Нейронити: как нейросети меняют наш Мир

Денис Некрасов

В этой книге вы узнаете, как нейросети могут сделать вашу жизнь лучше, интереснее и удивительнее. Вы познаете секреты и чудеса искусственного интеллекта в увлекательном рассказе от первого лица. Вы увидите реальные примеры применения нейросетей в образовании, развлечениях, здоровье, бизнесе и обществе. Нейросети – будущее, которое уже здесь! В этой книге автор проведёт вас через понимание и практическое применение нейросетей. Что это величайшее благо современности или же угроза?

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Нейронити: как нейросети меняют наш Мир предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

УГЛУБЛЯЕМСЯ В ПОНИМАНИЕ НЕЙРОСЕТЕЙ. УРОВЕНЬ ДЖЕДАЙ

В этой главе я простым языком на примерах попытаюсь объяснить вам, что же такое нейросеть, как она устроена и стоит ли нам её опасаться.

Обычно как-то так в кино и сериалах изображают сверхумную нейронную сеть, суперкомпьютер. Нечто обучившееся настолько, что у него появился разум. Но в реальности же всё куда проще.

Как физически выглядит нейросеть

Нейросеть хранится в специальном формате, который называется ONNX (Open Neural Network Exchange). ONNX — это открытый стандарт для обмена моделями машинного обучения между разными фреймворками и платформами. ONNX позволяет сохранять не только параметры нейросети, но и ее архитектуру, то есть структуру и функции слоев. ONNX файлы имеют расширение. onnx и могут быть скопированы, пересланы и развернуты на любом другом устройстве, которое поддерживает этот формат. Конечно, есть и другие форматы, например TensorFlow и HDF5. HDF5 — это еще один формат для хранения моделей машинного обучения, который поддерживается библиотекой Keras. HDF5 файлы имеют расширение. h5 или. hdf5 и также могут быть скопированы, пересланы и развернуты на других устройствах.

Вот так выглядит одна из моих нейросетей. В папке 2 файла.

Конечно, это очень простой пример. Даже боты которых я пишу и использую имеют более сложную структуру, десятки файлов и огромное количество строк кода. В последней главе этой книги мы с вами «препарируем» один из моих проектов на основе нейросети и я покажу, что там внутри и что она из себя представляет.

На что я хочу обратить ваше внимание, это никакие не пугающие и не непонятные устройства, нейросеть это, если утрировать, то как любой файл на вашем компьютере, фильм, фото, книга или аудиофайл.

Для примера, ChatGPT — это проект, который использует нейросеть GPT-3 для создания интерактивных диалогов на разных языках. Нейросеть GPT-3 — это одна из самых больших и мощных нейросетей в мире, которая состоит из 175 миллиардов параметров. Параметры — это числа, которые определяют, как нейросеть обрабатывает и генерирует текст. Чем больше параметров, тем лучше нейросеть может понимать и создавать разнообразный и сложный текст.

Проект ChatGPT использует несколько версий нейросети GPT-3, которые обучены на разных языках и доменах. Каждая версия хранится в отдельном ONNX файле, который имеет свое имя и размер. Например, версия ChatGPT-en-base. onnx — это базовая модель для английского языка, которая имеет 1.3 миллиарда параметров и занимает 5 ГБ памяти. Версия ChatGPT-ru-large. onnx — это большая модель для русского языка, которая имеет 2.7 миллиарда параметров и занимает 10 ГБ памяти.

Самая мощная нейросеть в Мире сейчас — это GPT-4, которая обучена на 4.5 триллионах слов из интернета. Она состоит из 13 миллиардов параметров и занимает около 50 ГБ памяти. Это один файл в формате ONNX, который очень много весит. По идее, если у вас есть такой файл, вы можете его запустить на одном компьютере, а ваш друг может запустить на другом, если у вас есть достаточно мощный процессор или видеокарта.

А вот немного информации для самостоятельного размышления. Человеческий мозг состоит из более чем 100 миллиардов нейронов. Объём памяти человеческого мозга — это сложная и спорная тема, которая зависит от того, как мы определяем и измеряем память. Однако некоторые ученые пытались оценить этот объем с помощью разных методов и моделей. Например, одна из оценок говорит, что объём памяти человеческого мозга составляет около 2.5 петабайт (2500 терабайт), что эквивалентно 2500 компьютерам с жестким диском на 1 терабайт. Это очень большое число, которое говорит о том, какой потенциал имеет наш мозг для хранения информации.

Самая мощная нейросеть GPT-4 сейчас весит 50 ГБ, а память человеческого мозга оценивается примерно в 2.5 петабайта, что равно 2500 терабайт или 2500000 гигабайт. Это означает, что память человеческого мозга в 50000 раз больше, чем память нейросети GPT-4. Это показывает, насколько сложным и удивительным является наш мозг по сравнению с искусственным интеллектом.

Картинка сгенерирована нейросетью Kandinsky по запросу «как нейросеть представляет себе удивительный человеческий мозг и его безграничные возможности»

Нейросети это отличный инструмент, это передовая технология открывающая новые возможности перед человечеством. Но не забывайте, это просто инструмент, хоть и в миллион раз умнее, чем те инструменты, которые у нас были до этого, но всё же как это используется и где у него границы, определяет человек.

Про сингулярность

Сингулярность — это гипотетический момент в будущем, когда искусственный интеллект превзойдет человеческий интеллект и станет самообучающимся и самосовершенствующимся. Это может привести к радикальным изменениям в обществе, технологии и жизни. Некоторые ученые и философы считают, что сингулярность возможна и может произойти в этом веке. Некоторые из них полагают, что нейросети — это один из путей к достижению сингулярности, потому что они могут имитировать и превосходить человеческий мозг в разных задачах. Однако другие ученые и философы считают, что сингулярность невозможна или маловероятна, потому что искусственный интеллект имеет свои ограничения и не может полностью понять и контролировать реальность. Они также сомневаются, что нейросети могут достичь уровня общего или сверхинтеллекта, потому что они зависят от данных, алгоритмов и аппаратной поддержки. Это всё ещё спорный вопрос. Я скорее сторонник второй позиции. Работая непосредственно с нейросетями, я вижу проблему данных и те ограничения, которые с этим связаны. Хотелось бы процитировать тут 3 закона робототехники Айзека Азимова, но боюсь, что по отношению к реальным технологиям они слабо применимы. И как я уже писал ранее, нейросеть это мощный инструмент, но не сверхнечто. Наше понимание работы человеческого мозга и природы сознания до сих пор остается ограниченным. Создание искусственного интеллекта, способного повторить все аспекты работы мозга, может оказаться значительно сложнее, чем мы представляем. Мозг имеет множество сложных и неизученных аспектов, и пока неясно, как точно перенести все эти аспекты в машину. На данный момент у нас есть много успешных искусственных интеллектуальных систем, но они все основаны на конкретных алгоритмах и методах обучения. И пока не существует универсального подхода, который бы гарантировал достижение суперинтеллекта.

Не нейросети. Другие технологии искусственного интеллекта, которые тоже могут быть перспективны

Интересный и сложный вопрос. Нейросети — это одна из самых продвинутых и популярных технологий в области искусственного интеллекта, которая имеет много применений и перспектив. Однако это не значит, что нейросети — это единственный или лучший способ создания искусственного интеллекта. Существуют и другие технологии, которые могут быть теоретически перспективнее нейросетей в некоторых аспектах. Например, есть такие технологии:

Символьный интеллект: это технология, которая использует символы, правила и логику для представления и обработки знаний. Символьный интеллект может быть более интерпретируемым, объяснимым и надежным, чем нейросети, которые часто являются черными ящиками. Символьный интеллект также может быть более обобщающим и творческим, чем нейросети, которые часто зависят от данных и статистики. Например, вы можете использовать символьный интеллект для решения задач из области математики, физики или философии.

Квантовый интеллект: это технология, которая использует квантовые компьютеры для реализации искусственного интеллекта. Квантовые компьютеры могут быть более мощными, быстрыми и эффективными, чем классические компьютеры, которые используются для нейросетей. Квантовые компьютеры также могут быть более подходящими для решения некоторых сложных или нерешаемых задач, таких как оптимизация, шифрование или симуляция. Например, вы можете использовать квантовый интеллект для поиска лучшего решения из множества возможных вариантов. Я лично больше склоняюсь к появлению квантовой сингулярности. Эта технология видится мне самой невероятной и мощной. Но в этой книге говорить об этом не будем.

Бионический интеллект: это технология, которая использует биологические или биомиметические компоненты для создания искусственного интеллекта. Бионический интеллект может быть более адаптивным, гибким и устойчивым, чем нейросети, которые часто являются жесткими и хрупкими. Бионический интеллект также может быть более совместимым и гармоничным с человеческим интеллектом и природой. Например, вы можете использовать бионический интеллект для создания роботов или протезов, которые имитируют или усиливают человеческие способности.

Мы подошли к концу вводной части моей книги. Я надеюсь, что вы получили ясное и доступное базовое представление о том, что такое нейросети и как они работают, без излишнего углубления в математику, формулы и алгоритмы. И теперь вы готовы к тому, чтобы перейти к более практическим главам, где мы рассмотрим применение нейросетей на практике. Поговорим про образование, развлечение, здоровье, бизнес и общество. А также я специально для вас препарирую один из проектов и наглядно покажу что внутри у нейросети.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Нейронити: как нейросети меняют наш Мир предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я