Нейросети

Иван Сергеевич Камаев, 2023

Эта книга расскажет Вам об истории создания искусственного интеллекта, о его зарождение, о принципах работы и применение в повседневной жизни. Перспективы развития и применения в различных областях. Возможно эта книга вдохновит Вас на создание нечто нового с применением ИИ для Вашего удобства, либо для удобства Вашего бизнеса. Желаю вам успехов во всех начинаниях. С уважением, Камаев Иван.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Нейросети предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2: Типы нейронных сетей

Фидфорвардные нейронные сети

Нейронная сеть с прямой передачей — это тип искусственной нейронной сети, в которой информация течет в одном направлении, от входного слоя к выходному, без обратной связи или контуров. Архитектура нейронной сети с прямолинейным движением обычно состоит из входного слоя, одного или нескольких скрытых слоев и выходного слоя. Каждый слой содержит несколько нейронов, которые соединены с нейронами в соседних слоях серией взвешенных связей.

Входной слой получает входные данные, которые затем обрабатываются нейронами первого скрытого слоя. Выход каждого нейрона в скрытом слое затем проходит через нелинейную функцию активации и поступает на следующий слой. Этот процесс повторяется для каждого последующего скрытого слоя, пока не будет достигнут выходной слой. Выходной слой выдает конечный результат, который может быть предсказанием, классификацией или решением.

Нейронные сети с прямолинейным движением обучаются с помощью методов контролируемого обучения, при котором сети предъявляется набор пар вход-выход, а веса связей (В машинном обучении, нейронные сети используют веса связей для определения важности каждого входного сигнала. Вес связи — это число, которое определяет силу связи между двумя нейронами.

Чем больше вес связи, тем большее значение имеет сигнал, и наоборот, чем меньше вес связи, тем меньшее значение имеет сигнал. Веса связей обычно настраиваются в процессе обучения нейронной сети, чтобы улучшить ее производительность и точность.Кроме того, веса связей можно использовать для понимания, какие входные сигналы наиболее важны для определенных выходных сигналов. Это может быть полезно для интерпретации работы нейронной сети и определения, какие факторы влияют на ее принятие решений.

В целом, веса связей играют важную роль в работе нейронных сетей и являются ключевым элементом их обучения и функционирования.Веса связей также могут быть использованы для решения задач оптимизации. Например, можно использовать алгоритмы градиентного спуска для настройки весов связей, чтобы минимизировать ошибку нейронной сети.

Важно понимать, что правильное настройка весов связей является критически важным этапом в обучении нейронной сети. Неправильная настройка весов связей может привести к плохой производительности нейронной сети и низкой точности ее предсказаний.

Хорошая новость заключается в том, что современные фреймворки машинного обучения, такие как Tensorflow и PyTorch, обеспечивают удобные и эффективные инструменты для настройки весов связей нейронных сетей.) настраиваются таким образом, чтобы минимизировать разницу между прогнозируемым выходом и фактическим выходом. Этот процесс обычно выполняется с помощью алгоритмов оптимизации градиентного спуска, таких как обратное распространение.

Одним из основных преимуществ нейронных сетей с прямой передачей является их способность аппроксимировать сложные нелинейные функции. Они могут научиться распознавать паттерны и делать прогнозы на основе большого количества данных, что делает их хорошо подходящими для таких приложений, как распознавание изображений, распознавание речи и обработка естественного языка. Однако нейронные сети с прямой передачей ограничены в своей способности моделировать временные или последовательные данные, поэтому лучше всего подходят рекуррентные нейронные сети.

Рекуррентные нейронные сети

Рекуррентные нейронные сети (РНС) — это тип искусственных нейронных сетей, предназначенных для обработки последовательных данных. В отличие от нейронных сетей с прямой передачей, РНС имеют контур обратной связи, который позволяет передавать информацию от одного шага последовательности к следующему. Этот контур обратной связи позволяет сети сохранять память о предыдущих входах и производить выходы, которые зависят не только от текущего входа, но и от предыдущих входов.

Архитектура типичной РНС состоит из входного слоя, скрытого слоя и выходного слоя. Однако, в отличие от нейронных сетей с прямой передачей, скрытый слой в RNN разработан таким образом, чтобы принимать входные данные не только от предыдущего слоя, но и от предыдущего временного шага. Это позволяет сети сохранять состояние или память о предыдущих входах,, что может быть полезно для таких задач, как предсказание следующего слова в предложении или следующего значения во временном ряду.

РНС обучаются с помощью обратного распространения во времени, что является расширением алгоритма обратного распространения, используемого в фидфорвардных нейронных сетях. Он предполагает вычисление градиента функции потерь относительно весов на каждом временном шаге, а затем обновление весов с помощью алгоритма оптимизации.

Одной из проблем РНС является проблема исчезающих и взрывающихся градиентов, которые могут возникать, когда градиенты в сети становятся слишком маленькими или слишком большими. Это может затруднить обучение глубоких РНС с большим количеством слоев. Для решения этой проблемы было разработано несколько разновидностей РНС, таких как сети с долговременной кратковременной памятью (LSTM) и управляемые рекуррентные блоки (GRU), которые предназначены для лучшей обработки долгосрочных зависимостей в последовательных данных.

РНС находят широкое применение, в частности, в обработке естественного языка, распознавании речи, создании подписей к изображениям, прогнозировании цен на акции. Они особенно хорошо подходят для задач, в которых используются последовательные или временные данные, где выход зависит не только от текущего входа, но и от предыдущих входов.

Конволюционные нейронные сети

Конволюционные нейронные сети (КНС) — это тип искусственных нейронных сетей, предназначенных для обработки данных с решетчатой структурой, таких как изображения или видео. Они особенно эффективны для таких задач, как классификация изображений, обнаружение объектов и сегментация изображений.

Архитектура типичной CNN состоит из входного слоя, нескольких сверточных слоев, нескольких объединяющих слоев и одного или нескольких полностью связанных слоев. В сверточных слоях сеть применяет набор фильтров или ядер к входному изображению для извлечения особенностей. Каждый фильтр выполняет операцию свертки, которая заключается в умножении значений в небольшом окне входного изображения на веса фильтра и последующем суммировании результатов. Этот процесс повторяется для всех окон входного изображения, в результате чего получается новая карта признаков.

Слои объединения используются для уменьшения размерности карт признаков путем их понижающей выборки. Это помогает сделать сеть более устойчивой к изменениям входных данных, таким как изменения положения или ориентации. Наиболее распространенной операцией объединения является максимальное объединение, которое выбирает максимальное значение в каждом окне карты признаков.

Полностью связанные слои используются для получения конечного результата работы сети, например, предсказания или классификации. Эти слои аналогичны слоям в нейронной сети с прямой передачей и используются для объединения признаков, извлеченных конволюционным и объединяющим слоями, в единый вектор.

CNN обычно обучаются с помощью методов контролируемого обучения, при котором сети предъявляется набор помеченных примеров, а веса связей настраиваются так, чтобы минимизировать разницу между предсказанным выходом и фактическим выходом. Этот процесс обычно выполняется с помощью обратного распространения, которое включает в себя вычисление градиента функции потерь относительно весов, а затем обновление весов с помощью алгоритма оптимизации.

Одним из основных преимуществ CNN является их способность автоматически узнавать особенности из входных данных, без необходимости ручной разработки особенностей. Это делает их хорошо подходящими для таких задач, как распознавание изображений, где визуальные признаки, необходимые для классификации, трудно определить вручную. Кроме того, CNN обладают высокой параллелизуемостью и могут обучаться на больших наборах данных с помощью графических процессоров, что делает их хорошо подходящими для крупномасштабных приложений машинного обучения.

Глубокие нейронные сети

Глубокие нейронные сети (ГНС) — это тип искусственных нейронных сетей, которые имеют несколько слоев нейронов между входным и выходным слоями. Эти слои обычно называются скрытыми слоями, а количество скрытых слоев в ГНС может варьироваться от нескольких до сотен или даже тысяч, в зависимости от сложности решаемой задачи.

Архитектура типичной ГНК состоит из входного слоя, одного или нескольких скрытых слоев и выходного слоя. Каждый слой состоит из набора нейронов, которые соединены с нейронами предыдущего и следующего слоев набором весов. В процессе обучения веса настраиваются таким образом, чтобы минимизировать разницу между прогнозируемым выходом сети и фактическим выходом.

Для обучения ГНС обычно используется метод обратного распространения, который предполагает вычисление градиента функции потерь относительно весов и последующее обновление весов с помощью алгоритма оптимизации, например, стохастического градиентного спуска. Использование нескольких скрытых слоев позволяет сети обучаться все более абстрактным представлениям входных данных, что может быть полезно для таких задач, как распознавание изображений, распознавание речи и обработка естественного языка.

Одной из основных проблем ГНС является проблема переподгонки, которая может возникнуть, когда сеть становится слишком сложной и начинает запоминать обучающие данные вместо того, чтобы изучать обобщенные модели. Для решения этой проблемы можно использовать различные методы регуляризации, такие как отсев и уменьшение веса, чтобы предотвратить переподгонку сети.

ГНС достигли самой высокой производительности в широком спектре задач машинного обучения, таких как классификация изображений, распознавание речи и обработка естественного языка. Они также использовались для решения таких задач, как поиск лекарств и т.д.. Доступность больших наборов данных и мощных вычислительных ресурсов позволила разработать все более сложные ГНС, которые способны обучать представлениям, которые человеку трудно или невозможно определить вручную.

Автоэнкодерные нейронные сети

Автокодирующие нейронные сети — это тип искусственных нейронных сетей, которые используются для обучения без надзора, изучения признаков и сжатия данных. Они состоят из кодирующей сети, которая преобразует входные данные в более низкоразмерное представление, и декодирующей сети, которая преобразует низкоразмерное представление обратно в исходное входное пространство.

Сеть кодировщика обычно состоит из нескольких слоев нейронов, которые последовательно уменьшают размерность входных данных. Это может быть достигнуто с помощью таких методов, как конволюционные слои(Конволюционные слои в нейронных сетях — это слои, которые обрабатывают данные, используя сверточные операции. Они могут автоматически извлекать признаки из изображений, звуков и других типов данных, где важна локальная структура. Конволюционные слои могут быть использованы в различных задачах, таких как классификация изображений, распознавание речи, анализ временных рядов и многое другое.

), слои объединения или полностью связанные слои. Выход последнего слоя кодера называется скрытым представлением или кодом, который представляет собой сжатую версию входных данных.

Сеть декодера аналогична сети кодера, но в обратном порядке, с каждым слоем увеличивая размерность скрытого представления, пока оно не достигнет исходного входного пространства. Веса сети декодера (Веса сети декодера — это параметры, которые определяют, как декодер будет работать. Они могут быть настроены в процессе обучения нейросети и влиять на ее точность и эффективность.

Для изменения весов декодера необходимо проводить эксперименты с различными значениями параметров и анализировать результаты работы нейросети. Изменение весов может приводить к улучшению или ухудшению точности нейросети, поэтому необходимо проводить тщательный анализ результатов при изменении параметров весов.

Если вы хотите изменить веса декодера вашей нейросети, вам необходимо провести ряд экспериментов, чтобы определить оптимальные параметры. Для этого вы можете использовать различные алгоритмы оптимизации, такие как градиентный спуск или стохастический градиентный спуск.

Также важно помнить, что изменение весов может занять много времени и ресурсов, поэтому необходимо обеспечить достаточно высокую вычислительную мощность и выделить достаточно времени на проведение экспериментов.

Наконец, для того чтобы достичь лучших результатов, необходимо тщательно анализировать результаты работы нейросети после каждого изменения весов декодера. Это поможет вам понять, какие параметры работают лучше, и определить оптимальные значения весов для вашей нейросети.), обычно связаны с весами сети кодера (Сети кодера — это тип нейронных сетей, которые используются для перевода данных из одного представления в другое. Они состоят из двух основных компонентов: кодера и декодера.

Кодер преобразует входные данные в некоторое скрытое представление, которое затем передается декодеру. Декодер использует это скрытое представление для генерации выходных данных.

Сети кодера широко используются в задачах машинного перевода, где они могут преобразовывать входной текст на одном языке в скрытое представление, которое затем используется для генерации выходного текста на другом языке. Они также могут использоваться для сжатия данных и изображений.Примером сети кодера является автокодировщик, который используется для сжатия данных. В автокодировщике кодер и декодер состоят из простых полносвязных нейронных сетей.

В целом, сети кодера являются мощным инструментом машинного обучения, который может использоваться во многих различных задачах.Кроме машинного перевода и сжатия данных, сети кодера могут использоваться для решения задач в области компьютерного зрения, где они могут преобразовывать изображения в скрытое представление и затем использовать его для решения различных задач, таких как классификация и сегментация изображений.Одним из примеров таких сетей является VGG16, которая используется для классификации изображений. Она состоит из двух частей: кодера и классификатора. Кодер преобразует входное изображение в скрытое представление, которое затем передается классификатору для определения класса изображения.Таким образом, сети кодера являются важным инструментом в области машинного обучения и находят широкое применение в различных задачах. Они могут быть использованы для решения задач в различных областях, таких как машинный перевод, сжатие данных и компьютерное зрение.), что позволяет автоэнкодеру изучать сжатое представление, оптимизированное для реконструкции входных данных.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Нейросети предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я