Покер для тех, кто хочет побеждать. «Покер – это не удача, это чистая математика», – с уверенностью заявляет Склански в книге. Легендарный теоретик покера по полочкам раскладывает его математические законы. Он на конкретных примерах объясняет, как стать лучшим игроком. Здесь описаны стратегии и принципы, которые помогут побеждать, вне зависимости от того, насколько вы хорошо блефуете.
Приведённый ознакомительный фрагмент книги Математика покера от профессионала предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
3. Фундаментальная теорема покера
Как существуют Основная теорема алгебры и Основная теорема анализа, так есть и Фундаментальная теорема покера. Настало время вас с ней познакомить. Покер, как и все другие карточные игры, является игрой с неполной информацией, что отличает его от других настольных игр наподобие шахмат, нард или шашек, где вы всегда видите, что делает ваш противник. Если бы карты каждого игрока можно было посмотреть в любое время, то верное математическое решение для любого участника всегда бы точно вычислялось. Любой игрок, отклоняющийся от правильной игры, понижал бы свое математическое ожидание и увеличивал бы ожидание своих оппонентов.
Конечно, при возможности видеть все карты покера просто бы не существовало. Искусство данной игры заключается, с одной стороны, в заполнении пробелов в информации, получаемой от ваших оппонентов при наличии ставок, и, с другой стороны, в сокрытии от других игроков любой информации о своей руке сверх той, что вы сами хотите им сообщить.
Вышесказанное приводит нас к Фундаментальной теореме покера:
Каждый раз, когда вы разыгрываете руку иначе, нежели вы сыграли бы ее, видя все карты ваших оппонентов, они выигрывают; и каждый раз, когда вы разыгрываете вашу руку тем же образом, каким вы бы сыграли ее, если бы могли видеть все карты соперников, они проигрывают. Справедливо и обратное: каждый раз, когда ваши оппоненты разыгрывают свою руку не так, как в случае, когда у них есть возможность видеть все ваши карты, вы выигрываете; и каждый раз, когда они разыгрывают свою руку тем же образом, каким они сыграли бы, видя все ваши карты, вы проигрываете.
Фундаментальная теорема применяется полностью, когда розыгрыш свелся к вашему противостоянию с единственным оппонентом. И она почти всегда применима к раздачам с несколькими активными участниками, однако существуют редкие исключения, которые мы затронем в конце главы.
Что означает Фундаментальная теорема покера? Поймите, что если каким-то образом соперник узнал бы ваши карты, он смог бы принять верное решение о своих действиях. Например, если в дро игре ваш оппонент увидел, что у вас флеш, правильным для него было бы сбросить свою пару тузов на вашу ставку. Колл являлся бы ошибкой, но это особый тип ошибки. Мы не имеем в виду, что ваш противник плохо сыграл раздачу, уравняв с парой тузов; мы говорим о том, что он сыграл бы иначе, если бы знал ваши карты.
Этот пример с флешем вполне понятен. На самом деле вся теорема довольно проста, в том-то и прелесть; однако с ее использованием не всегда все так предельно ясно. Иногда размер суммы денег в банке делает колл верной игрой, даже если вы видите, что рука соперника сильнее вашей. Давайте взглянем на несколько примеров Фундаментальной теоремы покера в действии.
Примеры Фундаментальной теоремы покера
Допустим, ваша рука, когда вы делаете ставку, не настолько хороша, как рука вашего соперника: он уравнивает вашу ставку, и вы проигрываете. Но в действительности вы не проиграли, а заработали! Почему? Поскольку если бы ваш оппонент знал, какие у вас были карты, он бы повысил. Таким образом, когда противник не сделал рейз, вы оказались в плюсе, и, если он сбрасывает, вы получаете внушительную сумму.
Данный пример может показаться слишком простым для серьезного обсуждения, но на самом деле это общий прицип для некоторых весьма искусных розыгрышей. Допустим, в безлимитном холдеме у вас на руках
а у вашего оппонента разномастные
Приходит флоп
Вы делаете чек, ваш противник ставит, и вы коллируете. Теперь туз бубен приходит на терне, и вы ставите, пытаясь изобразить, что вы имеете туза. Если бы ваш оппонент знал, что у вас на руках, для него верной игрой было бы повысить вас настолько, чтобы вам оказалось невыгодно тянуть флеш или стрит последней картой. Таким образом, если ваш соперник ограничивается коллом, вы зарабатываете. Вы получили выгоду не только от того, что вы за относительно маленькую сумму увидели последнюю карту, но и потому, что ваш оппонент не принял правильного решения. Совершенно ясно, что если ваш оппонент сбрасывает, то вы выигрываете очень существенно, поскольку у него была лучшая рука.
Допустим, в банке $80 и у вас две пары. Вы играете в дро покер и ставите $10, что, как мы предполагаем, является максимальной ставкой. Ваш единственный оппонент имеет флеш-дро (для флеша ему недостает одной карты). Вопрос заключается в следующем: вам выгоднее, чтобы он уравнял или сбросил? Естественно, что вы хотите увидеть от него наиболее подходящее для вас решение. Фундаментальная теорема покера утверждает, что вам наиболее выгодна неправильная игра оппонента при полной информации об обеих руках. Поскольку ваш противник получает шансы 9 к 1 (его колл в $10 может выиграть ему $90) и является только 5 к 1 андердогом собрать флеш, для него будет верным сделать колл, потому что колл имеет положительное ожидание. Но так как колл является для вашего оппонента верной игрой, то, следуя Фундаментальной теореме покера, вы хотите увидеть от него пас.
Подобные ситуации периодически возникают. У вас лучшая рука, но оппонент получает достаточно шансов, чтобы сделать корректный колл, если бы он знал вашу комбинацию. Таким образом, вы хотите, чтобы ваш оппонент сбросил. По тому же принципу верным для вас является продолжение игры, если у вас неплохие шансы. Если вы не продолжаете, то теряете деньги и, следовательно, отдаете их своему оппоненту.
Поскольку правильной игрой для оппонента является колл, если он получает для него достаточно шансов, то вы можете иногда заставить противника сделать некорректный пас, изображая на ранних улицах большую силу, чем вы имеете в действительности. Предположим, в 7-карточном стаде вы ставите с картами
Оппонент делает колл, имея
У вас есть некоторая уверенность, что у него пара королей. На следующей улице вы в открытую собираете пару шестерок и ставите. Ваш противник почти наверняка спасует пару королей, если он боится, что у вас также есть пара тузов.
Некоторые могут сказать: «Погодите-ка. Почему я не хочу увидеть колл от оппонента, пока пара королей слабее моих двух низких пар?»
Дело в том, что при наличии еще неразыгранных улиц оппонент получает достаточно шансов на колл, и вам в такой ситуации предпочтительнее забрать банк немедленно. Для пары королей против двух низких пар достаточно очень небольших шансов, чтобы оправдать колл. И так как корректным действием для оппонента был бы колл, вы зарабатываете, когда он сбрасывает.
В раззе, то есть в 7-карточном стад-лоуболле, в котором выигрывает наиболее низкая рука, мы можем наблюдать еще один пример, когда демонстрация большей силы, чем вы имеете на самом деле, способна заставить оппонента сыграть некорректно. Допустим, у вашего соперника
И у вас что-то наподобие
Если вы думаете, что у оппонента лоу на четырех картах от восьмерки, а у вас пара и лоу на четырех картах от 8–7, то важно ставить, даже если вы ожидаете увидеть колл. Эта ставка дает вам некоторое дополнительное эквити в случае, если вам удастся поймать низкую карту на шестой улице, дающую вам 8–7 лоу. Если ваш оппонент поймает высокую карту или пару, когда ему все еще требуется тянуть к лучшей восьмерке, чем ваша, он спасует, поскольку ваша предыдущая ставка говорила о готовом лоу от 8. Пойманная вами низкая карта демонстрирует то, что вы собрали лоу от 7, и это заставляет вашего оппонента думать, что он тянет вмертвую, то есть тянет, не имея шансов на победу.
Заметьте в очередной раз: вы желаете увидеть от вашего оппонента пас, даже несмотря на то что у вас лучшая рука. У вас 8, 7 лоу и вы тянете к 7, пока ваш оппонент по-прежнему тянет к лучшей 8. Однако вы зарабатываете на его пасе, потому что, если бы он знал, что у вас всего 8, 7, он бы имел достаточные шансы на колл. Не сделав колл, ваш противник совершил ошибку, и вы победили. (Вы выигрываете даже больше, когда эта карта на шестой улице дает вам две пары, и ваш оппонент сбрасывает лучшую руку.)
Как вы мечтаете увидеть пас от оппонента, когда у него достаточные шансы банка, так вы стремитесь и увидеть колл, когда шансы банка у него недостаточны. Следовательно, часто правильным будет разыгрывать сильную руку слабо в ранних раундах торговли — наоборот, нежели в предыдущих примерах — так, чтобы ваш оппонент сделал плохой колл, когда ваша рука улучшится. Посмотрим на следующие две руки из 7-карточного разза:
Вы
Оппонент
Правильной тактикой против человека с такой рукой было бы сделать чек и всего лишь уравнять его ставку. Многие игроки положили бы вас на пару или плохую скрытую карту. Если вам удастся поймать четверку, пятерку или семерку на доске, дающие вам лоу от 6 или 7, ваш оппонент, вероятно, все равно сделает колл, несмотря на то что он будет уже тянуть вмертвую, поскольку ваша прошлая игра вместе с шансами банка заставит его думать, что колл оправдан. Это именно то, чего вы и добиваетесь. Ваша предыдущая скрытная игра послужила причиной неправильных решений вашего оппонента на поздних раундах торговли.
Каждый раз, когда оппонент не получает против вас достаточно шансов, вы хотите увидеть колл, даже если это означает, что у него появится возможность вас перетянуть. Если в примере с флешем, представленным в начале главы, банк был бы $20 вместо $80, вы бы добивались, чтобы оппонент с флеш-дро сделал колл ваших $10, поскольку он 5 к 1 андердог, имея всего 3 к 1 на свои деньги. Если он делает колл и достраивает флеш, то вам не повезло. Тем не менее такая тактика неправильна, поскольку обладает отрицательным ожиданием, и вы выигрываете каждый раз при подобной игре вашего оппонента.
Когда вы имеете руку, с которой хотите увидеть колл, вам не следует заставлять вашего оппонента пасовать, делая чрезмерную ставку в безлимитных и пот-лимитных играх. Такая ситуация однажды произошла, когда я играл в безлимитный холдем. Оставалось прийти всего одной карте, и у меня был стрит, который на тот момент являлся натсом — то есть лучшей возможной рукой. Я поставил что-то около $50, игрок слева от меня уравнял, и соперник позади него повысил на весь свой стек, который составлял около $250.
Поскольку у меня была лучшая возможная рука, вопрос состоял в следующем: следует ли мне повысить или только делать колл? В банке находилось порядка $500. Поскольку третий участник раздачи уже внес в банк весь свой стек, мне требовалось думать только о человеке, сидящем за мной. Я знал, что в случае моего ререйза, скажем на $400 сверху, что подняло бы ставку до $600, он определенно бы сбросил; в действительности он сбросил бы при повышении практически на любую сумму. Но если я всего лишь делаю колл $200, мой соперник, возможно, уравняет.
Какое действие я хотел от него увидеть? Я был практически уверен, что у моего оппонента было две пары. Если бы я сделал колл $200, в банке оказалось бы около $700, что дало бы противнику шансы 7 к 2 на колл $200 с его двумя парами. Однако вероятность того, что он не соберет фулл хаус, была 10 к 1 (в колоде 40 карт, которые ему не помогают, и 4, дающие фулл хаус). Таким образом, если бы мой оппонент знал, что у меня стрит, для него было бы неправильным принимать 7 к 2 шансы банка, имея 10 к 1 на успех. Поэтому я всего лишь уравнял $200, и, согласно моим стремлениям и ожиданиям, он тоже.
Грустное окончание данной истории заключается в том, что мой противник все же собрал фулл хаус и сделал очень небольшую ставку, которую я заплатил. Многие потом утверждали, что было неверным решением позволять ему остаться в раздаче и мне следовало выдавить его рейзом, но в действительности они не правы. Мне следовало предоставить этому оппоненту шансы на ошибку, что я и сделал, поскольку каждый раз, когда мой соперник ошибается, я выигрываю на длинной дистанции.
«Ошибки», согласно Фундаментальной теореме покера
Очень важно понимать, что когда мы говорим о совершении ошибки, согласно Фундаментальной теореме покера, мы не обязательно имеем в виду плохую игру. Мы подразумеваем очень странный род ошибок — действовать иначе, нежели как вы играли бы, видя карты оппонентов. Если у меня роял-флеш и у кого-то стрит-флеш от короля, этот игрок допускает ошибку, уравнивая мою ставку. Но его, конечно, нельзя обвинять в плохой игре из-за данного колла или рейза, который он тоже мог бы сделать. Поскольку ему неизвестно, что у меня на руках, он допускает ошибку в другом смысле этого слова.
В продвинутом покере вы постоянно пытаетесь заставить ваших оппонентов играть иначе, нежели им следовало бы, знай они, что у вас на руках. Каждый раз, когда противники, отталкиваясь от того, что у вас есть, играют правильно, вы ничего не зарабатываете. Согласно Фундаментальной теореме покера, ваша игра выигрышна, если она максимально приближена к тем решениям, которые вы приняли бы, видя карты ваших оппонентов, и, наоборот, вы пытаетесь заставить ваших противников как можно дальше отходить от этого утопического идеала. Первая цель достигается по большей части через чтение соперников и их рук, поскольку чем ближе вы подойдете к определению чьей-либо руки, тем меньше ошибок, согласно Фундаментальной теореме покера, вы совершите. Вторая цель достигается игрой, вводящей соперников в заблуждение.
Многосторонние банки
В начале главы мы утверждали, что Фундаментальная теорема покера применима ко всем двухсторонним и практически ко всем многосторонним банкам. При этом мы выделили многосторонние банки, потому что существуют специфичные ситуации с двумя или более оппонентами, когда вы в действительности хотите, чтобы один из них или более сыграл так, будто он знает ваши карты. Допустим, у вас 30 % шанс на выигрыш раздачи при нескольких невскрытых картах. Вероятность победы оппонента А — 50 %, оппонента Б — 20 %. Если вы ставите, вы можете быть не против повышения от оппонента А с лучшей рукой, чтобы выбить оппонента Б из раздачи. Шансы А на выигрыш способны увеличиться до 60 %, однако вы и свои повысили до 40 %. Вы оба заработали за счет Б. Вы можете, например, поставить с парой тузов. Оппонент А имеет две пары и оппонент Б — стрит-дро. Вы бы хотели, чтобы оппонент А знал, что у вас всего лишь тузы и не выше, чтобы он повысил и выдавил стрит-дро соперника. У вас же будут достаточные шансы банка на колл, и в то же время вы можете не беспокоиться о стрит-дро оппонента Б.
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Математика покера от профессионала предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других