерно в 3 раза превышает содержание АТФ. Общие запасы фосфогенов в мышцах обеспечивают мышечную работу с максимальной силой в течение 10 — 15 с. В первые секунды, пока концентрация КрФ в мышцах высока, активность креатининфосфокиназы поддерживается на высоком уровне, эта реакция вовлекает в процесс большую часть АДФ и этим блокирует развитие других биоэнергетических реакций. Только после того как запасы КрФ в мышцах будут исчерпаны на 50 % (пятая-шестая секунды работы), скорость реакции начинает уменьшаться и постепенно в процесс ресинтеза АТФ вступает гликолиз. Это происходит с увеличением продолжительности работы. К тридцатой секунде скорость реакции уменьшается в 2 раза, а к третьей минуте составляет лишь 1,5 % от ее первоначального значения.

Креатининфосфатазная реакция протекает без кислорода, она легко обратима. После прекращения работы, когда в мышцах появляется переизбыток АТФ, происходит реакция ресинтеза КрФ, приводящая к восстановлению его до исходного уровня.

Креатининфосфатазная реакция составляет биохимическую основу локальной мышечной выносливости. Она играет решающую роль в энергетическом обеспечении кратковременных упражнений максимальной мощности — спринтерский бег (100 — 200 м), прыжки, метания, тяжелоатлетические упражнения. Эта реакция обеспечивает возможность быстрого перехода от покоя к работе, внезапных изменений темпа по ходу ее выполнения, финишного ускорения (спурт).

Возможности метаболической коррекции. Дополнительное введение креатинфосфата представлялось заманчивым способом усиления энергетических возможностей сократительного и пластического процессов. К сожалению, экзогенный креатинфосфат не проникает через клеточную мембрану и не может в обычных условиях поступить в клетку. Эта возможность появляется при нарушении проницаемости клеточных мембран при острых повреждениях, вызванных ишемией или чрезмерной физической нагрузкой. В спортивной медицине креатинфосфат в дозе 20 г/сут может быть полезен при кратковременных интенсивных физических нагрузках (спринт, хоккей и т. д.). В культуризме креатин позволяет существенно приподнять интенсивность тренинга, причем явное повышение силы чувствуется уже через 7 — 10 дней приема препарата в дозе 10 г/сут (по5гдоипосле тренировки).

В клинике креатинфосфат применяется только при остром инфаркте миокарда.

1.2.4. Ресинтез аденозинтрифосфорной кислоты в реакции анаэробного гликолиза

Как только в процессе мышечной работы креатининфосфатазная реакция перестает обеспечивать необходимую скорость восстановления АТФ и в клетке увеличивается концентрация свободных молекул АДФ, основную роль в ресинтезе АТФ начинает играть анаэробный гликолиз. В процессе гликолиза внутримышечные запасы гликогена и глюкозы расщепляются ферментативным путем до молочной кислоты:

При этом одна молекула глюкозы синтезирует всего две молекулы АТФ. Быстрому включению гликолиза в работу способствуют повышение концентрации АДФ и неорганического фосфора в цитоплазме клетки, а также свободные ионы Ca.

Максимальная мощность гликолиза несколько ниже предыдущей креатининфосфатазной реакции. Наибольшей скорости гликолиз достигает уже на тридцатой секунде работы, а к концу первой минуты становится основным источником энергии ресинтеза АТФ. Однако быстрое исчерпание небольших запасов гликогена в мышцах и снижение активности ключевых ферментов гликолитической цепи под влиянием накапливающейся молочной кислоты приводит к падению скорости гликолиза. Так, на двенадцатой-пятнадцатой минутах работы скорость гликолиза составляет только половину от первоначального значения.

Метаболическая емкость гликолиза определяется внутримышечными запасами углеводов и размерами буферных систем, что обеспечивает поддержание заданной мощности мышечной деятельности во временном интервале от 30 с до 2,5 мин. Таким образом, емкость гликолиза более чем в 10 раз выше емкости креатининфосфатазной реакции. И, тем не менее, эффективность гликолиза невысока. Это связано с тем, что большая часть энергии оказывается законсервированной в молекулах молочной кислоты, которая является промежуточным, недоокисленным продуктом химической реакции. Законсервированная энергия может быть выделена только в результате аэробного окисления. Поэтому КПД реакции всего около 37 %, т. е. более половины всей выделяемой энергии превращается в тепло и не может быть использовано для ресинтеза. В результате повышения скорости теплопродукции в работающих мышцах их температура увеличивается до 41 — 42 °C.

Образование молочной кислоты — недоокисленного, промежуточного продукта гликолитической реакции — происходит только в анаэробных условиях. В присутствии кислорода продуктом гликолитической реакции является пировиноградная кислота. Накопление молочной кислоты при анаэробной работе находится в прямой зависимости от мощности и времени выполнения работы. Увеличение количества молочной кислоты в цитоплазме мышечных клеток приводит к сдвигу рН в кислую сторону (метаболический ацидоз), нарушению процессов диффузии и осмоса. Клеточная мембрана «открывает» клетку, в межклеточную среду выходит молочная кислота, а из межклеточной среды в клетки засасывается вода, которая вызывает их набухание и ригидность. Это может стать причиной возникновения болевых ощущений в мышцах.

При чередовании периодов сокращения и отдыха мышца может работать без утомления. При интенсивной работе в условиях недостатка кислорода образовавшаяся молочная кислота легко диффундирует из мышц в кровь, и содержание ее в крови возрастает. В норме в крови содержится 0,555 — 2,220 ммоль/л молочной кислоты. При умеренной мышечной деятельности ее концентрация в крови может возрасти в 2 — 3 раза, при тяжелой работе это повышение выражено еще больше. Концентрация молочной кислоты повышается как в мышце, так и в крови. Возрастает также концентрация аммиака и других продуктов распада аденозинтрифосфорной и креатинфосфорной кислот. Вследствие этого наступает утомление мышцы, препятствующее дальнейшей работе.

Анаэробный гликолиз играет важную роль в напряженной мышечной деятельности, особенно в условиях неадекватного снабжения тканей кислородом. Он служит биохимической основой тренировки скоростной выносливости, является основным источником биологической энергии в упражнениях, продолжительность которых колеблется в пределах 0,5 — 3,0 мин (бег на средние дистанции, плавание 100 — 200 м, велосипедные гонки на треке, практически все гимнастические и акробатические упражнения и др.). За счет него также совершаются длительные ускорения по ходу упражнений и на финише дистанции.

Все, что приводит к накоплению гликогена в печени и мышцах, будет сопровождаться увеличением активности анаэробного гликолиза. Именно по этой причине основу питания здоровых людей и спортсменов составляют углеводы (70 %). Активность гликогенового синтеза значительно увеличена сразу после физических упражнений, в связи с чем насыщение углеводами должно начинаться сразу после выполнения нагрузки.

Возможности метаболической коррекции. Снижение уровня молочной кислоты и, соответственно, утомления мышц при анаэробной работе — интересное направление метаболической коррекции. Механизм действия цитруллина малата (Стимол) заключается в том, что малат выступает в роли метаболического посредника, помогающего обойти аммиачный блок окислительного пути и ограничить накопление молочной кислоты посредством переориентации ее в сторону глюконеогенеза, а цитруллин как промежуточный продукт цикла мочевины способствует ускорению этого цикла и выведению аммиака. Это лекарственное средство можно рассматривать как оптимальный вариант выбора терапии при астеническом синдроме различного генеза, приемлемый для пациентов всех возрастных групп.

Препарат эффективно стимулирует цикл Кребса, предотвращает развитие молочнокислого ацидоза, повышает уровень продукции АТФ. В спорте цитруллин применяют по 3 г дважды в день натощак. Некоторые специалисты рекомендуют принимать препарат за 30 мин до начала тренировки и тотчас же вслед за ее завершением.

1.2.5. Ресинтез аденозинтрифосфорной кислоты в аэробном процессе

Миокард во многом отличается от скелетной мускулатуры. Сердечная мышца относится к непрерывно функционирующим органам. Для нее характерно аэробное превращение веществ. Несмотря на то что при мышечной работе функция сердца также повышается, компенсаторно-защитные системы ее способствуют большей работоспособности, если сердце не поражено каким-либо патологическим процессом. Основная особенность миокарда состоит в том, что при интенсивной работе в нем не накапливается молочная кислота при распаде гликогена, это обусловлено преобладанием в миокарде аэробных процессов над анаэробными. Более того, молочная кислота служит одним из основных источников энергии для миокарда. Наряду с ней в качестве источника энергии расходуются пировиноградная кислота, глюкоза, гликогенные аминокислоты и жирные кислоты.

Скелетная мускулатура, в отличие от сердечной, не может непосредственно утилизировать молочную кислоту. Для ее использования скелетной мускулатурой молочная кислота должна попасть в печень, где она превращается в гликоген, который далее утилизируется работающими мышцами.

Использование миокардом молочной кислоты, образующейся в работающей скелетной мышце и способствующей ее утомлению, является одним из удивительных примеров компенсаторной приспособляемости. Другие компенсаторные механизмы сердца — способность при недостатке кислорода использовать анаэробный путь прямого превращения глюкозы в молочную кислоту (скелетная мускулатура не обладает такой способностью) и наличие в миокарде запасов миоглобина, представляющих собой местный резервуар кислорода, который может освобождаться лишь при его низком парциальном давлении.

Вышедшая в межклеточную среду молочная кислота достаточно быстро всасывается в кровь, увеличивая нормальные показатели содержания молочной кислоты в крови. Имеющийся в кровеносном русле защитный механизм — бикарбонатная буферная система — разрушает молочную кислоту с образованием в качестве конечного продукта реакции CO2. Хотя он и выводится из организма, образовавшийся в результате химической реакции его «неметаболический избыток» в большом количестве приносится током крови в продолговатый мозг. Реагируя на этот мощнейший раздражитель, сосудодвигательный и дыхательный вегетативные центры интенсифицируют деятельность соответствующих органов и систем, усиливается легочная вентиляция и скорость доставки кислорода к работающим мышцам. Происходит удивительное превращение, очень образно названное «переход на второе дыхание». Появляется ощущение удовлетворения от выполняемой работы — «состояние мышечной радости». Это интересное явление в спортивной биохимии получило название реакции окислительного фосфорилирования, так как в основе энергообеспечения, необходимого для поддержания его жизнеспособности и функциональной активности, лежит окислительное фосфорилирование двух основных субстратов: свободных жирных кислот (СЖК) глюкозы и, в некоторой степени, лактата.

СЖК относительно беспрепятственно проникают через клеточную мембрану. Скорость захвата СЖК определяется, прежде всего, их концентрацией в крови, которая может значительно изменяться в пределах от 0,1 до 1,5 ммоль/л.

При попадании в цитозоль СЖК частично эстерифицируются с образованием триглицеридов, таким образом депонируясь внутриклеточно, и частично ацетилируются, превращаясь в активную форму — ацил-коэнзим А (ацил-КоА). Последний взаимодействует с белком-переносчиком карнитином с образованием ацилкарнитина, и в этом комплексе СЖК проникают в митохондрии. Здесь ацилкарнитин расщепляется до карнитина, который возвращается в цитозоль, а ацил-КоА подвергается b-окислению, в результате которого образуется ацетил-КоА, который является субстратом цикла Кребса.

Глюкоза, в отличие от СЖК, проникает через клеточную мембрану только с помощью видов специального белка-переносчика: GLUT1 — в инсулиннечувствительных тканях и GLUT4 — в инсулинчувствительных, к которым относится миокард. Выраженность экспрессии GLUT4 на мембране кардиомиоцитов определяется содержанием инсулина в крови, и если в состоянии покоя на мембране экспрессировано менее 10 % этого переносчика, то при действии инсулина в высокой концентрации экспрессия GLUT4 возрастает в 7 — 10 раз.

В цитозоле глюкоза и лактат в процессе анаэробного гликолиза, т. е. без участия кислорода, превращаются в пируват. При этом из одной молекулы глюкозы образуются 4 молекулы АТФ, но 2 из них расходуются в процессе реакции. Поэтому анаэробный гликолиз может обеспечить не более2%отобщего количества АТФ, нормально потребляемого клеткой. Однако на этом этапе процесс не прекращается, и пируват поступает в митохондрии. Здесь он при участии фермента пируватдегидрогеназы (ПДГ) превращается в ацетил-КоА, который создает общий пул с ацетил-КоА, образующимся из СЖК.

Характерно, что между СЖК и глюкозой как субстратами окисления существуют конкурентные взаимоотношения — наличие СЖК препятствует утилизации глюкозы. Определяется это тем, что продукты b-окисления СЖК — восстановленный никотинамидадениндинуклеотид (НАДН) и ацетил-КоА — являются естественными ингибиторами ПДГ и препятствуют аэробному окислению глюкозы. Поэтому при возрастании содержания СЖК в плазме и их усиленном поступлении в КМЦ утилизация глюкозы и гликогена в мышцах уменьшается параллельно снижению активности ПДГ.

Особенно высокий уровень СЖК в крови отмечают у больных с ожирением, метаболическим синдромом и сахарным диабетом (в результате уменьшенного содержания инсулина в крови или сниженной чувствительности к нему клеток жировой ткани). Поэтому у данной категории больных отмечаются выраженные нарушения энергетического метаболизма миокарда и повышенная чувствительность к нарушениям его кровоснабжения. Возрастание концентрации СЖК в плазме с последующими метаболическими нарушениями происходит также в условиях голодания.

Снижение концентрации СЖК в плазме или фармакологическое воздействие, угнетающее их окисление в митохондриях, напротив, способствуют возрастанию утилизации глюкозы и лактата в результате повышения активности ПДГ и увеличения скорости транспорта пирувата в митохондрии. На высоте интенсивной физической нагрузки, как и после приема никотиновой кислоты, содержание СЖК в крови уменьшается примерно в 4 раза, при этом отмечают возрастание активности ПДГ в сочетании с усилением гликогенолиза и увеличением скорости утилизации глюкозы в скелетных мышцах.

В условиях нормального кровоснабжения основным источником энергообеспечения является утилизация СЖК. При этом образуется до 90 % всей АТФ, потребляемой мышцей. Определяется это тем, что утилизация СЖК дает максимальный выход энергии на единицу субстрата. Так, при полном окислении одной молекулы пальмитиновой кислоты образуется 130 молекул АТФ, при окислении одной молекулы глюкозы — 38 молекул АТФ, а при анаэробном гликолизе одной молекулы глюкозы выход составляет только 2 молекулы.

Очевидно, что аэробный механизм ресинтеза АТФ отличается наибольшей производительностью.

Например, расщепление гликогена:

расщепление жиров (пальмитиновая кислота):

Однако утилизация СЖК сопряжена с более высоким потреблением кислорода, в результате чего при утилизации глюкозы количество АТФ на 1 моль поглощенного кислорода на 15 % больше, чем при утилизации СЖК. Это означает, что в условиях нормального кровоснабжения и высоких резервных возможностей обеспечения его кислородом более эффективным путем энергообразования является утилизация СЖК, но при ишемии предпочтительным субстратом становится глюкоза.

Как в спорте, так и в клинике в условиях гипоксии применяются препараты для активации аэробного гликолиза и подавления аэробного расщепления жиров. При этом на долю окисления СЖК приходится 70 %, а на долю окисления глюкозы — 30 %. На практике с применением различных препаратов можно добиться понижения доли окисляемых СЖК до 40 — 50 %, а частичное ограничение метаболизма СЖК приведет к увеличению выхода энергии всего лишь на 5 %. Это и есть цена вопроса.

Распространенные способы подавления расщепления жиров.

1. Подавление липолиза и, соответственно, торможение катехоламин-зависимого высвобождения СЖК посредством приема â-адреноблокаторов.

2. Никотиновая кислота — тормозит липолиз и синтез триглицеридов.

3. Прямые ингибиторы â-окисления СЖК (триметазидин, ранолазин).

Триметазидин запатентован в 1961 г. французской фирмой «Сервье» как метаболический препарат, повышающий толерантность к физическим нагрузкам при стенокардии. Он тормозит в митохондриях â-окисление длинноцепочечных и короткоцепочечных СЖК, блокируя последнюю реакцию 4-стадийного процесса окисления (3-кетоацил-КоА-тиолазу). Но активированные СЖК, накапливаясь в митохондриях, блокируют транспорт АТФ и одновременно действуют как поверхностно-активные вещества, травмирующие клеточные мембраны и вызывающие их разрушение. В исследовании EMIP-FR (1996 г.) было показано, что триметазидин, применяемый для лечения инфаркта миокарда, в виде 48-часовой инфузии (кратковременно, в острой фазе) по эффективности сравним с плацебо.

Ранолазин разрешен в США для лечения хронической стенокардии, однако подходит не всем больным. У женщин влияние ранолазина на тяжесть симптомов стенокардии и толерантность к нагрузке ниже, чем у мужчин.

4. Ингибиторы функционирования карнитин-пальмитинового комплекса, обеспечивающего накопление СЖК в митохондриях (милдронат).

Милдронат обратимо ограничивает скорость биосинтеза карнитина из его предшественника — ã-бутиробетаина, а так как именно с помощью карнитина осуществляется транспорт длинноцепочечных СЖК через мембраны митохондрий, то приток СЖК и их накопление в митохондриях уменьшаются, что никак не сказывается на метаболизме короткоцепочечных СЖК. Это означает, что милдронат практически не способен оказывать токсическое действие на дыхание митохондрий, потому что блокирует окисление не всех СЖК. Прием препарата ограничен 2 нед.

Стимуляция аэробного гликолиза.

1. Глюкозо-инсулиново-калиевая смесь (исследования ECLA, DIGAMI).

2. Карнитин (пропионил-L-карнитин — подавляет внутримитохондриальный коэнзим А). Показана клиническая ценность при миопатиях. Пероральный прием 2 — 6 г/сут более двух недель приводил к улучшению аэробной способности. Однако влияние карнитина на результаты спортсменов в соревнованиях привели к разочаровывающим итогам.

3. Пировиноградная кислота. Исследования в лабораторных условиях доказали, что пируват повышает мышечную выносливость. При всем этом многие культуристы-практики жалуются, что препарат не работает. Это связано с разнобоем мнений относительно рабочей дозы. Производители советуют принимать по 5 — 6 г ежедневно, однако в лабораторных опытах применялись дозы по 20 — 25 г. Однако такие большие дозы могут расстроить пищеварение. Наилучший вариант употребления препарата — дробные дозы по 2 — 4 г.

В обычных условиях на долю аэробных процессов приходится порядка 90 % от общего количества АТФ, ресинтезируемой в организме. Ферментные системы аэробного обмена расположены в основном в мембранах митохондриальных крист. Именно сюда миоглобин доставляет кислород, транспортируя его от мембраны клетки.

При качественной оценке окислительного фосфорилирования эффективность использования энергии составляет около 67 %. Общий выход энергии при аэробном процессе более чем в 10 раз превышает таковой при анаэробном гликолитическом процессе.

В качестве субстратов аэробных превращений в работающих мышцах могут быть использованы не только внутримышечные запасы углеводов, но также гликоген печени, жиры и белки. Поэтому суммарная емкость аэробного процесса очень велика и не поддается общей оценке. Если суммарная энергетическая емкость углеводного депо у молодого здорового мужчины составляет около 2800 ккал, то суммарная энергетическая емкость жировых депо — около 80 000 ккал.

В отличие от анаэробного гликолиза, метаболическая емкость которого в значительной степени ограничивается изменениями гомеостаза вследствие накопления избытков молочной кислоты в организме, конечные продукты аэробных превращений — CO2 и вода — не вызывают каких бы то ни было изменений гомеостаза и легко выводятся из организма, поэтому аэробную реакцию ресинтеза АТФ рассматривают как «чистую».

Мощность аэробного процесса в значительной степени зависит от скорости доставки кислорода к тканям, эффективности процессов внешнего дыхания и скорости утилизации кислорода клетками (тканевое дыхание), что в свою очередь зависит от количества митохондрий, количества и активности ферментов, количества миоглобина, процентного соотношения красных и белых мышечных волокон и др.

Мощность аэробного энергообразования оценивается по величине максимального потребления кислорода (МПК), что свидетельствует о способности организма потреблять кислород при мышечной работе. Показатель МПК измеряется в литрах в минуту, но для большей объективизации может быть пересчитан в миллилитрах в минуту на килограмм (мл/мин/кг) массы тела.

Самые высокие показатели МПК отмечены у лыжниковмарафонцев (50 — 70 км) — величина МПК достигает 83 — 85 мл/мин/кг. Высокие показатели МПК у бегунов на длинные и средние дистанции (74 мл/мин/кг), у бегунов на средние дистанции (72 мл/мин/кг), конькобежцев, велосипедистов-шоссейников (74 — 75 мл/мин/кг), пловцов и гребцов (69 — 70 мл/мин/кг), а также у представителей игровых видов спорта (60 — 65 мл/мин/кг). Но у представителей силовых видов спорта — гимнастов, метателей, тяжелоатлетов — этот показатель практически не отличается от показателя нетренированных людей.

Как уже указывалось, распад гликогена и СЖК при аэробном окислении приводит к общему субстрату обеих метаболических цепочек — ацетил-коэнзиму А, который расщепляется в цикле Кребса. Усиление митохондриальной электронной транспортной цепи предполагает воздействие на такие субстраты, как цитохромы, сукцинат и коэнзим Q.

Цитохром С в пищевых добавках не только не полезен, но даже вреден, поскольку не может абсорбироваться из желудочно-кишечного тракта (ЖКТ). Нет доказательств эффективности в спорте. В клинике (включая педиатрию и офтальмологию) применяют при всех гипоксических состояниях.

Сукцинат (янтарная кислота) — нет научных исследований в отношении выработки эрготропных эффектов. Чистая янтарная кислота не проникает в митохондрии, и поэтому ее прием бесполезен.

Коэнзим Q в организме образуется в адекватных количествах. Тем не менее в США это популярная пищевая добавка (60 — 100 мг/сут 4 — 6 нед.). Современные исследования не выявили положительных эффектов подобной добавки.

1.2.6. Потребление кислорода при мышечной работе

При переходе от состояния покоя к интенсивной мышечной деятельности потребность в кислороде возрастает во много раз, однако сразу она не может быть удовлетворена. Необходимо, чтобы последовательно прошли все биоэнергетические реакции, прежде чем усилится деятельность систем дыхания и кровообращения, а кровь, обогащенная кислородом, дойдет до работающих мышц.

При равномерной работе и достижении определенной мощности рост потребления кислорода прекращается и оно стабилизируется на одном уровне. Такое состояние потребления кислорода работающими мышцами называют истинным устойчивым состоянием потребления кислорода: оно достигает определенного уровня и в каждый данный момент времени точно соответствует потребностям организма. Иными словами, сколько кислорода нужно организму для выполнения работы такой мощности, столько он его и получает.

Та зона физических нагрузок, которая располагается между порогом аэробного обмена и истинным устойчивым состоянием потребления кислорода, называется зоной аэробных физических нагрузок. Работа в этой зоне может продолжаться часами (триатлон, марафон, длительная ходьба, пилка дров и др.). Аэробные нагрузки тренируют сердце и общую выносливость и составляют методическую основу оздоровительной физкультуры.

При увеличении мощности работы происходят существенные изменения: в частности, требуется большее количество кислорода, в связи с чем истинное устойчивое состояние потребления кислорода нарушается и дальнейшее увеличение потребления кислорода переходит планку порога анаэробного обмена. Обычно такое состояние у молодых нетренированных людей наступает при достижении показателя МПК порядка 3,0 — 3,5 л/мин.

Подобное повышение поступления в организм кислорода может продолжаться вплоть до достижения МПК. При этом потребление кислорода также стабилизируется. Это состояние появляется при установлении частоты сердечных сокращений (ЧСС) порядка 170 — 180 уд/мин. Абсолютные показатели мощности нагрузки значения не имеют. Такая стабилизация потребления кислорода при мышечной работе получила название ложного устойчивого состояния потребления кислорода, так как в данном случае потребление кислорода не растет не потому, что больше не нужно, а потому, что механизмы транспорта кислорода к работающим мышцам, и прежде всего сердечно-сосудистая система (ССС), исчерпали свои функциональные возможности.

Максимальный уровень потребления кислорода не может поддерживаться долго. Тренированный спортсмен будет работать в этой зоне порядка 10 — 12 мин, нетренированный — около 5 мин. Поскольку поступающего в организм кислорода не хватает для выполнения работы заданной мощности, возникает кислородный дефицит, который восполняется за счет возврата на анаэробные механизмы энергообеспечения, прежде всего — на анаэробный гликолиз, что приводит к накоплению в организме продуктов анаэробного распада. Поэтому зона мощности работы, которая располагается между планками порога анаэробного обмена и МПК, получила название зоны аэробно-анаэробных нагрузок.Работа в этой зоне может быть отражена формулой: кислородный запрос работы больше кислородного прихода работы. Поскольку работа продолжается при недостатке кислорода, возникает так называемый кислородный долг.

Если в работе возможно установление истинного устойчивого состояния, то часть анаэробных метаболитов может быть окислена по ходу работы за счет усиления аэробных реакций, другая часть ликвидируется после окончания работы. Если истинное устойчивое состояние не устанавливается, то количество недоокисленных продуктов увеличивается по ходу работы, а устраняются они в восстановительный период.

Для устранения анаэробных метаболитов требуется дополнительное количество кислорода, поэтому некоторое время после окончания работы потребление его продолжает оставаться повышенным по сравнению с уровнем покоя. При достаточно высоких мощностях работы погашение кислородного долга требует десятков минут, а порою даже и часов.

Зона аэробно-анаэробных нагрузок в большей своей части является зоной профессиональной спортивной деятельности. В оздоровительной физкультуре подобные мощности нагрузок используются крайне ограниченно и лишь у хорошо подготовленных людей.

Зона мощностных характеристик работы, которая располагается выше планки МПК, получила название зоны анаэробных нагрузок. Работа в этой зоне протекает на максимуме функциональных возможностей при показателе ЧСС порядка 220 — 240 уд/мин.

Профессиональный спортсмен может работать в этой зоне порядка 4 — 5 мин, нетренированный — около минуты. Подобные физические нагрузки чисто профессионально-спортивные и в оздоровительной физкультуре не применяются.

1.3. Двигательный аппарат как биомеханическая система

Движение лежит в основе жизнедеятельности человека. Наиболее элементарной формой движения материи является механическое движение, т. е. перемещение тела в пространстве. Закономерности механического движения изучаются механикой.

Биомеханика — наука о законах механического движения в живых системах. Она изучает движения с точки зрения законов механики, свойственных всем без исключения механическим движениям материальных тел. Однако сложность движения и функций живого организма требует тщательного учета анатомо-физиологических особенностей. Нередко то, что выгодно с точки зрения законов механики, нецелесообразно, если учесть особенности строения и функции живого организма.

Движения частей тела человека представляют собой перемещения в пространстве и времени, которые выполняются во многих суставах одновременно и последовательно. Все движения закономерно объединены в целостные организованные действия, которыми человек управляет при помощи мышц. При биомеханическом исследовании невозможно учесть строение и функции тела во всех их особенностях. Для изучения движений строят модель тела человека, на которой можно изучать закономерности движений, — биомеханическую систему. Она обладает основными свойствами, существенными для выполнения двигательной функции, но не включает в себя частные детали.

Кинематические цепи. Множество частей тела, соединенных подвижно, образуют биокинематические или артикуляционные цепи. К ним приложены силы (нагрузки), которые вызывают деформации и изменение движений. Механические свойства (особенности строения и функции) этих цепей влияют на выполнение движений.

При изучении статики и динамики человеческого тела анатомические сведения о скелетно-мышечной системе можно выразить в терминах механики. Например, понятия «кость» и «мышца» заменимы понятиями «рычаг» и «сила».

Движения в суставах осуществляются путем сокращения мышц. Иными словами, суставы являются только шарнирами, приводимыми в движение мышцами. Независимо от природы мышцы и способа прикрепления ее сухожилий к костным элементам участок прикрепления одного ее конца остается неподвижным, тогда как противоположный участок прикрепления приходит в движение при изменении мышцей своей длины. В результате происходит перемещение участка скелета, который служит местом прикрепления подвижного конца мышцы. При всем разнообразии производимых таким образом перемещений все они укладываются в схему перемещений, осуществляемых рычагом, точка приложения действия которого образована суставом.

Принципы мышечно-суставной биодинамики рассмотрим на работе M. biceps (рис. 2).

Точкой прикрепления этой мышцы является передняя поверхность плечевой кости, ее сокращение вызывает или стремится вызвать вращение предплечья в локтевом суставе вокруг оси, направление которой приближается к поперечной плоскости этого сустава.

Сила или момент (М) вращения зависит от трех факторов:

— собственной силы мышцы (Fm);

— угла приложения мышечной силы, который образуют между собой предплечье и мышца (угол á);

— длины плеча костного рычага, идущего от оси вращения локтевого сустава к месту прикрепления сухожилия (l).

Рис. 2. Биодинамика М. biсерs (стрелкой указано направление сгибания)

Момент вращения на уровне оси локтевого сустава определяется по формуле:

Значение sin á для угла 90° составляет единицу, тогда сила вращения равняется произведению Fm · l, если направление мышечной силы перпендикулярно правлению предплечья. Чем меньше плечо тяги и чем больше угол, под которым действует сила тяжести, тем большее требуется напряжение мышц. Для локтевого сустава минимальная сила — при 10°, средняя — при 30°, максимальная — при 90° (sin 90° = 1).

При 90° рычаг формируется таким образом, что плечо тяги мышцы имеет длину порядка 3 см, т. е. бицепс прикрепляется к кости несколько ниже плечевого сустава. Плечо же груза, удерживаемого кистью, составляет около 30 см. Отношения плеч рычага составляют 1: 10. В итоге это приводит к тому, что происходит проигрыш в силе в 10 раз, т. е. чтобы удержать груз весом 10 кг при согнутой руке, мышца должна развить усилие в 100 кг. Аналогичные отношения имеются и в других суставах, например в голеностопном. Там проигрыш в силе составляет 6 раз. Поэтому при поднятии на носки человека весом 60 кг икроножная мышца должна развивать усилие в 420 кг. Не случайно ахиллово сухожилие является самым мощным — ему приходится выдерживать нагрузки до 500 кг. Проигрыш в силе в костно-мышечных рычагах не является ошибкой эволюции, ибо он сопровождается выигрышем в скорости движений. Таким образом, наши мышцы фактически развивают более интенсивные усилия, чем это проявляется в отношении внешних нагрузок и чем это представляется в обыденной жизни.

При изучении естественных движений невозможно рассматривать изолированные сегменты тела или отдельные мышцы. В этих случаях речь идет о сложной системе рычагов, приводимых в движение совместным действием мышечных групп. Любое движение является результатом совместной деятельности мышц трех функциональных категорий:

— мышц-агонистов, которые преодолевают сопротивление и обеспечивают начало движения;

— мышц-антагонистов, которые контрбалансируют и умеряют деятельность предыдущей группы;

— фиксирующих мышц, обеспечивающих стабилизацию элементов скелета.

Движения требуют для своего осуществления включения действий рычагов, в состав которых входит вся костная система человека. В таких случаях формируются сложные механические построения, содержащие несколько последовательных сочленений и сегментов тела, связывающих эти сочленения между собой, т. е. несколько звеньев. Такие построения имеют общее название — артикуляционные (кинематические) цепи. При биомеханическом исследовании артикуляционных цепей выделяют два вида: закрытые и открытые (рис. 3).

Рис. 3. Примеры открытой (а) и закрытой (б) артикуляционных цепей (стрелка указывает направление движения)

Если дистальный конец цепи не подвергается заметному действию внешнего сопротивления, которое ограничивает его движение, то такую цепь называют открытой. В результате свободы движений ей можно сообщить значительную скорость и ускорение (это движения для переноса предметов и манипуляции с ними).

Если дистальный конец встречает внешнее сопротивление, которое ограничивает свободу движений, такую цепь называют закрытой (это движения для поддержания рычагов управления, рукояток). Для преодоления этого сопротивления мышцы должны развивать более или менее значительную силу, что является характерной чертой закрытых цепей.

Сложность движений зависит от количества звеньев в кинематической цепи и мышечных групп, вовлеченных в движение. Различают 5 классов сложности движений:

1) только пальцев руки;

2) пальцев и кисти;

3) пальцев, кисти и предплечья;

4) пальцев, кисти, предплечья и плеча;

5) пальцев, кисти, предплечья, плеча и туловища.

При исследовании движения в суставах используют понятие о степенях свободы движений, которые характеризуют возможности перемещения различных тел в пространстве.

Степени свободы — это направления, в которых данное тело может совершать движения.

Шарнирный механизм может совершать вращение вокруг единственной оси и имеет одну степень свободы движений.

Абсолютно свободное тело имеет 6 степеней свободы движений: три степени взаимно перпендикулярных направления движения (вверх — вниз, вправо — влево, вперед — назад) и три взаимно перпендикулярных оси вращения в тех же направлениях.

Суставы с одной степенью свободы могут совершать движение только в одной плоскости (межфаланговые).

Суставы с двумя степенями свободы обеспечивают движение в двух взаимно перпендикулярных плоскостях (лучезапястный, коленный).

Суставы с тремя степенями свободы обеспечивают движение в трех взаимно перпендикулярных плоскостях (плечевой и тазобедренный).

Если в изолированном суставе с 2 — 3 степенями свободы заложены большие двигательные возможности, то в целостном организме эти возможности возрастают в огромной мере, потому что в организме мы имеем не изолированные пары костей, а ряд кинематических цепей с несколькими последовательными звеньями.

Свойства кинематической цепи подчиняются правилу: число степеней свободы периферического звена равно сумме степеней свободы предшествующих звеньев (например, кисть руки имеет 7 степеней свободы движений по отношению к туловищу — 3оси вращения у плечевого сустава и по 2 оси у локтевого и лучезапястных суставов, в результате имеется запас одной степени свободы). Поскольку уже 6 степеней свободы дают безграничные возможности перемещений, то в пределах длины руки кисть может двигаться так, как будто она вовсе не имеет связи с лопаткой.

При наличии такого большого числа степеней свободы выполнения движений верхней конечности приобретают определенность и целесообразность благодаря тому, что в каждое мгновение в каждом сочленении за счет сокращения мышц исключаются все возможные движения, все степени свободы, кроме одной, соответствующей выполняемому целесообразному движению. Поэтому простейшее движение — поднятие груза на вытянутых руках — происходит так, что вследствие одновременного напряжения мышц-антагонистов в локтевом и лучезапястном суставах вся рука фиксирована в виде жесткого рычага и все подвижности в этих суставах погашены. Также исключено напряжение мышц, осуществляющих приведение и отведение плеча. Оставшаяся возможность движения верхней конечности — сгибание и разгибание в плечевом суставе — используется для такого рабочего движения, как поднятие груза на вытянутых руках. Более сложное движение — свободное поднятие груза — выполняется при одновременном сгибании руки в плечевом и локтевом суставах. Движение поднятия груза с укладкой его на подставку выполняется так, что в начале движения происходит одновременное сгибание в плечевом и локтевом суставах, а затем, в середине траектории поднятия, сгибание в локтевом суставе прекращается и переходит в разгибание. В то же время в плечевом суставе продолжает происходить сгибание (вынос плеча вперед).

1.4. Статистическая и динамическая работа мышц. Сила и выносливость мышц

В мышечной работе различают два компонента: статическую и динамическую работу.

Динамическая работа. Это работа, связанная с перемещением тела или его отдельных частей в пространстве. При динамической работе происходит изменение длины мышечных волокон, но напряжение волокон остается постоянным. Для динамической работы характерна более или менее регулярная смена процессов сокращения и расслабления мышцы. Мышечная сила при динамической работе может быть больше или меньше величины внешнего противодействия. При динамической работе сопротивления, т. е. когда мышечная сила меньше величины внешнего противодействия, происходит удлинение мышечных волокон (опускание груза, спуск по лестнице). Особенностью динамической работы является то, что при ней наблюдается чередование противоположных движений за счет работы мышц-антагонистов. Такое чередование создает благоприятные условия для работы мышц. Во-первых, их работа чередуется с периодами отдыха. Во-вторых, в такие периоды отдыхают и руководящие мышцами нервные центры, что создает благоприятные условия для функционирования нервной системы в целом.

Статическая работа. Это работа мышц при неподвижном удержании груза. При статической работе длина мышечных волокон не меняется, а изменяется степень напряжения. В повседневной жизни статическая работа проявляется в двух формах: поддержании позы и удержании какого-либо груза. Сила сокращения при поддержании позы сравнительно невелика. Непрерывное мышечное сокращение при этом становится необязательным, оно производится только в определенные моменты с целью исправления легких нарушений равновесия позы. Однако некоторые специальные позы, такие как удержание верхних конечностей в горизонтальном положении, требуют значительных статических усилий. В большинстве случаев при удержании груза или сохранении позы противодействующей силой является сила тяжести. В некоторых случаях статическое сокращение может быть направлено на преодоление другой внешней силы. Особенностью статической работы является то, что при ней функционируют одни и те же мышечные группы. Это ведет к чрезвычайно быстрому утомлению их, в основном из-за ухудшения питания. Поэтому необходимо стремиться в любой работе свести статический компонент к минимуму.

Большинство действий человек выполняет за счет динамической работы, но в любой работе в большей или меньшей мере присутствует статический компонент. В основном от него и зависит утомительность. Во многих случаях статическая нагрузка возникает и при выполнении умственной работы за счет поддержания определенной позы. Таким образом, статическая нагрузка свойственна большинству работ, хотя она обычно выступает не в чистом виде, а в качестве одного из второстепенных элементов.

Работа мышц может протекать по-разному:

— как работа положительно динамическая, во время которой мышцы, сокращаясь, выполняют механическую работу благодаря превращению части выработанной энергии в механическую;

— как работа отрицательно динамическая, во время которой мышцы играют роль тормоза по отношению к действию внешнего усилия (в этих условиях вся выделившаяся энергия превращается в тепловую);

— как статическая работа, физиологическую основу которой составляет повышенное напряжение мышц. Длина мышечных волокон при этом не изменяется, мышца не выполняет никакой внешней работы, но в ее тканях происходят изменения, приводящие к преобразованию химической энергии в тепловую.

Принципы экономии движений. Конечной целью всех исследований в области движений является улучшение условий работы — разработка принципов экономии движений. Выделяют следующие принципы экономии движений:

1. Одновременность и симметричность движений. Рекомендуются следующие правила:

— обе руки должны начинать и заканчивать движения одновременно;

— движения рук могут иметь противоположные направления при условии, что эти движения симметричны;

— обе руки могут бездействовать только в период отдыха.

2. Экономичность движений, т. е. наибольшая простота. Физиологи установили, что утомление при работе зависит от количества мышц, принимающих участие в работе. Из этого следует, что наиболее простые движения вызывают наименьшее утомление.

3. Непрерывность и плавность движений. Такие движения более экономичны, чем прямолинейные движения с резкими изменениями направления.

4. Ритм движений. Ритмичностью называется повторяемость действий за одинаковые промежутки времени. Она обеспечивает меньшее расходование энергии мышцами, уменьшение усталости, позволяет достигать автоматизации рабочих движений.

5. Контроль движений. Контролируемые движения выполняются несколькими группами мышц: одна группа действует в одном направлении, а другая тормозит ее и обеспечивает нужную координацию. Примеры контролируемых движений: черчение, измерение, монтаж и т. д.

Основные факторы мышечных усилий.

1. Степень растяжения мышцы. Чем больше растянута мышца в исходном состоянии, тем выше степень развиваемого ею напряжения.

2. Обусловленность углом тяги. Мышечное усилие наиболее эффективно, если направление тяги составляет угол 90° с продольной осью соответствующей кости. Чем острее угол между направлением тяги и осью звена, тем меньше полезная отдача мышечного усилия.

Эти моменты часто антагонистичны. При сгибании в локтевом суставе наибольшее растяжение бицепса будет при разогнутой руке. Однако угол в этом случае будет близок к нулю градусов. В данном случае оптимальным будет угол около 90° (здесь фактор, обусловленный углом тяги, имеет большее значение, чем степень растяжения мышцы).

3. Положение центра тяжести звена. Величина выполняемой работы пропорциональна моменту силы тяжести звена, т. е. произведению его веса на плечо соответствующего рычага от точки вращения в суставе до центра тяжести звена (например, перейти из положения лежа на спине в положение сидя намного труднее, когда руки находятся за головой).

4. Сила мышцы. Под ней обычно понимают максимальную силу, т. е. величину груза, который в состоянии поднять данная мышца. Величину максимальной мышечной силы следует отличать от абсолютной силы мышцы. Абсолютная сила мышцы — это сила, приходящаяся на 1 см2 физиологического поперечного сечения (сечения, проведенного перпендикулярно мышечным волокнам). Мышечная сила зависит от ряда причин, среди которых выделяют биологические и профессиональные.

Биологические:

— телосложение;

— пол (у женщин сила мышцы на 30 % меньше, чем у мужчин);

— возраст (максимальная сила в 20 — 30 лет, к 60 годам она снижается до 90 %).

С биологическими тесно связаны профессиональные факторы.

Их было выделено три:

— зависимость от угла сгибания сегментов конечности (например, нижняя конечность может развивать усилие от 90 до 200 кг, в зависимости от угла сгибания в коленном суставе и положения туловища);

— природа усилия (при толчке усилие максимально, при вращении — минимально);

— стабильность (фиксация) рабочей позы.

Понятие мышечной силы не следует смешивать с выносливостью. Выносливость, или емкость работы, — это способность длительного выполнения работы на заданном уровне без развития утомления. Выносливость может быть измерена тем предельным временем, в течение которого возможно поддержание мышечной деятельности на заданном уровне. Основным фактором, ограничивающим продолжительность работы, является утомление. Путь к развитию выносливости лежит именно через утомление. Исследования в физиологии спорта показали, что работа, совершаемая до утомления, — обязательное условие совершенствования выносливости. В физиологии спорта оценку силы и выносливости обычно проводят с помощью кистевых динамометров.

1.5. Физиологические механизмы работоспособности

Ожидание предстоящей деятельности меняет состояние организма. Изменения различных физиологических функций обнаруживаются перед работой в условиях лабораторного опыта, перед началом трудового дня и перед физическими упражнениями. Это время называют периодом предстартового или предрабочего состояния.

В предстартовом состоянии учащается и углубляется дыхание, повышается газообмен, учащаются и усиливаются сокращения сердца, повышается артериальное давление (АД). Происходит ряд изменений в процессах обмена веществ. Изменяется состав крови, повышается количество в ней сахара.

Предстартовые изменения подобны тем, что наблюдаются при мышечной работе. Можно сказать, что организм переходит на рабочий уровень еще до начала деятельности, и это обычно способствует успешному выполнению работы.

Интенсивность предстартовых изменений бывает различна в зависимости от характера и условий предстоящей деятельности, а также от ее значения для исполнителя. Например, у некоторых спортсменов непосредственно перед началом соревнования ЧСС доходит в покое до 130 — 140 уд/мин. Легочная вентиляция увеличивается до 15 — 30 л/мин, потребление кислорода — до 400 — 600 мл/мин, т. е. в 2 — 2,5 раза больше по сравнению с уровнем основного обмена. Эти изменения частично можно объяснить сильными эмоциональными переживаниями. Следует отметить, что предстартовое состояние наблюдается в выраженной форме и перед такими видами работ, где мышечная деятельность очень незначительна, например при соревнованиях по шахматам, пулевой стрельбе. Предстартовые изменения выражены в этих случаях меньше, чем перед бегом, но обнаруживаются совершенно четко. Аналогичные изменения наблюдались у студентов перед экзаменом, у актеров перед спектаклем. Таким образом, перед всякой деятельностью в организме возникают предстартовые или предрабочие изменения, подобные физиологическим сдвигам, наблюдаемым при мышечной работе.

Механизмы предстартовых состояний. С физиологической точки зрения, наблюдаемые перед работой изменения являются ответом организма на сигналы о предстоящей деятельности и полнее могут быть объяснены закономерностями рефлекторной регуляции функций. Считают, что «опережающее отражение действительности» является весьма важной особенностью рефлекторной деятельности. Существенное значение придается активному характеру программирования человеком предстоящей деятельности. Так, например, учащение и углубление дыхания только при команде «приготовиться» объясняют иррадиацией возбуждения с двигательной зоны коры на другие нервные центры. Увеличение сахара в крови обусловлено выделением адреналина. С физиологической точки зрения, основные механизмы, определяющие функциональные изменения перед любой деятельностью, — это возбуждение нервной системы и поступление в кровь гормонов, прежде всего гормонов надпочечников.

Значительную роль в механизмах предрабочих изменений играют условнорефлекторные реакции. В условиях труда и физических упражнений различные компоненты окружающей обстановки (время и место предстоящей работы и пр.) являются условнорефлекторными раздражителями, сигнализирующими о предстоящей деятельности. Чем более значимой представляется предстоящая деятельность человеку, тем сильнее, при прочих равных условиях, обнаруживается у него предстартовое возбуждение. Значение предстоящей деятельности обусловлено подкрепляющими ее факторами, т. е. последствиями подобной деятельности, возникавшими в прошлом опыте данного лица и оставившими после себя следовые процессы в нервной системе. В связи с действием команд предстартовые реакции могут возникать и в ранее незнакомой обстановке, перед первым выполнением какой-либо новой работы. Человек реагирует в таких случаях, опираясь на свой прежний опыт, распространяя его на новые условия. В процессе тренировки предстартовые реакции претерпевают изменения. Это выражается в усилении и упрочении предстартовых рефлексов. Изменения, возникающие в организме тренированных спортсменов, оказываются более четко приуроченными к началу работы, чем у новичков.

Особый интерес представляют те эмоциональные реакции человека, при которых не выполняется никакой внешней деятельности. Биологически эмоции всегда связаны с осуществлением достаточно интенсивной мышечной деятельности, но по условиям жизни человека она может быть задержана теми или иными причинами. В таких случаях не наступает разрядки эмоционального напряжения, которую составляют мышечные движения. Если мышечный компонент невелик, а возникшее эмоциональное возбуждение длительно не прекращается, то вегетативные проявления могут быть очень значительными. Именно в отсутствии необходимой разрядки заключается одно из важных отрицательных последствий недостатка двигательной активности для человека. В трудных и стрессовых ситуациях наступает существенное снижение уровня выполняемой работы, что сказывается, прежде всего, на ее результатах.

Общая мобилизация организма является необходимой реакцией для преодоления трудностей. Однако часто такая мобилизация является неестественной по сравнению с нормальным протеканием рабочего процесса. В таких случаях она приводит к отрицательным результатам. Человек при этом кажется мечущимся, «загнанным», работающим через силу, не видящим ничего происходящего. Общим явлением, наблюдаемым у человека, находящегося в трудной ситуации, является понижение точности движений и потеря ориентации. Нарушается процесс восприятия информации, ее отбор и преобразование начинают происходить на другой основе.

Процесс врабатывания. Сдвиги работоспособности, происходящие под влиянием самой работы в начальном ее периоде, связаны с процессом врабатывания. При выполнении каждой работы у человека наблюдается постепенное нарастание работоспособности, последовательное улучшение продуктивности деятельности. Этот начальный период работы и называют периодом врабатывания. Он является общебиологической закономерностью. Период врабатывания двигательной системы может исчисляться секундами, при циклических физических упражнениях (гребля, бег) он достигает 3 — 5 мин. Этот период у вегетативных систем протекает медленнее, чем у двигательного аппарата.

Отставание вегетативных функций в начальном периоде мышечной работы обусловлено их большей инертностью и, наряду с этим, динамикой нервных процессов в период врабатывания. В начальный момент врабатывания удлиняется латентный период и уменьшается сила условных и безусловных рефлексов. Подобное замедление и ослабевание рефлексов в начальном периоде мышечной работы является, вероятно, результатом сильного возбуждения двигательных центров коры головного мозга, которые по принципу доминанты тормозят другие реакции организма. Такая динамика межцентральных отношений в нервной системе отражает состояние начального усилия в начале мышечной работы. Начальным усилием можно назвать состояние сильного возбуждения корковых двигательных центров, которое обеспечивает преодоление инерции покоя, а также способствует формированию стереотипа рабочих движений. Сопряженное торможение ряда нервных центров проявляется также в ослаблении и даже полной задержке дыхания в начале трудной или непривычной работы. Состояние начального усилия четко проявляется только в самый краткий период работы (в первые 30 — 90 с). Степень выраженности и длительности начального усилия больше при трудной и непривычной работе, и наоборот, проявление начального усилия значительно уменьшается по мере привыкания к данной конкретной деятельности. В это время работоспособность еще не достигает обычного уровня и относительно велико число замедленных, нескоординированных и даже ошибочных действий, которые не только снижают эффективность деятельности, но иногда приводят и к травмам. Если организм спортсмена не сумеет достигнуть слаженного функционирования двигательной и вегетативной систем в процессе врабатывания, то нарушение нервных процессов при малой обеспеченности кислородом может затруднить или даже прервать выполнение физических упражнений. Это состояние нежелательного функционирования или наступившей дискоординации функций при выполнении интенсивной и длительной мышечной работы получило название мертвой точки.

Таким образом, процесс врабатывания имеет очень большое значение для спортивной деятельности человека. Учет закономерностей врабатывания находит двоякое применение на практике. Во-первых, необходимо постепенное вхождение в работу. Во-вторых, можно ускорять ход врабатывания. Ускорения можно достичь путем применения предварительных кратковременных упражнений, характер которых аналогичен предстоящей мышечной деятельности. Это способствует переходу организма на рабочий уровень деятельности. При этом меняется функциональное состояние нервной системы: повышается возбудимость мышц, сенсорных областей коры, укорачивается время двигательной реакции, становится менее выраженным начальное усилие, улучшается усвоение ритма раздражителей. Под влиянием разминки лучше протекают процессы обмена веществ, повышается КПД организма и, следовательно, работоспособность. Но эффект разминки как фактор, мобилизующий активность ЦНС, может быть оптимальным лишь в том случае, если он включает движения, которые по структуре, темпу и ритму подобны предстоящей деятельности.

Поэтому в настоящее время в спортивной практике разминка, как правило, состоит из двух частей: общей и специальной. Первая решает задачи общего повышения функций организма. Вторая часть предварительных упражнений, использующая идентичные предстоящей деятельности движения, специально направлена на создание оптимальной возбудимости именно тех центральных и периферических звеньев двигательного аппарата, которые определяют эффективность работы.

Состояние устойчивой работоспособности. После окончания периода врабатывания работоспособность в течение некоторого времени остается на постоянном уровне. Это состояние устойчивой работоспособности. В этот период уже завершены процессы формирования стереотипов рабочих движений и подготовки вегетативных функций, обеспечивающих потребности организма в период его активной деятельности. Вся эта достигнутая согласованность на более высоком уровне создает состояние устойчивой работоспособности. Внешне оно проявляется в эффективности двигательной активности, например в оптимальной скорости, силе и точности движений, а также в более или менее устойчивом уровне вегетативных функций — величине минутного объема крови, выбрасываемой сердцем, дыхании и потреблении кислорода, уровне терморегуляции и т. д. Большое значение в приспособлении вегетативных систем к мышечной работе и поддержании их функций в период устойчивой работоспособности имеет поступление в кровь метаболитов и гормонов, обеспечивающих интенсификацию ряда вегетативных функций через механизм гуморальной регуляции. Однако пусковыми, более ранними механизмами будут нервные.

В состоянии устойчивой работоспособности при продолжающейся мышечной работе наблюдается усиление рефлекторных реакций. Это отражается в повышении возбудимости ЦНС, которое может быть обозначено как состояние рабочего возбуждения в период мышечной деятельности и обусловлено тем, что сильное изолированное возбуждение корковых двигательных центров, наблюдавшееся в период начального усилия, после окончания периода врабатывания ослабевает и происходит дальнейшее распространение процесса возбуждения. Следует отметить, что рабочее возбуждение ЦНС в период устойчивой работоспособности обусловлено не только распространением возбуждения со стороны двигательных центров, но и рефлекторной стимуляцией со стороны работающих мышц. Оказывает влияние также усиление обменных процессов, что определяет увеличение в крови метаболитов и гормонов.

Анализируя физиологические механизмы возникновения и удержания состояния устойчивой работоспособности, необходимо подчеркнуть ведущую роль высших корковых центров в формировании не только двигательных, но и вегетативных функций организма при мышечной работе.

Изменения химизма внутренней среды благодаря хорошо налаженным и устойчивым механизмам гуморальной регуляции мобилизуют их в целях поддержания постоянства внутренней среды организма, нарушаемого в период мышечной работы (даже в тех случаях, когда организм достигает истинного устойчивого состояния).

Снижение работоспособности после продолжительной или интенсивной работы связано с физиологическими процессами утомления. Эти процессы будут подробно рассмотрены в главе 9.

ГЛАВА 2.

СТРУКТУРНАЯ АДАПТАЦИЯ К ФИЗИЧЕСКИМ НАГРУЗКАМ

2.1. Системный структурный след как основа адаптации. Взаимосвязь функции и генетического аппарата

Физическая нагрузка — самый естественный и древний фактор, воздействующий на человека. Этот фактор, обусловленный природой земной гравитации, во все времена сопровождал человека, и двигательная мышечная активность всегда была важным звеном приспособления человека к окружающему миру.

Проблема адаптации к нагрузкам сводится к вопросу о механизмах, обеспечивающих преимущества тренированному организму. Сама адаптация характеризуется двумя основными чертами.

1. Тренированный организм может выполнять мышечную работу такой продолжительности или интенсивности, которая не под силу нетренированному. Так, нетренированный человек не в состоянии пробежать марафонскую дистанцию или поднять штангу весом, значительно превышающим его собственный. При выполнении стандартной работы, доступной нетренированному человеку, тренированный может совершать ее более длительное время без утомления или выполнить с такой скоростью, на которую не способен нетренированный человек.

2. Тренированный организм характеризуется более экономным функционированием физиологических систем в покое и при умеренных нагрузках, а также способностью достигать при максимальных нагрузках такого уровня функционирования этих систем, который недостижим для нетренированного человека. Так, в условии покоя у тренированных людей частота сердцебиений может составлять 30 — 50 уд/мин («брадикардия атлетов»), у них уменьшена частота дыхания до 8 — 15 дых/мин, снижены легочная вентиляция и минутный объем дыхания на 10 — 12 %, также в покое уменьшено потребление кислорода миокардом.

Выполнение стандартной мышечной работы сопровождается у тренированного организма существенно меньшим повышением уровня лактата в крови, что способствует предупреждению утомления и повышению работоспособности. Реакция же симпатоадреналовой системы и повышение уровня катехоламинов в крови в ответ на нагрузки значительно меньше. Таким образом, при выполнении одинаковой по интенсивности работы тренированный организм работает более экономно, с меньшей мобилизацией физиологических функций.

При предельно напряженной работе наблюдается обратное: в тренированном организме происходит бüльшая мобилизация сердечно-сосудистой, дыхательной систем по сравнению с нетренированным. Так, при максимальной работе потребление кислорода у тренированного человека может возрастать до 5 — 6 л/мин, а у нетренированного не превышает 3 л/мин; минутный объем сердца повышается до 45 — 47 л/мин, ударный объем — до 200 мл, тогда как у нетренированного максимальное значение этих показателей 20 — 25 л/мин и 140 — 145 мл соответственно; легочная вентиляция может достигать 150 л/мин, а частота дыхания — 60 дых/мин. В ответ на предельные нагрузки у тренированных людей наблюдается более мощная реакция симпатоадреналовой системы, чем у нетренированных.

Рассмотренные различия наглядно демонстрируют, что при малых нагрузках, когда выполняется работа, одинаково легкая для тренированного и нетренированного человека, различий в физиологических сдвигах почти нет. При более интенсивной работе у нетренированного происходят бьльшие физиологические сдвиги, чем у тренированного, с ростом нагрузки различия увеличиваются. Тренированный может совершать работу, по интенсивности значительно превышающую ту, которая для нетренированного является предельной. При этом соответственно физиологические сдвиги у него продолжают расти. Наконец, достигается предельная интенсивность работы и для тренированного, в этот момент регистрируются его максимальные функциональные сдвиги, которые лежат значительно выше предельных сдвигов у нетренированного.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Руководство по спортивной медицине предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я