Падшее Просвещение. Тень эпохи

Евгений Жаринов, 2021

У каждой эпохи есть и обратная, неприглядная сторона. Просвещение закончилось кровавой диктатурой якобинцев и взбесившейся гильотиной. Эротомания превратилась в достоинство и знаменитые эротоманы, такие, как Казанова, пользовались всеевропейской славой. Немодно было рожать детей, и их отправляли в сиротские приюты, где позволяли спокойно умереть. Жан-Жак Руссо всех своих законных детей отправлял в приют, но при этом написал роман «Эмиль», который поднимает важные проблемы свободного, гармоничного воспитания человека в эпоху века Разума. Тень эпохи следует по пятам за веком Просвещения. И об этой теневой стороне не принято говорить открыто. Больше интересных фактов об этой книге читайте в ЛитРес: Журнале В формате a4.pdf сохранен издательский макет.

Оглавление

Из серии: Классика лекций

* * *

Приведённый ознакомительный фрагмент книги Падшее Просвещение. Тень эпохи предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава II

Наука эпохи Просвещения (Станислав Жаринов)

Если говорить о веке Разума, то, прежде всего, разум проявляется в интеллектуальной сфере деятельности, то есть в науке. Так какие новые научные знания подарил человечеству век Просвещения? Начнем с возникновения новой метрической системы. Именно открытие этой универсальной системы измерения позволило человеческому Разуму определить вес Земли, измерить расстояния между различными небесными светилами, то есть ворваться в ту область, которая еще совсем недавно считалась исключительно епархией святой веры. Небо было обиталищем Бога, и вдруг это самое небо стало исчисляться с помощью метра. Как же был открыт этот самый метр?

Обилие единиц измерения и различия между ними в разных регионах затрудняли торговлю и вызывали огромные проблемы при перевозке грузов. Их унификация стала одной из целей Великой французской революции. 9 февраля 1790 года Клод-Антуан Приер-Дювернуа (1763–1832) по прозвищу Приер из Кот-д’Ор, военный инженер, отвечавший за реквизирование оружия и боеприпасов на нужды революции, подал по этому поводу петицию в Национальное собрание Франции.

Проект по определению универсальных единиц измерения способствовал не только социальному прогрессу — научное сообщество также видело необходимость определения универсальных мер, и Французская академия наук сыграла в реализации проекта немалую роль. Единицы измерения должны были использоваться для измерения различных величин, которые с точки зрения физики определялись как общие характеристики различных объектов и веществ, например вина и масла. Если требовалось измерить количество вина и масла, то не имело смысла использовать две разные единицы измерения, так как оба этих вещества являются жидкостями — достаточно одной, общей единицы. Спустя несколько лет была введена такая единица измерения — литр.

Одна из основных физических величин — это длина, которая является общей характеристикой для множества объектов и позволяет определить их размеры. Существовало множество мер длины, и казалось логичным начать с определения общей единицы измерения длины. Кроме того, требовались точные инструменты как для измерения эталона длины, так и для изготовления необходимого числа его копий. Для реализации проекта были все условия: совершенные ранее открытия позволяли изготовить очень точные измерительные инструменты.

При определении требований к новым универсальным единицам измерения решающую роль сыграли идеи равенства, провозглашенные французской революцией. Этих требований было три: во-первых, новые единицы измерения были обязательными к применению во всех странах, во-вторых, они должны были быть неизменными, в-третьих, они не должны были быть антропоморфными.

Выбор меридиана

Какими свойствами должна была обладать новая мера длины? Какие предложения звучали и как было принято окончательное решение? Наконец, почему было решено измерить длину дуги меридиана и какую именно? Ответы на эти вопросы были получены по результатам трех экспедиций, организованных с целью установления метра как универсальной единицы измерения расстояния.

Согласно постановлению Французской академии наук, требовалось найти меру длины, которая бы определялась на основе некоего явления природы, так как природа считалась неизменной и принадлежащей всему человечеству. Таким образом удалось бы обеспечить стабильность новой меры и ее неизменность с течением времени.

Но какое явление природы могло стать основой для такой единицы измерения при соблюдении вышеуказанных условий? Было рассмотрено три варианта: первый — длина маятника, второй — длина дуги экватора, третий — длина дуги меридиана.

Какие размеры должна была иметь новая мера длины, чтобы ее было удобно использовать в обычной жизни? В качестве отправной точки была выбрана мера, равная половине туаза. Таким образом, три приведенных выше варианта уже можно было рассмотреть подробнее. Этим занялась комиссия Французской академии наук по просьбе Национального собрания.

8 мая 1790 года, спустя три месяца после того, как Приер из Кот-д’Ор предложил определить универсальную меру длины, Национальное собрание на своем специальном заседании обсудило различные варианты. Прозвучало два важных доклада, в которых обосновывалась необходимость проведения метрической реформы и определения новой меры длины на основе длины маятника. Шарль Морис де Талейран, председатель собрания и епископ Отена, предложил считать эталоном длины маятник, отсчитывавший секунды на широте 45°. Во втором докладе, прочитанном самим Приером из Кот-д’Ор, указывалось, что новая система мер должна быть десятичной. Приер разделил маятник на три равные части длиной в один фут и описал следующую десятичную систему: фут равнялся 10 дюймам, дюйм — 10 линиям.

Заслушав все доклады, собрание поручило Академии наук изучить высказанные предложения и определить, как следует провести реформу системы мер. Академия, в свою очередь, организовала комиссию, куда вошли самые известные ученые того времени: Пьер-Симон Лаплас, Жозеф Луи Лагранж, Жан-Шарль де Борда, Гаспар Монж и Никола де Кондорсе. 19 марта 1791 года комиссия опубликовала доклад, где были представлены три варианта меры длины, пригодной во все времена и для всех народов:

— длина маятника, половина периода колебаний которого равна одной секунде на 45° широты;

— четвертая часть экватора;

— четвертая часть меридиана.

Хотя соотношения между часами, минутами и секундами описываются не десятичной, а шестидесятеричной системой счисления, использовать ее сравнительно просто, поэтому она и сохранилась до наших дней. Пересчет других единиц измерения в иных системах счисления был намного сложнее, так что с введением метра эти единицы измерения ушли в прошлое.

Французская академия наук поддержала десятичную систему, предложенную Приером, и склонилась к тому, чтобы из трех предложенных вариантов выбрать в качестве новой единицы измерения длину меридиана. После публикации доклада Академии наук окончательное решение оставалось за Национальным собранием.

26 марта 1791 года Национальное собрание утвердило решение Академии наук и выбрало третий вариант из предложенных. Собрание постановило: «Единицей измерения длины станет четвертая часть земного меридиана, а общеупотребительной мерой длины — десятимиллионная ее часть». На том же заседании было утверждено название новой единицы измерения — «метр» (от древнегреческого µετρητής — «мера»).

Почему Академия наук определила метр на основе длины земного меридиана?

К тому времени уже было получено несколько достаточно точных оценок его длины, однако требовалось реализовать намного более масштабный проект, который позволил бы добиться высокой точности измерений.

А до того задачу измерения Земли пытались решить еще во времена французской монархии. Задолго до описываемых событий была предпринята попытка измерить экватор в малоизученных областях, но французские ученые еще помнили, с какими трудностями столкнулась экспедиция в вице-королевство Перу. Как мы видим, век Просвещения стремился рационализировать и научно описать саму нашу планету так, чтобы точно определить ее размеры, вес и местоположение в бесконечной Вселенной. И ученые в этот период были настоящими авантюристами, по своему поведению мало чем отличающимися от того же Калиостро или графа Сен-Жермена. Разница была лишь в том, что первые направляли свой ум на познание окружающего мира, а вторые были озабочены лишь собственным нарциссизмом.

Вот, например, как выглядела экспедиция в Перу, предпринятая с целью измерить экватор. Начальником экспедиции был Шарль Мари де ла Кондамин, за научную часть отвечали астроном Луи Годен и Пьер Буге. Однако Годен вскоре отделился от основной партии из-за разногласий в методике работы, а позднее был уличен в растрате средств, поступавших из Франции. Он также отказался делиться с коллегами полученными результатами. Как мы можем видеть и среди ученых попадались люди корыстные. Но это полбеды.

«Если бы вам пришлось выбирать самое неудачливое научное путешествие всех времен, то ничего хуже перуанской экспедиции французской Королевской академии наук 1735 года вы бы наверняка не нашли», — писал в свое время известный популяризатор науки Билл Брайсон. Это была группа ученых и искателей приключений под руководством гидрографа Пьера Буге и военного математика Шарля Мари де ла Кондамина, которая отправились в Перу проводить триангуляционные измерения расстояний в Андах.

Триангуляция — выбранный экспедицией метод измерения — представляла собой распространенный прием, основанный на известном геометрическом факте: если вы знаете длину одной стороны треугольника и величины двух его углов, то все остальные его размеры вы можете вычислить, не вставая со стула. Предположим в качестве примера, что мы с вами решили узнать расстояние до Луны. Первым делом для применения метода триангуляции мы должны установить расстояние между нами: скажем, вы остаетесь в Париже, а я отправляюсь в Москву, и мы оба одновременно смотрим на Луну. Теперь, если вы мысленно соедините линией три главных объекта нашей задачи — т. е. вас, меня и Луну, — то образуется треугольник. Измерьте длину базисной линии между вами и мной и величину обоих углов, а остальное легко вычислить. (Поскольку сумма внутренних углов треугольника всегда составляет 180 градусов, то, зная сумму двух углов, вы сможете моментально вычислить третий; а точное знание формы треугольника и длины одной из сторон подскажет вам длину двух других сторон). По существу, именно этот способ применил в 150 г. до н. э. греческий астроном Гиппарх Никейский, чтобы определить расстояние от Земли до Луны. На поверхности Земли принципы триангуляционной съемки остаются такими же, только треугольники не достигают космоса, а ложатся бок о бок на карту. Для измерения градуса меридиана геодезисты строят своего рода цепочку треугольников, протянувшуюся по местности.

В то время людьми наконец овладело сильное желание понять Землю: определить ее возраст, массу, место, где она висит в космическом пространстве, и узнать, каким образом она возникла. Цель французской группы состояла в том, чтобы способствовать решению вопроса о длине окружности планеты путем измерения длины одного градуса меридиана (или одной 360-й расстояния вокруг планеты) вдоль линии протяженностью около 320 км и проходящей от местечка Яруки, близ Кито, до точки за городом Куэнкой (все это ныне находится в Эквадоре).

Почти сразу дела не заладились, причем порой вопиющим образом. В Кито пришельцы чем-то вызвали недовольство местных жителей и были изгнаны из города вооруженной камнями толпой. Вскоре после этого в конфликте из-за женщины был убит врач экспедиции. Ботаник сошел с ума. Другие умирали от лихорадки или погибали от падений в горах. Технический помощник Жан Годен, племянник одного из руководителей Луи Годена, бежал с 13-летней девочкой, и его не смогли уговорить вернуться.

Одно время группа должна была прервать работу на восемь месяцев, пока ла Кондамин ездил в Лиму улаживать вопрос с необходимыми разрешениями. И в довершение всего ла Кондамин и Буге перестали разговаривать друг с другом и отказались вместе работать. Где бы ни появлялась эта все сокращающаяся в размерах экспедиционная партия, должностные лица встречали ее с глубочайшей подозрительностью, с трудом веря, что группа французских ученых проехала полмира, чтобы измерить Землю. Это казалось абсолютной бессмыслицей. Но все объяснялось тем, что в знаменитых «Началах» Исаака Ньютона было дано научное описание гравитации. Законы Ньютона объясняли такое множество вещей — морские приливы и отливы, движения планет, траекторию пушечных ядер, прежде чем они упадут на землю, и почему при вращении нашей планеты со скоростью в сотни километров в час нас не выбрасывает в космическое пространство, — что потребовалось какое-то время, чтобы постепенно осмыслить их значение.

Но одно открытие почти сразу вызвало споры. Это было предположение о том, что Земля не совсем круглая. Согласно теории Ньютона, центробежная сила вращения Земли должна приводить к появлению небольшого сжатия у полюсов и выпуклости у экватора, от чего планета должна стать слегка сплющенной. Это означало, что длина градуса меридиана в Италии не будет такой же, как в Шотландии. А именно, эта длина будет уменьшаться по мере удаления от полюсов. Эта идея вряд ли пришлась по вкусу тем ученым, чьи измерения размеров планеты строились на предположении, что она представляет собой идеальный шар, а так думали все.

Полстолетия люди пытались определить размеры Земли, главным образом путем весьма скрупулезных измерений. Одна из первых попыток такого рода была предпринята английским математиком Ричардом Норвудом. В молодости Норвуд ездил на Бермуды с водолазным колоколом, изготовленным по проекту Галлея, намереваясь сбором жемчуга на морском дне составить состояние. Проект закончился неудачей, потому что жемчуга там не оказалось, к тому же колокол Норвуда не работал, однако Норвуд был не из тех, кто пренебрегает приобретенным опытом.

В начале семнадцатого века Бермуды славились среди капитанов тем, что их было трудно отыскать. Дело в том, что океан велик, Бермуды малы, а навигационные приборы были абсолютно непригодны для преодоления этой несоразмерности. Не было даже согласия относительно длины морской мили. На океанских просторах малейшая ошибка в расчетах многократно возрастала, так что корабли часто очень сильно промахивались мимо целей величиной с Бермуды. Норвуд, первой любовью которого была тригонометрия, а значит и измерение углов, решил привнести в навигационное искусство долю математической точности и с этой целью взялся определить длину градуса.

Отправившись от стен лондонского Тауэра, Норвуд за 2 года самозабвенно прошагал 333 км на север до Йорка, по пути бесчисленное множество раз растягивая мерную цепь и педантично делая поправки на подъемы, спуски и изгибы дороги. Последним шагом было измерение высоты солнца в Йорке в то же время дня и в тот же день года, когда он сделал первое измерение в Лондоне. Исходя из этого, рассуждал он, можно определить длину одного градуса земного меридиана и тем самым вычислить длину всей окружности. Это была почти абсурдная по своей амбициозности затея — ошибка в малейшую долю градуса исказила бы результат на много миль, — однако на деле оказалось, как с гордостью провозгласил Норвуд, что он измерил градус с точностью «до щепотки», а если точнее, то приблизительно до пятисот метров. Итоговая величина составляла 110,72 км на градус меридиана.

В 1637 году вышел в свет шедевр Норвуда в области навигации «Практическое руководство морехода», книга, немедленно ставшая популярной. Она выдержала семнадцать изданий.

Тем временем интерес к определению длины окружности Земли переместился во Францию. Там астроном Жан Пикар разработал поразительно сложный метод триангуляционной съемки с применением квадрантов, маятниковых часов, зенитных секторов и телескопов (для наблюдения за движением спутников Юпитера). В 1669 году, после двухлетних разъездов по всей Франции и триангуляционных съемок по своему методу, он объявил уточненный размер одного градуса меридиана — 110,46 км. Это стало источником великой гордости для французов, но результат основывался на предположении, что Земля представляет собой идеальный шар, а Ньютон теперь утверждал, что это не так.

Положение еще более осложнилось, когда после смерти Пикара Джованни и Жак Кассини, отец с сыном, повторили его эксперименты на большей площади и пришли к выводу, что Земля становится толще к полюсам, а не к экватору — другими словами, что Ньютон ошибался с точностью до наоборот. Именно это обстоятельство подтолкнуло Академию наук послать Буге и ла Кондамина в Южную Америку для новых измерений.

Они выбрали Анды, потому что требовалось проводить измерения близ экватора, дабы определить, действительно ли здесь имеется отличие в кривизне земной поверхности, и потому что они полагали, что в горах видимость будет лучше. На деле же оказалось, что горы в Перу постоянно окутаны облаками, и группе приходилось неделями ждать ясного часа для проведения работ. И в довершение всего они выбрали почти самую труднопроходимую местность на Земле. Перуанцы называют свой ландшафт muy accidentado — сильно изорванным, — и он, вне всякого сомнения, именно такой. Французам пришлось карабкаться по одним из самых трудных в мире гор — горам, которые не могли одолеть даже их мулы, — но чтобы добраться до них, пришлось переправляться через бурные реки, прорубаться через джунгли, пересечь протянувшуюся на много миль высокогорную каменистую пустыню, и почти все это не было нанесено на карты и находилось вдали от каких-либо источников снабжения. Но Буге и ла Кондамину настойчивости было не занимать, и они упорно выполняли поставленную перед ними задачу на протяжении 9,5 долгих, суровых, опаленных солнцем лет. Незадолго до завершения проекта до них дошла весть, что другая французская группа, проводившая измерения на севере Скандинавии (и тоже столкнувшаяся с серьезными препятствиями от болотных трясин до опасных ледяных торосов), обнаружила, что ближе к полюсам градус действительно длиннее, как и предсказывал Ньютон. Земля оказалась на 43 км толще, если измерять ее на экваторе, чем при измерении сверху вниз — от полюса к полюсу.

Таким образом, Буге и ла Кондамин потратили почти десять лет на получение результата, который не слишком им нравился, и все для того, чтобы, получив его, узнать, что они даже не были первыми. Без всякого интереса они завершили съемки, подтвердившие правильность результатов другой французской группы. Затем, по-прежнему не разговаривая друг с другом, вернулись на побережье и на разных кораблях отплыли домой.

В «Началах» Ньютона содержалось еще одно предположение — о том, что отвесная линия будет вблизи горы слегка отклоняться к ней под воздействием ее гравитационной массы наряду с земной. Это был более чем любопытный факт. Если точно измерить угол отклонения и определить массу горы, можно вычислить постоянную всемирного тяготения, то есть фундаментальную для силы гравитации величину, обозначаемую буквой G, а заодно и определить массу Земли.

Буге и ла Кондамин попытались сделать это на перуанском вулкане Чимборасо, но потерпели неудачу из-за технических трудностей и собственных раздоров, так что идея была оставлена в покое на 30 лет, пока ее не воскресил в Англии королевский астроном Невил Маскелайн.

Но вернемся к истории создания эталонного метра. Что же заставило французских ученых отправиться в неспокойное революционное время в долгосрочную экспедицию?

По мнению некоторых историков, причина заключалась в том, что один из членов комиссии, Борда, создал очень точный инструмент для измерения углов. Измерение меридиана в конечном счете доказало бы эффективность этого инструмента, и его можно было бы использовать для топографических и астрономических расчетов.

Так как измерить длину четверти меридиана от Северного полюса до экватора невозможно, была предпринята попытка измерить максимально возможную дугу меридиана по суше и экстраполировать результаты. Чтобы компенсировать воздействие рельефа и неидеальной формы Земли, следовало выбрать дугу меридиана вблизи 45-й параллели, такую, что ее концы находились бы на уровне моря, а в середине не было бы высоких гор. Таким образом, требовалось обойти два крупнейших горных хребта Европы — Альпы и Карпаты.

Были рассмотрены три варианта: Амстердам — Марсель, Шербург — Мурсия и Дюнкерк — Барселона.

В итоге был выбран третий вариант, так как ранее, в 1739 году, на этом меридиане уже были проведены частичные измерения — так, было измерено расстояние от Дюнкерка до Перпиньяна. Возможно, на решение повлияло и то, что на этом меридиане находился Париж, и именно по этой причине от участия в проекте в 1791 году отказались англичане, которые ранее были готовы сотрудничать.

В апреле 1791 года комиссия Французской академии наук поручила реализацию проекта Жан-Батист-Жозефу Деламбру, Жану Доминику Кассини, Адриен-Мари Лежандру и Пьеру Мешену. Преданный королю Кассини отказался сотрудничать с революционным правительством, заключившим под стражу короля Людовика XVI. 15 февраля 1792 года Деламбр был единогласно избран членом Академии наук.

В мае 1792 года, после того как Кассини окончательно отказался участвовать в проекте, Деламбру было поручено возглавить экспедицию на север, из Родеза в Дюнкерк, Мешену — экспедицию на юг, из Родеза в Барселону.

В январе 1806 года, уже после смерти Мешена, Деламбр закончил работу над трехтомным трудом, где были изложены все полученные им данные, условия наблюдений и расчеты, выполненные в ходе триангуляции. Труд носил название «Основы метрической десятичной системы, или Измерение дуги меридиана, заключенной между параллелями Дюнкерка и Барселоны. Выполнено в 1792 и следующих годах Мешеном и Деламбром».

Естественным образом возникает вопрос: какой точности измерений удалось добиться? Были измерены два основания: одно, между Льеэном и Меленом, — непосредственно для расчетов, второе, между городами Верне и Салз на юге Франции, возле побережья — для проверки результатов. Длина первого основания составила 6 075,90 туаза (11,8 км), длина второго — 6 006,249 туаза (11,7 км). Длина второго основания, вычисленная на основе первого с использованием сети из 53 треугольников общей протяженностью в 640 км, составила 6006,089 туаза. Ошибка оказалась равной всего 0,16 туаза, то есть 30 см. Получалось, что эталонный метр не совсем соответствовал своему предназначению. Экспедиция, которая оказалась весьма рискованной, не достигла ожидаемого результата. Но что же произошло с ее участниками?

Так, крайне скрупулезный Мешен отвечал за измерение южной части меридиана (Каркасон — Пиренеи — Кампродон — Пуигсакальм — Матагаллс — Барселона). С ним в путь отправились военный инженер и картограф Жан Жозеф Траншо, изготовитель инструментов Эстевени, учившийся вместе с Ленуаром, и слуга по имени Лебрен. В начале июля 1792 года участники экспедиции достигли Пиренеев, а в октябре добрались до Барселоны.

К чисто геодезическим проблемам прибавились и другие трудности. 1 мая 1793 года Мешен с каталонским ученым Франсеском Сальвой отправился в пригород Барселоны, чтобы понаблюдать за установкой водяного насоса. В результате несчастного случая рычаг длиной почти в два с половиной метра ударил Мешена в грудь и отбросил его к стене; бездыханный Мешен свалился на землю. Доктор Франсеск Сантпонф, лучший хирург города, установил: у ученого раздавлена правая сторона груди, расплющены ребра, в нескольких местах сломана ключица. Даже полгода спустя он по-прежнему не мог пошевелить правой рукой, но, к счастью, позже полностью оправился.

В 1793 году казнь Людовика XVI привела к войне между Францией и Испанией, что также задержало экспедицию.

После завершения триангуляции на территории Испании Мешен попытался вернуться во Францию, но военное командование запретило ему покидать страну. Закрытым для него оказался и замок Монжуик, откуда он ранее производил наблюдения. Мешен провел новые наблюдения из пансионата на улице Эскуделлерс, в котором он остановился, и обнаружил в результатах наблюдений, произведенных с Монжуика, возможную ошибку в 3,24". Эта ошибка не давала ему покоя до самой смерти. Ученый задержался в Барселоне с июня по ноябрь 1794 года, когда ему наконец разрешили вернуться во Францию.

Как и Мешен, Деламбр во Франции также столкнулся с рядом трудностей. Как правило, жители городов и деревень, где проходила сеть триангуляции, не понимали, что задумали эти господа, которые среди ночи подавали с колоколен или горных вершин видимые издалека сигналы. Эти сигналы подавались для того, чтобы избежать некоторых погрешностей измерения, возникавших днем, однако местные крестьяне принимали ученых за шпионов и порой разрушали их конструкции и даже забрасывали исследователей камнями. Очень часто их арестовывали по подозрению в шпионаже и подолгу держали под замком. В любой момент их могли расстрелять или отправить на гильотину по приговору революционного трибунала. И таких экспедиций было предпринято три, и каждая из них была связана с риском для жизни самих исследователей. Но ученых интересовала не только идея эталонного метра. Так, Пьер Франсуа Андре Мешен начал обучаться математике в Париже, но из-за финансовых трудностей ему пришлось оставить учебу и давать частные уроки. С ранних лет он занялся исследованиями в области астрономии и географии. Мешен посвятил жизнь тщательным астрономическим наблюдениям. Именно благодаря этому кропотливому труду он был назначен ответственным за измерение южной части дуги меридиана, от Родеза до Барселоны. С 1771 по 1774 год он вместе с Шарлем Мессье (1730–1817) занимался астрономическими наблюдениями и составлением каталогов небесных тел.

Целью наблюдений Мессье были кометы. Чтобы отличить их от других небесных тел, он начал составлять длинный перечень астрономических объектов, часть из которых была открыта Мешеном. Сперва перечень содержал около 40 объектов, но позднее, при содействии других астрономов, разросся до сотни. Этот каталог сегодня известен как каталог Мессье. К удовольствию любителей астрономии, все перечисленные в нем объекты видны на небе в бинокль или небольшой телескоп. В каталоге, разумеется, приведены только объекты, видимые в Северном полушарии, начиная от Северного полюса и заканчивая примерно 35-й параллелью.

Мешен умер во время второй своей экспедиции. Он изо всех сил пытался исправить ошибку, допущенную при первых измерениях меридиана.

8 января 1804 года Мешен отплыл на остров Ивиса (Ибица). Он посетил Ивису и Мальорку, после чего вернулся на Пиренейский полуостров. В августе 1804 года ученый провел измерения на горе Пуиг близ Беникасима и в городе Кастельон-де-ла-Плана. Однако Канельес, помощник Мешена по экспедиции, случайно допустил несколько ошибок в записях, и в результате один из сигналов оказался расположен неверно. Чтобы исправить неточность, потребовалось две недели. Скорее всего, именно в это время Мешен подхватил «перемежающуюся лихорадку» (малярию), от которой 20 сентября умер в Кастельоне. Тогда же заболел и Канельес.

В честь 200-летней годовщины измерения дуги меридиана Дюнкерк — Барселона прошли различные культурные мероприятия. К примеру, на барселонской площади Глориас был установлен памятник на средства, пожертвованные властями Дюнкерка — города, который по ходу проекта стал побратимом Барселоны. Памятник представляет собой стальную стену длиной 50 метров и высотой 2 метра в наивысшей точке. Он воспроизводит в масштабе воображаемую линию, соединяющую Дюнкерк и Барселону. На ее концах установлены две мраморные таблички, обозначающие Атлантический океан и Средиземное море соответственно. В памятной надписи объясняется смысл памятника на трех языках: каталанском, испанском и французском.

Результатом геодезических, астрономических и математических исследований, проведенных под руководством Деламбра и Мешена, стало определение метра как универсальной единицы измерения длины. Пока они проводили измерения, 1 августа 1793 года была введена десятичная метрическая система, а вместе с ней — временный метр, определенный по результатам более ранних измерений.

22 июня 1799 года Национальному собранию был представлен окончательный эталон метра, изготовленный Ленуаром из платины, который пришел на смену временному метру, а также эталон килограмма, определенного как масса кубического дециметра дистиллированной воды при давлении в одну атмосферу и температуре 3,98 °C.

Эталоны были помещены на хранение в архивы Республики.

30 августа 1809 года на заседании Бюро долгот, где Араго представил свои расчеты и результаты измерений дуги меридиана от Барселоны до острова Форментера, было проведено сравнение старого и нового метра. Метр, определенный на основе новых данных, менее чем на 5 десятитысячных долей миллиметра отличался от платинового эталона, утвержденного в 1799 году. Ошибка была слишком мала, поэтому платиновый эталон остался неизменным. Лишь спустя 90 лет после его изготовления он был заменен эталоном из платиноиридиевого сплава (90 % платины, 10 % иридия), который был в меньшей степени подвержен деформациям и имел крестообразную форму. Новый эталон был помещен на хранение в Международное бюро мер и весов в городе Севр близ Парижа.

С определением метра родилась метрическая система мер, которую ждал долгий и трудный путь к популярности. Бельгия и Голландия перешли к ее использованию в 1816 году, Испания и Греция — в 1849-м, Португалия — в 1832-м, Германия — в 1870-м, Австрия и Швейцария — в 1873-м.

Постепенно новую метрическую систему приняли почти все европейские страны, кроме Великобритании и США. Это и привело к фатальной ошибке в истории космонавтики.

23 сентября 1999 года спутник NASA Mars Climate Orbiter должен был закончить полет продолжительностью в 286 дней и приземлиться на поверхности Марса. Однако спутник был потерян из-за несогласованности использованных единиц измерения. Mars Climate Orbiter был разрушен в результате ошибки, которая заключалась в том, что в центре управления на Земле использовалась английская система мер и все данные отправлялись спутнику именно в этой системе, а на самом спутнике расчеты проводились в метрической системе.

Минимальное расстояние, на которое спутник мог приблизиться к поверхности планеты, прежде чем начать заход на посадку, составляло 53 мили — в противном случае он мог быть поврежден под действием высоких температур. Спутник снизился на высоту в 59,54 мили, и казалось, что все идет по плану. Однако на самом деле высота была указана в километрах, и произошла катастрофа: 59,54 больше, чем 53, но 59,54 километра — это всего 37 миль, что намного меньше предела в 53 мили, за которым следовало разрушение спутника.

Пренебрежение научным наследием века Просвещения было серьезно наказано.

Появление науки геологии

В целом, к концу XVIII века ученые имели очень точное представление о форме и размерах Земли и об ее удаленности от Солнца и планет.

В конце концов, необходимые материалы лежат буквально у нас под ногами. Но нет. Люди расщепят атом, изобретут телевидение, нейлон и растворимый кофе, прежде чем определят возраст собственной планеты.

Чтобы понять, почему так случилось, мы должны отправиться на север, в Шотландию, и начать со знакомства с яркой гениальной личностью, о которой мало кто слыхал, с человеком, который создал новую науку, называемую геологией.

По всем свидетельствам, Хаттон обладал проницательным умом, был живым собеседником, душой компании. Ему не было равных в понимании загадочных медленно текущих процессов, сформировавших Землю. К сожалению, ему не дано было изложить свои представления в доступном для всех виде. Он был, как заметил с тяжелым вздохом один из его биографов, «полным профаном по части владения словом». Почти от любой из написанных им строк клонило ко сну.

И тем не менее именно он в одиночку, без посторонней помощи, блистательным образом создал геологическую науку и изменил наши представления о Земле.

Хаттон родился в 1726 году в состоятельной шотландской семье, и материальное положение позволило ему большую часть жизни посвятить широкому кругу доставлявших удовольствие нетрудных занятий и интеллектуальному совершенствованию. Он изучал медицину, но она не пришлась ему по вкусу, и тогда он обратился к сельскому хозяйству, которое вел, не слишком себя обременяя, но на научной основе, в родовом имении в Бервикшире. Потом поля и стада ему надоели, и он в 1768 году переехал в Эдинбург, где основал преуспевающее предприятие — стал производить из сажи нашатырь и занялся различными научными изысканиями. В то время в Эдинбурге собрались лучшие интеллектуальные силы, и Хаттон сполна использовал возможности обогащения своих знаний. Он становится видным членом общества, носившего название «Ойстер клаб» («Устричный клуб»), где проводит вечера в компании таких людей, как экономист Адам Смит, химик Джозеф Блэк и философ Дэвид Юм, а также изредка посещавших клуб знаменитостей вроде Бенджамина Франклина и Джеймса Уатта.

В традициях своего времени Хаттон интересовался практически всем — от минералогии до метафизики. Наряду со многим другим он экспериментировал с химическими препаратами, изучал способы добычи угля и строительства каналов, бывал в соляных копях, размышлял над механизмами наследственности, собирал окаменелости, выдвигал теории происхождения дождя и состава воздуха и даже формулировал законы движения. Но сферой его особых интересов была геология.

Среди вопросов, вызывавших интерес в этот фанатически любознательный век, был один, над которым люди долгое время ломали головы, а именно, почему раковины древних морских моллюсков и другие морские окаменелости так часто находят на вершинах гор. Как их туда занесло? Те, кто считал, что знают ответ, разделились на два противостоящих друг другу лагеря. Одна группа, известная как нептунисты, была убеждена, что все на Земле, включая морские раковины на невероятно возвышенных местах, можно объяснить повышением и понижением уровня моря. Нептунисты считали, что холмы, горы и другие детали рельефа стары, как сама Земля, и подвергались изменениям, только когда их заливало водой в периоды всемирных потопов.

Их оппонентами были плутонисты, которые отмечали, что вулканы и землетрясения наряду с другими активными процессами непрерывно меняют лицо планеты, но нет никаких признаков столь своенравного поведения морей. Плутонисты также задавали щекотливые вопросы, куда девается вода, когда не бывает потопов. Если ее хватало, чтобы затопить Альпы, то скажите тогда, где же она находится в спокойные времена, как теперь? По их убеждению, Земля наряду с поверхностными факторами подвергается воздействию мощных внутренних сил. Однако и они не могли убедительно объяснить, как туда, наверх, попали все эти раковины моллюсков.

Размышляя над этими парадоксами, Хаттон как раз и высказал ряд поразительных догадок. У себя на ферме он наблюдал, что почва создается в результате эрозии горных пород и что частицы этой почвы постоянно смываются и уносятся ручьями и реками, чтобы осесть в других местах. Он понял, что если бы этот процесс продолжался до своего естественного завершения, то в конечном счете Земля стала бы довольно ровной. Однако вокруг возвышались холмы и горы. Ясно, что должен быть какой-то дополнительный процесс, некий путь восстановления и поднятия, формирующий новые холмы и горы, поддерживающий весь этот цикл. Окаменелые морские существа, решил он, не оставались на вершинах после наводнений, а поднимались вместе с самими горами. Он также пришел к выводу что внутренний жар Земли создает новые горные породы и континенты, вздымает горные хребты. Будет не лишним заметить, что геологи почти двести лет не могли в полной мере осознать значение этой идеи, пока наконец не получила признание концепция тектоники плит. Главная особенность теории Хаттона состояла в том, что предполагаемые процессы формирования Земли требовали таких колоссальных отрезков времени, которые тогда никто не мог даже представить. Словом, озарений было достаточно, чтобы в корне изменить наши представления о Земле.

Идеи Хаттона получили неожиданное продолжение в рамках масонской идеологии. Впрочем, именно масонам мы во многом и обязаны Просвещением.

Зимой 1807 года тринадцать проживавших в Лондоне единомышленников собрались в таверне франкмасонов, что на Лонг-Эйкр в Ковент-Гардене, с целью создать клуб, получивший название Геологического общества. Идея состояла в том, чтобы раз в месяц обмениваться мыслями по вопросам геологии за бокалом-другим мадеры и дружеским ужином. Стоимость ужина намеренно установили весьма изрядной, 15 шиллингов, дабы не поощрять тех, кто не мог подкрепить интеллектуальные заслуги также и финансовой самодостаточностью. Однако скоро стало очевидно, что требуется более солидная организация с постоянным помещением, где люди могли бы собираться, чтобы поделиться своими находками и обсудить их. Менее чем за 10 лет число членов общества возросло до 400 человек — разумеется, по-прежнему все джентльмены, — и Геологическое общество грозило затмить Королевское как главное научное общество страны.

Члены общества собирались дважды в месяц с ноября до июня, когда практически все разъезжались на лето для полевых изысканий.

Во всем тогдашнем цивилизованном мире, но особенно в Британии, ученые мужи выбирались за город, чтобы, по их выражению, немного «поломать камней». К этому занятию относились всерьез, старались одеваться надлежащим образом — цилиндры, темные костюмы, за исключением разве что преподобного Уильяма Бакленда из Оксфорда, имевшего привычку выходить на полевые работы в академической мантии. Так общими усилиями ученые-масоны и пытались определить возраст планеты Земля. Век Разума не мог смириться с библейской концепцией мира.

История развития сейсмологии

Древние люди все происходившие землетрясения относили к разряду сверхъестественных. Жители Японии предполагали, например, что их острова располагаются на огромном соме, который время от времени качается на волнах. Аристотель думал, что виновником всех землетрясений являются ветры. Находящиеся в пещерах недр Земли, они ищут себе выход на поверхность.

Первое устройство для детектирования землетрясений было изобретено древнекитайским ученым в 132 году н. э. — имя этого человека Чжан Хен. В XVIII веке считали, что упругие волны, проходя через земную кору способны вызывать землетрясения. Попытку объяснить это сделал Джон Митчелл, проанализировав показания очевидцев и опубликовав в 1760 году книгу о предполагаемых причинах возникновения землетрясений. Он приходит к выводу, что землетрясения — это есть волны, которые вызываются движением пород, находящихся под землей. Скорость сейсмических волн землетрясения, произошедшего в Лиссабоне в 1755 г., Митчелл оценил в 1930 км/час. Кроме этого он предположил место эпицентра, сопоставив данные о времени прибытия колебаний. Метод Митчелла лежит в основе современных способов определения эпицентра. Правда, прием, который он использовал, был неверным, потому что опирался на свидетельские показания о направлении цунами.

В середине XIX века происходит новый скачок в развитии сейсмологии. Этот этап связан с именем Роберта Маллета, который в течение 20 лет занимался сбором данных об исторических землетрясениях. Кроме этого, он проводил натурные эксперименты. Маллет создал каталог мировой сейсмичности, в котором было описано 6831 землетрясение. Каждое их этих землетрясений имело дату, место, количество толчков и возможное направление, продолжительность колебаний и их последствия. При документировании землетрясений использовалась новая техника фотографии. Маллет ввел первую шкалу интенсивности землетрясений. В конце XIX и начале XX веков происходит целая череда разрушительных землетрясений, что дает основание России, Японии, США, европейским странам начать систематические наблюдения за этим стихийным бедствием.

Промышленная революция эпохи века Разума

Считается, что настоящая «промышленная революция» началась с английской «патентной революции» середины XVIII в. Законодательно защитив интеллектуальные права собственности, она позволила авторам изобретений получать прибыль от своего труда, что стало важным стимулом для развития технической мысли.

Такая революция началась в Англии в 60-х годах XVIII в., а в следующем веке распространилась на другие страны Европы. Термин «промышленная революция» впервые был использован французским экономистом Ж.А. Бланки в 1837 г. Вслед за ним его стали применять Р. Оуэн и Ф. Энгельс (1845).

Исследователи сходятся во мнении, что стержнем первой промышленной революции Нового времени был переход от мануфактуры, основанной на ручном труде, к фабрике, где важнейшей производственной силой стали машины. Этот переход нередко называют промышленным переворотом.

Одним из самых важных изобретений XVIII в. считается создание парового двигателя. Разработка его была связана с решением практических задач в горнодобывающей отрасли, таких, в частности, как откачка воды из шахт, глубина которых в Англии в конце XVII в. составляла 120–180 метров. Первые успехи были достигнуты Т. Севери и Т. Ньюкоменом на рубеже XVII–XVIII вв. «Атмосферный двигатель» Т. Ньюкомена начали использовать в Англии не раньше 1712 г. В основе его работы лежало понимание природы атмосферного давления. Несмотря на то, что машина была громоздкой, энергоемкой и малопроизводительной, с 1729 г. ее применяли не только в Англии, но и в Австрии, Франции, Бельгии, Германии, Венгрии, Швеции. Через пятьдесят лет Джеймс Уатт так изменил конструкцию, что потребление топлива сократилось на две трети.

Эффективность повысилась за счет использования отдельного цилиндра для конденсации пара. Машина была запатентована в 1784 г., и к концу века в различных областях производства Великобритании действовало около 500 паровых двигателей Уатта. Однако лишь в начале XIX в. был придуман паровой двигатель высокого давления, значительно расширивший сферу применения изобретения Уатта.

Наибольший эффект технические инновации имели в тех отраслях, где уже сложились условия для благоприятного развития. Активнее всего менялось положение дел в текстильной отрасли, которая в те времена повсеместно являлась одной из ведущих производственных сфер. Начало ее трансформации было положено еще в 30-е годы внедрением так называемого «летающего челнока». В 1764 г. Дж. Харгривс сконструировал механическую прялку «Дженни». Спустя пять лет (1769 г.) Р. Аркрайт изобрел прядильный станок на водяном приводе. А в 1785 г. патент на механический ткацкий станок оформил Э. Картрайт, хотя только в начале следующего века изменения и усовершенствования сделали его вполне надежной машиной.

Одним из важнейших проявлений промышленной революции в XVIII в. стал поиск новых так называемых «неодушевленных» видов энергии. Длительное время главными источниками энергии помимо силы животных и человека служили вода и ветер. В Англии и на континенте в течение всего XVIII в. имелось много мастерских, получавших энергию от водяных и ветряных мельниц. Во Франции, согласно записке, представленной выдающимся военным инженером и будущим маршалом С. де Вобаном на имя короля в 1694 г., насчитывалось около 95 тысяч таких мельниц. Они мололи зерно, откачивали воду из шахт, приводили в движение простые механические устройства.

Мощность мельницы, в зависимости от ее расположения и размера, в XVIII столетии в среднем составляла пять лошадиных сил. Особенно много ветряных мельниц располагалось на берегах Северного и Балтийского морей, где их средняя мощность составляла десять лошадиных сил. На ранних этапах индустриализации, даже в Британии, вода оставалась главным источником энергии. Во второй половине века водяные колеса и турбины модернизировали, и во многих областях водяные мельницы долго соперничали с паровыми двигателями. Поскольку мощность первых паровых машин составляла примерно двадцать лошадиных сил, начавшаяся в 90-е годы XVIII в. в хлопкопрядильном производстве замена водяных установок на паровые машины не вызвала резких перемен.

Основным источником тепловой энергии оставался древесный и каменный уголь. Им не только отапливали помещения, но и применяли его в производстве стекла, кирпича, в пивоварении, в соляной промышленности, в производстве сахара, в металлургии. Идея использования каменного угля в металлургии появилась еще в XVI в. Но перевод производства металлов с древесного угля на каменный оказался делом сложным и длительным. Способ коксования каменного угля перед загрузкой в доменную печь был разработан А. Дерби и впервые удачно применен в 1709 г. Семья Дерби на протяжении всего века трудилась над совершенствованием чугунолитейного производства. Однако производительность плавильной печи, работавшей главным образом на древесном угле с использованием энергии воды, в XVIII в. была невелика. Чугун оставался дорогим и очень хрупким материалом из-за высокого содержания углерода. Использование парового двигателя в металлургии привело к увеличению количества доменных печей, работавших на коксе (31 в 1775 г. до 81 в 1780). Но массовое производство ковкого чугуна стало возможным лишь после того, как Г. Корт в 1784 г. усовершенствовал процесс пудлингования (передела чугуна в мягкое малоуглеродистое железо), который изобрели в 1766 г. братья Т. и Дж. Кранедж. Темпы производства железа удвоились менее чем за десять лет: с 60 тыс. тонн в 1788 г. до 125 тыс. тонн в 1796 г. В свою очередь, прогресс металлургии способствовал увеличению объема угледобычи. Но только в начале XIX в. кокс вытеснит древесный уголь на металлургических предприятиях.

Технический прогресс Британии подпитывался бурным расцветом точных и естественных наук во всей Европе.

Создание криминалистики

Криминалистика как наука занимает особое место в истории европейской рациональности. Преступление никак нельзя назвать явлением, созвучным с понятием Просвещения, понятием, ассоциирующимся с божественным Светом. Преступление по своей природе — это всегда бунт против данного порядка вещей и против Закона, того самого Закона, глобальную власть которого утверждал еще Монтескье («О духе законов»). Следовательно, криминалистика применила научные методы в поисках преступников для восстановления Порядка и утверждения Закона. Но без разгула преступности в век Разума никакая бы криминалистика и не возникла. Это был социальный заказ, обусловленный активным проявлением преступной, теневой жизни городского населения.

А началось все с рождения лондонской полиции.

В XVIII в. сложившаяся система противодействия преступности уже не удовлетворяла новым социальным условиям, которые диктовали поиск новых форм контроля и необходимость возникновения принципиально новой системы правопорядка. На протяжении второй половины столетия происходило становление полиции как профессионального института государственных служащих, выполняющих правоохранительные функции, что было сопряжено с трудностями, обусловленными негативным восприятием самой идеи наличия данного института, несовместимой с традиционными политическими свободами, которыми наслаждались англичане в отличие от их соседей на континенте. Ле Блан, один из первых ученых, занимавшихся сравнительной аналитикой, писал, что англичанин скорее согласится быть ограбленным на большой дороге как на меньшее зло по сравнению с вероятностью вторжения в частное пространство правительственных агентов. Создание государственной структуры, отвечающей за противодействие преступности, даже на фоне ее беспрецедентного роста, не казалось настолько очевидной идеей, чтобы получить единодушную поддержку различных слоев британского общества.

Одним из тех, кто в данном вопросе занимал наиболее последовательную позицию, был известный драматург, романист и публицист Генри Филдинг, с 1748 г. занимавший должность мирового судьи Вестминстера, а с начала 1749 г. расширивший свои полномочия на округ Мидлсекс.

Заметим, что к этому времени Лондон и пригороды буквально захлестнула волна преступности. К середине XVIII столетия количество преступлений, за которые мужчине или женщине грозила казнь через повешение, выросло с 80 до 350 и более. Но проку от такой суровости, по-видимому, было немного. Несколькими годами позже в «Трактате о работе столичной полиции» отмечалось, что «в Лондоне регулярно занимаются криминальной деятельностью 115 000 человек». Это составляло около одной седьмой тогдашнего городского населения. Так, в 1774 году в «Джентлменс мэгэзин» писали, что «газеты более чем когда-либо переполнены сообщениями о грабежах и кражах со взломом, а также историями о жестокостях, учиненных грабителями». Отсюда мы можем заключить, что в пору благоденствия и «значительного» достатка преступления против собственности были столь же частыми, как и преступления против людей, — и это несмотря на то, что с ростом ценности украденного имущества соответственно возрастал и риск быть повешенным.

Питер Лайнбо тщательно изучил статистику казней через повешение на протяжении всего XVIII века и пришел к любопытным выводам.

Коренные лондонцы попадали на виселицу, как правило, в возрасте двадцати с небольшим лет, тогда как приезжие — несколько позже. По профессии те, кто всходил на эшафот, были в основном мясниками, ткачами и сапожниками. Между мясниками и грабителями с большой дороги просматривалась явная связь. С культурной и социологической точек зрения эту связь интерпретировали по-разному, но, в общем, лондонские мясники всегда отличались несдержанностью и эгоизмом, а порой и склонностью к насилию. Они определенно пользовались наибольшим почетом среди всех столичных торговцев, и один посетивший Лондон иностранец писал, что «удивительно видеть такое количество мясницких лавок во всех приходах — ими буквально забиты все улицы». Они зачастую становились лидерами местных сообществ; например, мясники с Клэр-маркет, близ которого было множество театров, описывались как «выразители мнения галерки и всей театральной публики, музыканты на свадьбах актрис, главные плакальщики на похоронах актеров». Они же возглавляли народ во времена бедствий и беспорядков. Например, об одной кровавой расправе сообщалось: «Мясники начали смуту первыми, и вскоре все остальные также поднялись против сборщика акциза». Неудивительно, что именно мясники и их подмастерья оказались наиболее склонными к совершению дерзких и жестоких преступлений. В уголовном кодексе добавилось новое положение, призванное застращать потенциальных убийц: теперь тела повешенных должны были подвергаться публичному вскрытию.

Рядом с Рэтклифф-хайвей была путаница мелких улочек с названиями вроде Хог-ярд и Блэк-Дог-элли, Мани-Бэг-элли и Хэрбрейн-корт, известных «моральным разложением» их обитателей. Близ Уотер-лейн, рядом с Флит-стрит, стоял еще один притон, который именовали «Кровавой чашей», потому что там «почти ежедневно проливалась кровь и редкий месяц обходился без убийства».

На самой Чиклейн стоял дом, в котором прежде находилась гостиница «Красный лев», — в XVIII веке, когда его разрушили, обнаружилось, что ему было уже триста лет; Хекторн, автор книги «Памятные места Лондона», сообщает, что там были «замаскированные чуланы, люки, отодвигающиеся панели и тайники». Один из этих люков находился над каналом Флитдич и «позволял легко избавляться от трупов».

Несколько более сдержанно городской хронист XVII века сообщает об облаве, учиненной в трактире Уоттона на Смартс-ки близ Биллингсгейта. Этот трактир на самом деле был «школой, где малышей учили опорожнять кошельки».

Кошельки и мешочки подвешивались на веревочке с прикрепленными к ним «колокольцами»; если ребенок мог вынуть оттуда монету так, чтобы колокольчик не звякнул, «его признавали славным щипалой». В следующем XVIII веке другая такая «школа» открылась на Смитфилде, где владелец таверны обучал детей шарить по чужим карманам, красть вещи из лавок, залезая в окна, и проникать в дома простым способом: они притворялись, что спят под стеной, а сами потихоньку расковыривали кирпичи и известку, пока не образовывалась достаточно большая дыра.

Распоясавшиеся бандиты терроризировали лавочников, заставляя их платить дань. Вымогателей нередко прикрывали продажные полицейские. Наряду с честно выполняющими свой долг мировыми судьями в британской столице было немало и коррупционеров, которых Филдинг обличал раньше в своих произведениях. В грязном, плохо освещенном городе, где некоторые улицы были загромождены свалками мусора, преступникам всегда было легко уйти от преследования. Нищета и голод, в которых прозябала огромная часть населения Лондона, нередко взрывались социальной яростью, приводя к кровавым дракам и жестоким погромам.

Криминализации способствовала и бесконтрольная продажа спиртного. Запретительные и ограничительные меры результата не давали: пить жители Туманного Альбиона меньше не стали. Точку в многолетней антиалкогольной кампании поставил разработанный парламентским комитетом и принятый в 1751 г. закон, значительно повысивший цены на спиртное. Продажи горячительного резко снизились, нация пошла «на поправку». Генри Филдинг был среди тех, кто, по меткому выражению биографа Пэта Роджерса, «расчистил путь полезному закону». Именно Филдинг в своей работе «Исследование о причинах недавнего роста грабежей» выступил с гневным обличением повальной страсти земляков к дешевому джину.

Примерно в такой обстановке Филдинг приступил к исполнению своих новых обязанностей. Помимо чисто судейских дел, он также вынужден был заниматься и розыском преступников. Кстати, таким совмещением обязанностей сыщика, следователя и судьи некоторые мировые судьи в то время злоупотребляли, пользуясь положением в собственных корыстных целях.

Сегодня это кажется смешным, но в Англии XVIII в. на судейские должности порой назначались и вовсе неграмотные люди. Проработав несколько лет судьей, в 1752 г. Филдинг с присущей ему иронией напишет: «Признаюсь, я всегда склонен был думать, что профессия мирового судьи требует некоторого знания законов… однако мистер Трэшер (судья) в жизни своей не прочел ни одной буквы из кодекса». Зачем подобным типам было заглядывать в законы, если они даже сами не собирались их соблюдать?!

Не лучше обстояло дело и с чиновниками рангом пониже. Констеблей в подчинении у судьи Вестминстера было чрезвычайно мало, а силы имевшихся были направлены на постоянное поддержание общественного порядка. К тому же Генри Филдинг вскоре понял, что из 80 констеблей, которые вместе с должностью судьи достались ему от предшественника, доверять можно лишь шестерым. Должности тюремщиков, шерифов и судебных приставов считались «доходными» и покупались на всю жизнь. Занимавшие их люди, естественно, старались возместить свои издержки и налагали штрафы на всех, кто попадался под руку. К сожалению, до конца эту «традицию» не удается изжить и по сей день.

Среди блюстителей порядка в Лондоне были еще ночные караульные. «Ветхие инвалиды» — так называл их Филдинг. За один шиллинг они от зари до зари бродили по улицам с фонарем, еле-еле волоча за собой дубинку. Все остальное время они проводили в кабаках.

В помощниках у судей также ходили осведомители. Как позже понял Филдинг, многие из них, выдавая мелких воришек, прикрывали крупную рыбу преступного мира.

Бытовые условия, в которых приходилось работать Филдингу, тоже впечатляли. Вот что об этом пишет Пэт Роджерс: «Он (Филдинг) проводит долгие часы в седле или в продуваемых всеми ветрами тряских дилижансах. Его ночлег не всегда достаточно удобен, а дни проходят в тесноте судов, где присяжные, адвокаты и судьи рискуют подцепить от заключенных грозный сыпняк (разновидность тифа)».

В таких условиях Филдинг взялся за наведение порядка в округе. На протяжении первого месяца судейской практики он разбирал дела мелкого пошиба, в основном воровство одежды, а однажды — кражу железной кочерги и метлы. Но вскоре Филдинг понял, что, утонув в этой мелочевке, он так и не решит более глобальных задач. И потому со всей решительностью приступил к реформе полицейской системы. Помогал ему в этом отличный служака — главный констебль Холбонс Сондерш Уэлш. Положиться как на себя Филдинг мог и на клерка Джошуа Брогдена, работавшего еще с прежним судьей.

Генри Филдинг осознавал главное: законность в округе не удастся восстановить до тех пор, пока не будет покончено с организованной преступностью.

Для борьбы с этим страшным злом требовались дополнительные средства. Филдинг обратился за помощью к герцогу Ньюкасль, и тот не отказал. Львиная доля выделенных денег была пущена на оплату «подсадных уток». Легенда гласит, что в свое время гуси спасли Рим. Проводя исторические параллели, можно сказать, что «подсадные утки» спасли Лондон от беспредела бандитских шаек. Практика внедрения в банды тайных агентов из числа проверенных людей привела к тому, что уголовники перестали верить друг другу. В криминальном мире развернулась самая настоящая «охота на ведьм». Некоторые исследователи жизни и творчества Филдинга утверждают, что именно он во многом предопределил методы, которые используют в своей практике современные подразделения по борьбе с организованной преступностью.

Стражи порядка в свою очередь также перешли к активным действиям. В схватке с первой раскрытой бандой был убит констебль. Одного преступника удалось уничтожить, семеро были схвачены, а остальные, по агентурным данным, скрылись за пределы королевства.

Если того требовала служба, Филдинг, невзирая на время суток, мог сорваться с места и выехать на место очередного происшествия в лондонские трущобы. Вскоре такой образ жизни стал сказываться на его здоровье. Но судья Вестминстера не роптал: будучи убежденным гуманистом, ради людей он был готов переносить любые трудности.

О несгибаемом мировом судье Вестминстера жители Лондона складывали легенды. Для бедняков он стал настоящим героем, для преступников — врагом номер один.

Мало кто знает, что история баллистической экспертизы косвенно связана с деятельностью Генри Филдинга, известного английского писателя и драматурга.

«Программа мистера Ф-га», как окрестила комплекс предпринятых Филдингом мер британская пресса, себя вполне оправдала. По прошествии некоторого времени в кратком очерке об итогах проделанной работы, с которого начинается «Путешествие в Лиссабон», сам Филдинг, не скрывая своего удовлетворения, пишет, что «адское сообщество искоренено почти до основания» и «из утренних газет исчезли сообщения об убийствах и уличных ограблениях».

Несмотря на обилие служебных забот, Филдинг находил время для научных работ. В них он не только пытался осмыслить психологию преступника, но и давал конкретные рекомендации по повышению эффективности правоохранительной деятельности. Его трактаты «О разбоях на большой дороге и похищениях с целью выкупа», «Исследование о причинах недавнего роста грабежей», «Предложение о мерах по действительному обеспечению бедняков» легли в основу законов, принятых парламентом.

Существенный вклад внес Генри Филдинг и в криминологию. Около 500 «юридических аллюзий» насчитал в его произведениях барристер (адвокат, имеющий право выступать в высших судах Англии) Б. Джонс, автор интереснейшей книги о деятельности писателя. Кроме всего прочего Филдинг вошел в историю и как защитник родного языка, выступая за его очищение от жаргонизмов и упорядочение правописания.

Этот человек обладал поистине энциклопедическими знаниями. Библиотека, которую писатель собирал четверть века, насчитывала 1298 томов, 228 из которых составляла юридическая литература.

Эту сыскную деятельность прославленного литератора отразил в своих исторических детективах современный английский писатель Брюс Александер. Он сочинил целый цикл детективных романов «Тайны сэра Джона Филдинга». Это был брат Генри Филдинга, который пришел ему на смену.

Дело в том, что брат прославленного английского писателя был слепой. В юности, служа в королевском флоте, получил травму головы и лишился зрения. Это был уникальный человек. Он использовал «бегунов» в качестве своих «рук» и «ног», а сам исполнял функцию мозга. Никто лучше «Слепого Клюва» (так его прозвали преступники) не умел проводить допросы. Обладая феноменальным слухом, Джон держал в памяти целую аудиотеку — различал голоса трех тысяч уголовников.

Многие приемы, считающиеся азбукой криминалистики, впервые были введены и опробованы слепым судьей. Он первым стал печатать в газетах приметы находящихся в розыске преступников; завел картотеку; стал устраивать опознания и очные ставки. На судебные заседания Джона Филдинга публика собиралась, как на спектакли. За какие-то два года «Слепой Клюв» избавил Лондон от организованной преступности. В 1763 году он создал первый отряд конной полиции, всего-навсего десять человек, но и этого оказалось достаточно, чтобы на улицах столицы совершенно прекратился дневной разбой (а ночью порядочным людям выходить из дома все равно незачем).

Оглавление

Из серии: Классика лекций

* * *

Приведённый ознакомительный фрагмент книги Падшее Просвещение. Тень эпохи предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я