История ученого и личная биография объединились в этой книге, чтобы сделать полным рассказ о выдающемся человеке. Стивен Хокинг был необычным физиком: ему, возможно, удалось сделать больше, чем многим другим представителям академической науки, чтобы расширить наше, обывательское, понимание законов Вселенной. Его теоретические исследования природы черных дыр и оригинальные рассуждения о происхождении космоса расставили новые акценты в области общего знания: в центре внимания впервые оказалась теоретическая физика. По выходе в свет «Краткой истории времени» его имя стало известно всем и каждому: несмотря на сложность и запутанность космологии книга разошлась миллионными тиражами по всему свету. Большую часть жизни Стивен Хокинг был прикован к инвалидному креслу из-за редкого заболевания двигательных нейронов, но это не сломило его интеллектуально. Кое-кто даже придерживается мнения, что освободившись от повседневных забот, он смог наконец сфокусироваться на исследованиях и расчетах. Майклу Уайту и Джону Гриббину удалось соблюсти баланс между двумя сторонами личности главного героя и нарисовать словесный портрет неутомимого гения, не знавшего границ.
Приведённый ознакомительный фрагмент книги Стивен Хокинг. Жизнь среди звезд предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глава 2
Классическая космология
Наука космология изучает Вселенную в целом, ее зарождение, эволюцию и дальнейшую судьбу. С точки зрения идей, это величайшая из всех наук. Однако с точки зрения оборудования, все не так внушительно. Да, космологи получают сведения о Вселенной при помощи гигантских телескопов и космических зондов, а иногда вычисляют что-нибудь на суперкомпьютерах. Но суть космологии — это по-прежнему математика, а значит, космологические идеи можно выразить в формулах, записанных карандашом на бумаге. Космологию, в отличие от всех прочих отраслей наук, можно изучать при помощи одного лишь мозга. Так обстоят дела сейчас — и так было и 75 лет назад, когда Альберт Эйнштейн разработал общую теорию относительности (ОТО) и тем самым изобрел теоретическую космологию как науку.
Когда ученые говорят о «классических» физических представлениях, то имеют в виду не соображения древнегреческих мыслителей. Классическая физика, строго говоря, — это физика Исаака Ньютона, который заложил основы научного метода исследования мира еще в XVII веке. Ньютонова физика царила безраздельно вплоть до начала XX века, когда была свергнута в результате двух революций: первую разожгла эйнштейновская общая теория относительности, а вторую — квантовая теория. Первая из этих теорий — лучшая на сегодня гипотеза гравитации, вторая объясняет, как устроено все остальное в материальном мире. Совокупно эти теории — теория относительности и квантовая механика — стали столпами современной физики XX века. Но подлинный Святой Грааль современной физики, который жаждут найти очень многие, — теория, которая связала бы их единым математическим аппаратом. И для нынешнего поколения искателей Грааля 1990-х годов даже эти столпы в первоначальной форме безнадежно устарели. Иногда «классической физикой» ученые между собой называют все, что разработали предыдущие поколения исследователей, то есть все, чему больше двадцати пяти лет. Более того, четверть века назад в истории физики произошло переломное открытие: в 1967 году были открыты пульсары, и в том же году Стивен Хокинг отпраздновал собственное двадцатипятилетие. Сегодня эти объекты называют нейтронными звездами; это схлопнувшиеся ядра массивных звезд, жизнь которых завершилась мощным взрывом — взрывом сверхновой. Именно открытие пульсаров, сверхплотных объектов на грани превращения в черные дыры, и натолкнуло Хокинга на первую попытку успешного сочетания квантовой теории и теории относительности.
Правда, работать над теорией черных дыр Хокинг начал по меньшей мере за два года до открытия пульсаров, когда лишь немногие математики интересовались такими экзотическими следствиями из уравнений Эйнштейна, а сам термин «черная дыра» в этой связи еще не употреблялся (как мы вскоре убедимся, такая прозорливость для Стивена типична). Хокинг как ученый, как и все его современники, воспитывался на классических представлениях Ньютона и на теории относительности и квантовой физике в первоначальном виде. Чтобы оценить, как далеко продвинулась с тех пор физика — отчасти при содействии Хокинга, — нужно рассмотреть сами классические идеи, и это станет легкой разминкой у подножия гор перед покорением головокружительных вершин. В общепринятом смысле «классической космологией» принято называть все, что было известно до революции, вызванной открытием пульсаров, то есть именно то, чему учили в институте ровесников Хокинга.
Исаак Ньютон превратил Вселенную в место логичное и упорядоченное. Он объяснил поведение материального мира при помощи фундаментальных законов, которые, как считалось тогда, встроены в саму ткань мироздания. Самый знаменитый пример — закон всемирного тяготения. Обриты планет, вращающихся вокруг Солнца, до Ньютона оставались полнейшей загадкой, но он рассчитал их при помощи закона всемирного тяготения, который гласит, что планета на определенном расстоянии от Солнца ощущает определенную силу, которая притягивает ее обратно пропорционально квадрату расстояния до Солнца; это называется закон обратных квадратов. Иначе говоря, если планету волшебным образом переместить на вдвое большее расстояние от Солнца, она ощутит четверть силы, втрое дальше — одну девятую, и так далее. Когда планета на стабильной орбите движется в космическом пространстве со своей скоростью, эта сила, направленная вовнутрь, в точности уравновешивает стремление планеты улететь в космос. Более того, Ньютон заключил, что тот же самый закон обратных квадратов объясняет и падение яблока с дерева, и орбиту Луны вокруг Земли, и даже приливы и отливы. Это универсальный закон.
Еще Ньютон объяснил, как материальные тела реагируют на иные силы, помимо гравитации. Когда здесь, на Земле, мы что-то толкаем, оно движется, но только пока мы его толкаем. Любое движущееся тело на Земле подвергается воздействию силы трения, которая противостоит его движению. Перестанешь толкать — и сила трения остановит объект. Но без силы трения (подобно планетам в космосе или атомам, из которых состоит все вокруг), согласно Ньютону, тело движется равномерно и прямолинейно, пока не подвергнется воздействию какой-нибудь силы. И тогда, пока сила действует, тело ускоряется, меняет направление или скорость, либо и то, и другое. Чем легче тело или чем больше сила, тем больше в итоге ускорение. Однако если убрать силу, тело снова начнет двигаться равномерно и прямолинейно, но с другой скоростью — с той, которую оно набрало за время, пока ускорялось.
Когда что-то толкаешь, оно толкает тебя в ответ, и сила действия равна по значению и противоположна по направлению силе противодействия. По этому принципу устроена ракета: она выбрасывает вещество из сопла в одном направлении, и сила противодействия толкает ее в другом направлении. Наглядный пример действия этого закона в наши дни — бильярдный стол: шары сталкиваются и отскакивают друг от друга очень по-ньютоновски. И именно такова картина мира, которая следует из ньютоновой механики: картина, в которой шары (или атомы) сталкиваются и отскакивают друг от друга, а звезды и планеты движутся под воздействием тяготения исключительно правильно и предсказуемо.
Все эти представления описаны в фундаментальном труде Ньютона «Начала» («Principia»), опубликованном в 1687 году (полное название великой работы Ньютона в переводе звучит как «Математические начала натуральной философии»). Представление о мире, которое подарил нам Ньютон, иногда называют «заводная Вселенная». Если Вселенная состоит из материальных объектов, которые взаимодействуют друг с другом посредством сил, подчиняющихся подлинно универсальным законам, и если законы, подобные закону действия и противодействия, в точности соблюдаются во всей Вселенной, значит, Вселенную можно считать исполинской машиной, космическим часовым механизмом, который, единожды придя в движение, будет вечно следовать целиком и полностью предсказуемым путем.
Это порождает всякого рода загадки, которые не давали покоя ни философам, ни богословам. Суть проблемы — вопрос свободы воли. Неужели в подобной «заводной» Вселенной предопределено абсолютно все, в том числе и человеческое поведение во всей его многогранности? Было ли предопределено, заложено в законы физики, что совокупность атомов по имени Исаак Ньютон напишет книгу под названием «Начала», которая выйдет в свет в 1687 году? И если Вселенная подобна космическому часовому механизму, кто завел эти часы, кто привел их в движение?
Даже надежные рамки религиозных представлений Европы XVII века несколько пошатнулись от подобных вопросов: казалось бы, логично сказать, что завел часы и привел их в движение именно Бог, однако традиционное христианство предполагает, что человек обладает свободой воли и, таким образом, может по желанию либо следовать учению Христа, либо нет. Мысль, что грешники, в сущности, не имели никакой свободы выбора в своих поступках, а грешили, подчиняясь незыблемым законам, и следовали по пути к вечным мукам, который заложил изначально сам Господь, решительно не вписывалась в сложившееся христианское мировоззрение.
Как ни странно, со времен Ньютона и до ХХ века наука практически не интересовалась идеей начала Вселенной. Считалось, что Вселенная вечна и неизменна, а «неподвижные» звезды просто висят в пространстве. Библейская история о сотворении мира, в которую в XVII веке ученые верили, как все, была применима только к нашей планете Земля или разве что к семейству планет вокруг Солнца — Солнечной системе — но не к Вселенной в целом.
Ньютон полагал, как выяснилось, ошибочно, что неподвижные звезды могут находиться на своих местах в пространстве вечно, если Вселенная бесконечно велика, поскольку сила тяготения, влияющая на каждую звезду в отдельности, одинакова во всех направлениях. На самом деле подобная конструкция крайне нестабильна. Достаточно легчайшего отклонения, и идеально равномерное распределение звезд приведет к мощному притяжению в том или ином направлении, и звезды придут в движение. А как только звезда двинется в сторону любого источника гравитационной силы, расстояние до источника сократится, сила увеличится — в полном соответствии с законом обратных квадратов Ньютона. То есть стоит звездам прийти в движение, и сила, приводящая к неоднородности, начнет возрастать, поэтому звезды продолжат движение с ускорением. Статическая вселенная вскоре схлопнется под воздействием силы гравитации. Но это стало понятно только после того, как Эйнштейн разработал новую теорию гравитации — теорию, которая, более того, заключала в себе предсказание, что Вселенная определенно не может быть статической и, вероятно, на самом деле не схлопывается, а расширяется.
Альберту Эйнштейну, как и Ньютону, принадлежит множество научных достижений. И главным трудом его жизни, как у Ньютона, стала теория гравитации — ОТО. Насколько важной оказалась его теория для современного понимания Вселенной, можно судить по тому, что специальная теория относительности (СТО) — та, в результате которой была выведена знаменитая формула E = mc2, — это лишь довольно малая часть работы. Однако СТО, опубликованная в 1905 году, стала главной составляющей нового понимания Вселенной. Но прежде чем перейти к этому, остановимся хотя бы ненадолго на основных чертах специальной теории.
Эйнштейн разработал СТО, чтобы решить задачу, сформулированную физикой XIX века. Великий шотландский физик Джеймс Клерк Максвелл вывел уравнения, описывающие поведение электромагнитных волн. Вскоре уравнения Максвелла были скорректированы для описания поведения радиоволн, открытых в 1888 году. Однако Максвелл обнаружил, что уравнения автоматически дают ему определенную скорость,[7] которая определяется как скорость распространения электромагнитных волн. Оказалось, что особая скорость, следующая из уравнений Максвелла, — это в точности скорость света, которую физики к тому времени уже измерили. Следовательно, свет — тоже разновидность электромагнитной волны, подобно радиоволнам, но с меньшей длиной волны (то есть с более высокой частотой). А еще эти уравнения говорили, что свет (как и другие виды электромагнитного излучения, в том числе радиоволны) всегда распространяется с одной и той же скоростью.
Это противоречит нашим представлениям о движении предметов в быту. Если человек, стоящий напротив вас, легким движением бросит вам мяч, вы без труда его поймаете. Если этот человек будет двигаться в вашу сторону в автомобиле со скоростью 80 километров в час и таким же легким движением бросит вам мяч из окна, мяч помчится на вас со скоростью 80 километров в час плюс скорость броска. Так что вас сильно удивило бы, если бы мяч, легким движением выброшенный из машины, долетел бы до вас всего лишь с небольшой скоростью броска, без прибавки скорости автомобиля. Однако со световыми импульсами именно так и происходит. Подобным же образом, если машину, которая едет по прямой дороге со скоростью 80 километров в час, обгоняет машина, которая едет со скоростью 90 километров в час, то вторая машина движется относительно первой со скоростью 10 километров в час. Иными словами, скорость относительна. Но если вас обгонит световой импульс, и вы измерите скорость, с которой он пролетает мимо, окажется, что эта скорость равна скорости светового импульса, который пролетает мимо вас, когда вы стоите неподвижно.
Об этом никто не догадывался до конца XIX века. Ученые предполагали, что свет ведет себя так же, как и тела вроде мячей, которыми перебрасываются люди, — то есть скорости точно так же складываются и вычитаются. А «постоянство» скорости света в уравнениях Максвелла ученые объясняли тем, что уравнения относятся к какому-то «абсолютному пространству», фундаментальной системе отсчета всей Вселенной.
Согласно этой точке зрения, пространство как таковое задавало систему отсчета, относительно которой надо было проводить измерения, и это было абсолютное пространство, в котором двигались и Земля, и Солнце, и свет, и все остальное. Еще это абсолютное пространство называли эфиром, и считалось, что это субстанция, в которой распространяются электромагнитные волны, подобно тому, как движутся водяные волны в море. Заминка была в том, что когда экспериментаторы попытались измерить изменения скорости света, вызванные движением Земли сквозь абсолютное пространство («относительно эфира»), ничего найти не удалось.
Поскольку считалось, что Земля движется вокруг Солнца по приблизительно круглой орбите, она в разные времена года должна была двигаться относительно эфира в разных направлениях и, следовательно, с разной скоростью. Это как плавать по кругу в быстрой реке. Иногда Земля должна была «плыть по течению эфира», иногда — поперек течения, иногда — против. Если свет всегда движется относительно абсолютного пространства с одинаковой скоростью, здравый смысл подсказывает, что это должно проявляться в виде сезонных изменений скорости света, измеренной с Земли. Оказалось, что нет.
Эйнштейн решил эту задачу при помощи СТО. Она гласит, что все системы отсчета одинаковы, нет никакой абсолютной системы отсчета. Наблюдатель, движущийся с постоянной скоростью в пространстве, вправе считать себя неподвижным. Он увидит, что движущиеся тела в его системе отсчета подчиняются законам Ньютона, а электромагнитное излучение — уравнениям Максвелла, так что скорость света при любых измерениях получается одинаковой — такой, какую дают эти уравнения, где она обозначена буквой c. Более того, всякий, кто движется с постоянной скоростью относительно нашего героя (первого наблюдателя, как говорят физики), тоже смогут с полным правом сказать, что находятся в покое, и обнаружат, что все тела в их лаборатории подчиняются законам Ньютона, а измерения всегда дают скорость света c. И даже если один наблюдатель движется навстречу другому со скоростью, равной половине скорости света, и светит вперед фонариком, второй наблюдатель, измерив скорость света от фонарика, получит не 1,5 с, а по-прежнему с!
Эйнштейн отталкивался от наблюдаемого факта, что скорость света постоянна и не зависит от того, в какую сторону движется Земля в пространстве, и вывел математический аппарат, описывающий поведение материальных тел в системах отсчета, движущихся с постоянной скоростью друг относительно друга, то есть так называемых инерциальных системах отсчета. Если скорости малы относительно скорости света, эти уравнения дают в точности те же «ответы», что и ньютонова механика. Но, если скорости составляют заметную долю от скорости света, начинаются странности.
Например, при сложении двух скоростей никогда не получается относительная скорость больше с. Наблюдатель видит, как два других наблюдателя мчатся друг другу в лоб со скоростью 0,9 с каждый в системе отсчета первого наблюдателя, однако, если кто-то из мчащихся наблюдателей проделает измерения, у него неизбежно получится, что второй наблюдатель движется со скоростью меньше с, но больше 0,9 с (в данном случае).
Почему же скорости складываются так странно? Причина отчасти в том, что пространство и время на высокой скорости определенным образом искажаются. Чтобы учесть постоянство скорости света, Эйнштейну пришлось признать, что движущиеся часы идут медленнее неподвижных и движущиеся тела сокращаются по направлению движения. Кроме того уравнения говорят, что чем быстрее движется тело, тем больше его масса.
Все эти странные и удивительные явления — лишь периферия истории современной космологии и поисков связи между гравитацией и квантовой физикой. Однако надо подчеркнуть, что все это не безумные идеи, не «просто теория», как говорим мы иногда, отмахиваясь от чего-то неправдоподобного. Для ученого теория — это гипотеза, прошедшая все экспериментальные проверки. СТО — не исключение. Все чудеса, которые следуют из СТО — постоянство скорости света, растяжение времени и сокращение длины у движущихся тел, увеличение массы движущегося тела — измерены и подтверждены с высокой точностью в ходе огромного количества экспериментов. Ускорители частиц, установки, где «сталкиваются атомы», например, в ЦЕРНе, Европейском центре ядерных исследований, в Женеве, — попросту не работали бы, если бы теория оказалась неверной, поскольку спроектированы и построены в соответствии с уравнениями Эйнштейна. СТО как описание мира высоких скоростей подтверждается такими же надежными экспериментальными фактами, как и ньютонова механика, как описание повседневной жизни, и единственная причина ее конфликта с нашим здравым смыслом — в том, что мы не каждый день сталкиваемся с перемещением на таких высоких скоростях, чтобы эффекты СТО стали заметны. Ведь скорость света c составляет ни много ни мало 300 000 километров в секунду, а релятивистскими эффектами можно смело пренебрегать при скоростях, составляющих менее 10 % от этой величины, то есть при скоростях меньше каких-то 30 000 километров в секунду.
В сущности, СТО — результат сочетания ньютоновых уравнений движения с максвелловыми уравнениями, описывающими излучение. СТО во многом дитя своего времени, и если бы Эйнштейн не выдвинул свою теорию в 1905 году, это наверняка сделал бы в ближайшие годы кто-нибудь из его современников. Однако без неповторимого гения Эйнштейна потребовалось бы, вероятно, целое поколение, прежде чем кто-нибудь оценил бы важность куда более глубоких соображений, заложенных в СТО.
Эта важнейшая составляющая, на которую мы уже намекали, была результатом другого сочетания — единства пространства и времени. В повседневной жизни пространство и время — совершенно разные вещи. Пространство окружает нас по трем измерениям (вверх-вниз, вправо-влево, вперед-назад). Мы видим, где расположены в пространстве предметы, и перемещаемся по нему более или менее так, как хотим. А время практически невозможно описать, хотя мы все представляем себе, что это такое. В каком-то смысле у времени есть направление (из прошлого в будущее), но мы не можем заглянуть ни в прошлое, ни в будущее и, конечно, не в силах перемещаться во времени по своему желанию. Однако великая универсальная постоянная c —
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Стивен Хокинг. Жизнь среди звезд предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других