Информационная феноменология жизни. Часть I: Внутриклеточные информационные отношения

Даниил Михайлович Платонов, 2018

Рассматриваются вопросы информационной феноменологии организации «живой материи». Обсуждение ведется на фоне описания развития современных информационных систем, опирающихся на компьютерные технологии, и в настоящее время практически охватившие все уровни общественных отношений. Затрагиваются аспекты единства и противоречия технико-физической реализации компьютерных систем и их программного обеспечения, и на этом фоне некоторые представления о единстве и противоречии «души» и «тела» в живой природе, определенные в этом случае биохимической структурой живой материи и информационными отношениями на основе генетической информации.

Оглавление

  • Некоторые ассоциации вместо введения

* * *

Приведённый ознакомительный фрагмент книги Информационная феноменология жизни. Часть I: Внутриклеточные информационные отношения предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Некоторые ассоциации вместо введения

Науки о духе должны, исходя от наиболее общих понятий учения о методе и испытывая их на своих особых объектах, дойти до определенных приемов и принципов в своей области, совершенно так же как это сделали в свое время науки естественные. Не тем мы окажемся истинными учениками великих естественнонаучных мыслителей, что перенесем найденные ими методы в нашу область, а тем, что наше познание применится к природе нашего предмета и что мы по отношению к нему будем поступать так, как они по отношению к своему. Natura parendo vincitur[1]. Первейшим отличием наук о духе от естественных наук служит то, что в последних факты выступают извне, при посредстве чувств, как единичные феномены, между тем как для наук о духе они непосредственно выступают изнутри, как реальность и как некоторая живая связь.

Вильгельм Дильтей

Все, что достойно того,

И дважды сказать не постыдно.

Эмпедокл

Жизнь — понятие, которое является предметом пристального внимания человечества на протяжении всей его истории. Как много по этому вопросу суждений! Но один из важнейших, на наш взгляд, аспектов — это единство и противоречие «души» и «тела». Вряд ли есть в мире человек, который не задумывался бы об этом. Естественно мы не берем на себя смелость сказать, что на этот вопрос существует в настоящее время исчерпывающий ответ. Но в середине XX столетия человечество создало электронные вычислительные машины (компьютеры), развитие которых своеобразно высветило аспект единства и противоречия технико-физической реализации компьютеров (hardware) и их программного обеспечения (software). В обоих случаях мы сталкиваемся с материальной и нематериальной субстанциями. Нет ли здесь аналогии? Вопрос заманчивый и, не делая поспешных выводов, мы пытаемся порассуждать на эту тему.

Имея определенный опыт работы с вычислительной техникой и информационно-вычислительными системами, мы предлагаем некоторые гипотезы аналогий информационных феноменологических аспектов развития живой природы и компьютерных систем. К сожалению мы не владеем аппаратом (методом), позволяющим формально и безапелляционно доказать приемлемость той или иной гипотезы. Именно поэтому мы представляем нашу работу фактически в виде очерков[2]. Приводимые качественные рассуждения, на наш взгляд, позволят отойти от ряда сложившихся стереотипов и стимулировать процессы познания живого мира в несколько ином ракурсе. Тщим себя надеждой, что это может послужить некоторым подходом к гармонизации развития процессов информатизации, охвативших весь мир. К такому суждению нас подталкивает вся история развития науки. Именно качественная смена парадигмы позволяла в различных отраслях науки выходить на новые рубежи знаний. Мы были бы счастливы, если бы наши гипотезы, даже путем их отрицания, способствовали бы этому.

Термин феноменология[3] используется нами в его первоначальном, естественном значении без прямого соотнесения его с философской интерпретацией И.Канта, Ф.Брентано и феноменологического философского направления школ Э.Гуссерля, К.Твардовского, Ж.-П.Сартра и др.

И все же, нужно отметить, что влияние этих школ в определенной степени повлияло на авторов в выборе подхода исследований. По крайней мере, нам представляется ассоциация с позицией Э.Гуссерля: «как таковая, феноменология начинается с редукции внешнего мира». Это, так сказать, первый узловой момент гуссерлевской феноменологии. В соответствии с ней демонстрация необходимости редукции внешнего мира, так называемое"трансцендентальное epoche", осуществляется посредством анализа естественной установки и характеристики субъективности с позиций интенциональной природы сознания. Его декларация, что «…дедуктивная теоретизация в феноменологии исключена», сразу же дополняется продолжением этой фразы: «но косвенные заключения в ней прямо не запрещены; поскольку, однако, выводы феноменологии должны быть дескриптивными, чисто приспособленными к имманентной сфере, то умозаключения и всякого рода лишенные наглядной зримости приемы обладают в феноменологии лишь методическим значением, то есть они должны вести нас навстречу тому, что должно превратить в данность движущееся следом прямое созерцание сущности».

Развитие современной фундаментальной и прикладной науки, возможно благодаря прагматической доминанте, в основном ориентировано на построение адекватной онтологической интерпретации возрастающего уровня научного познания. Онтология[4] — раздел философии, в котором рассматриваются всеобщие основы и принципы бытия, его структура и закономерности. На наш взгляд, онтологическая парадигма, в свою очередь, ориентированная в основном на экстенсиональные свойства (связанные с объемом понятий и истинностным значением этих суждений), преднамеренно ограничена в возможностях представления интенсиональных (связанных с содержанием понятий и смыслом этих суждений) свойств в интерпретации научного знания. Отдавая должное значимости онтологической парадигмы, приходится констатировать указанную ее ограниченность особенно на современном этапе из-за мощного пресса информатизации, оперирующей в значительной степени с нематериальными субстанциями не только в сфере науки, но и в структуре всего бытия человеческого общества.

Рассмотрение процессов информатизации (не только на современном этапе, но и на протяжении всей истории существования жизни на земле) как симбиоза категорий материальных объектов и нематериальных представлений о них вынуждает, на наш взгляд, обратиться к феноменологической парадигме с целью попытки выявления содержания и сущности трансформаций в ходе эволюции форм такого симбиоза. Феноменологическая парадигма ориентируется нами на представление некоторой совокупности объектов и порождаемых ими отношений как явления, выделяющегося из всего многообразия состояний природы.

Естественно эти представления нельзя оторвать от наших субъективных ощущений. Чтобы приблизить читателя к эмоциональному состоянию авторов, которое и вызвало попытку создания очерков, мы посчитали целесообразным вначале напомнить некоторые современные научные положения которые, на наш взгляд, способны инициировать несколько по-новому взгляд на окружающую нас жизнь. К тому же эти сведения в определенной степени отражают, пусть не формально, но все же, некоторый методологический базис, на который опираются авторы в своих рассуждениях.

Ранее уже упоминалось о некоторых философских школах, но более значимы для авторов были результаты, так или иначе связанные с информационными системами. Рассматриваемые в очерках явления, по крайней мере, методологически в значительной степени переплетаются с понятиями система и системный подход. Основоположниками современной интерпретации этих понятий, которые получили широкое распространение в различных исследованиях живой и неживой природы, а также в теории различных искусственных систем можно считать группу Л.Берталанфи, которая в 30-х годах ХХ столетия предложила методологию комплексного анализа явлений на основе формальных моделей поведения систем.

Среди многих новых идей системного подхода при исследовании сложных природных явлений все большую значимость приобретает понятие фрактала, введенное в начале второй половины ХХ столетия франко-американским математиком Б.Мандельбротом из Исследовательского центра им. Томаса Уотсона (Thomas J. Watson Research Center) при IBM (International Business Machines, США). Современная математика обнаружила проявление фрактальных множеств в решениях весьма многих задач.

Другим направлением, в котором получены результаты, на наш взгляд оправдывающие саму постановку представляемых рассуждений, является синергетика. Исследования в этой области позволяют найти направления выведения из ареала «высшего промысла», например, такие вопросы, как антропный принцип и корреспондирующиеся с этими взглядами обще методологические подходы к эволюции живой природы.

И, наконец, достижения информатики и вычислительной техники, которые на глазах преобразуют наш мир, являясь, возможно, основой эры ноосферы на Земле.

Попробуем кратко представить некоторые результаты указанных научных направлений не в строгой их научно-обоснованной формальной интерпретации, а в некоторой совокупности ассоциаций, обусловленных авторским эмоциональным восприятием.

Подход к формированию феноменологической модели системы.

Рассмотрение, в преддверии дальнейших исследований, вопросов, связанных с построением системной модели, кажется авторам целесообразным в целях показа подходов к методологии, на основе которой происходят дальнейшие рассуждения.

Попытки строгого определения понятия системы до сих пор не принесли желаемых результатов, что, на наш взгляд, подчеркивает фундаментальность этого свойства организации в природе вместе с другими фундаментальными атрибутами нашего представления о ней. С другой стороны, это, по-видимому, связано и с тем, что для каждого направления исследований, в определенной мере, необходима собственная интерпретация представления системы.

При построении и анализе систем обычно выделяют два аспекта: внешнее представление системы, связанное с увязкой ее с окружающей средой (будем называть такое представление трансцендентным), и внутреннее (имманентное) представление о содержании системы. В связи с этим одним из возможных подходов, по крайней мере, для первого качественного приближения, может явиться феноменологический анализ, парадигмой которого являются два аспекта: взаимоотображение системы и среды и их межграничные отношения.

Можно отметить общую тенденцию включения влияния внесистемных объектов непосредственно в модель системы на определенных этапах ее исследования. Например: внешний интерпретатор для прагматического анализа семиотических систем (А.Черч); измеритель для систем квантовой физики, приводящий к принципу неопределенности Гейзенберга; показатели эффективности в структуре метасистемы для сложных технократических структур (Д.Конторов, Ю.Голубев-Новожилов) и ряд других известных подходов, которые устраняют, либо регламентируют неопределенности сугубо имманентного описания систем. Более того, даже в классической постановке теории динамических систем жестко оговаривается представление внешней среды, например, в виде множества допустимых входных воздействий, выходным отображением и направленностью времени. В отношении информационных систем, например, академик Академии Криптографии РФ профессор С. П.Расторгуев подчеркивает: «Весь жизненный путь информационной системы, способной к обучению[5], неразрывно связан с определением себя относительно отношений к окружающим субъектам и объектам, а также (иногда) к самой себе».

Возможно, одним из наиболее сильных формальных оснований дуализма представления системы трансцендентными и имманентными аспектами является теорема К. Гёделя «О неполноте». В своей статье, содержащей доказательство теоремы о неполноте, К. Гёдель замечает: «Это обстоятельство не связано с какой-либо специфической природой этих систем, напротив, оно имеет силу для очень широкого класса формальных систем, к которым, в частности, принадлежат все системы, получающиеся из упомянутых двух посредством присоединения к ним конечного числа аксиом, если только это присоединение не приводит к тому, что доказуемым становиться какое-либо ложное предложение»[6]. В этом смысле любые модели, включая построенные на феноменологической основе, по своей формальной сути полностью совпадают с упомянутыми К.Гёделем классом формальных системам, вследствие чего на них обоснованно распространяется тезис о неполноте представления на основе лишь имманентных аспектов.

Формирование взаимоотображений системы и среды связано, в первую очередь, с определением границы системы. Нетривиальность этой процедуры определяется во многом неопределенностью самого фундаментального понятия «система». Например, в классическом определении динамической системы ее атрибутом является множество допустимых входных воздействий, но ведь это атрибут внешней среды. Точно так же понятие границы системы размывается при попытке ее определения через понятие эффективности, что приводит к необходимости рассмотрения структуры метасистемы, которая, в свою очередь, порождает следующий цикл неопределенности.

В реальных условиях можно считать, что имеется некоторое идентифицирующее свойство, позволяющее выделять систему S из окружающей среды. Назовем это свойство границей системы. Сейчас речь не идет о самом правиле выбора этого свойства. Главное, что такое свойство является фундаментальным феноменологическим атрибутом системы. По-видимому, здесь проявляются некоторые аналогии эксклюзивности понятий фундаментальных абстрактных категорий, к которым, несомненно, относится и понятие «система». Некоторая близость проблемы дефиниции в этом случае, на наш взгляд, возможно, наблюдается с развитием такого фундаментального понятия математики, как множество в некоторый новый уровень абстракции, представленной в математической «Теории категорий».

Приведем в этом плане некоторые выдержки из замечательного учебника «Основы теории категорий» отечественных математиков М.Цаленко, и Е.Шульгейфера из Московского государственного университета. «Характерной чертой современной математики является изучение математических объектов вместе с отображениями этих объектов друг в друга, согласованными со структурой объектов: теория множеств немыслима без отображения множеств, топология немыслима без непрерывных отображений, алгебра немыслима без гомоморфизмов алгебраических систем и т.д. Обычно объекты образуют категорию[7]В то время как Теория множеств имеет дело с объектами, называемыми классами, для которых определено бинарное отношение принадлежности (A B читается: A есть элемент B)[8]…, то, в отличие от этого, категория состоит из класса, элементы которого называются объектами, и класса, элементы которого называются морфизмами»[9].

В нашем рассмотрении оставим в стороне вопросы полноты определения понятия «система». Остановимся лишь на введенном понятии границы системы. Такая стратификация порождает два указанных традиционных системных подхода, отражающих внутренний (имманентный — Im) и внешний (трансцендентный — Tr) аспекты представления системы.

Внешнее, прагматическое восприятие системы трансцендентным наблюдателем обычно связывается с возможностями ее взаимовлияния с внешней средой. В информационных системах такое представление ассоциируется с проблемной областью функционирования системы. Обозначим такое представление системы STT (чисто трансцендентный взгляд). В какой-то степени одной из интерпретаций такого представления системы является понятие «черного ящика», при котором внешнему наблюдателю доступны лишь входные и выходные величины, а внутреннее устройство и процессы, протекающие в системе, неизвестны.

Реальное воплощение системных возможностей осуществляется на основе представления и реализацией трансцендентным наблюдателем перечня конкретных процедур, обеспечивающих согласованность процессов, протекающих во внешней среде, непосредственно с элементами системы. Это, как бы взгляд из внешней среды сквозь границу системы с целью реализации необходимого взаимодействия. Обозначим такое представление системы STI (взгляд трансцендентного наблюдателя сквозь границу системы). Такое представление можно соотнести с понятием архитектуры.

Непосредственная морфология и структура системы со спецификацией ее объектов и их отношений определяет ее внутреннее (имманентное) содержание. Обозначим это представление SII. Достаточно часто интерпретация этого представления связывается с понятием структуры системы. Здесь возможно просматривается ассоциация с математическим понятием структуры как частично упорядоченного множества. Одним из видов интерпретации такого представления системы является понятие «белого ящика», при котором наблюдателю полностью доступно описание внутреннего устройства и процессов, протекающих в системе.

«Самоощущение» системы по отношению её жизни в окружающей среде представляет собой как бы взгляд изнутри системы сквозь ее границу на внешний мир. Обозначим эту форму представления системы SIT. Интерпретация этого представления может быть весьма различна даже для одной конкретной системы, но обычно для реальных систем она тем или иным способом связана с «жизнеобеспечением» (в частности, энерго — или ресурсообеспечением) системы и с проблемами «экологической совместимости» функционирования системы в окружающей среде. Это естественно для любых открытых систем, жизнедеятельность которых по каким-либо показателям обеспечивается или поддерживается за счет привлечения внешних ресурсов окружающей среды. Для искусственных систем, особенно для организационно и общественно значимых, в частности в бизнесе, это представление в значительной степени ассоциируется с понятием и представлением «миссии» системы. Целью этого класса систем является не только и не столько обеспечение существования и жизнеспособности системы, а активное воздействие на окружающую среду, которое определяется именно миссией этих систем. Именно императив миссианства является предпосылкой и основой создания, формирования и организации их жизнедеятельности.

Таким образом, совокупность композиций имманентного и трансцендентного аспектов порождает феноменологическое многообразие модели представления систем: S={STT; STI; SII;SIT}.

Феноменологическое многообразие модели представления системы на основе композиции представлений внешнего (трансцендентного) и внутреннего (имманентного) наблюдателей. STT — модель внешнего, прагматического восприятия системы трансцендентным наблюдателем (модель «черного ящика»). SII. — непосредственная морфология системы со спецификацией ее объектов и их отношений, определяющая ее внутреннее (имманентное) содержание. Достаточно часто интерпретация этого представления связывается с понятием структуры системы (модель «белого ящика»). STI взгляд из внешней среды сквозь границу системы с целью реализации необходимого взаимодействия (ассоциируется с архитектурой системы). SIT — «самоощущение» системы по отношению её жизни в окружающей среде, представляющее собой как бы взгляд — модель, изнутри системы сквозь ее границу на внешний мир.

Отметим, что приведенная стратификация феноменологической модели систем отражает лишь «скелет» системных отношений. Содержательное наполнение каждой формы представления системы основывается на конкретных факторах, связанных, как с вопросами воплощения системы, так и с целью создания модели. Действительно, какую-либо конкретную систему (не абстрактную, т.к. любая абстракция это уже, по сути дела, некоторая модель) невозможно представить во всей ее полноте некоторой ограниченной конкретно-содержательной моделью. Любая модель отражает лишь отдельные стороны системы, выбранные принципиально для этого процесса моделирования. Именно поэтому конкретное наполнение рассмотренных форм представления системы определяется целью моделирования, исходя из которой, создаются необходимые абстракции.

Это можно проиллюстрировать на примере классической модели простой открытой системы, рассмотренной Л.Берталанфи.

Интерпретация модели простой системы Л.Берталанфи в представлениях феноменологической модели. Компонент А вводится в систему и превращается в результате обратимой реакции в В; одновременно с этим путем необратимой реакции происходит катаболизация и полученный продукт С в конечном счете выводится из системы. К1, К2 — константы ввода и вывода; k1, k2, k3 — константы реакции. Данная модель в общих чертах соответствует, например, протеиновому обмену в живом организме, где А — аминокислоты, В — протеины, С — продукты физиологического выделения.

Кажущийся концептуально созерцательный характер феноменологической модели системы в ряде случаев может быть доведен до аналитического применения. Возможности этого, например, возникают, когда введенные компоненты феноменологического многообразия конкретной системы можно представить с помощью математического понятия «категория». Обаятельность такого представления связана с тем, что в отличие от математической модели теории множеств, в теории категорий аксиоматически задаются представления о классах объектов и морфизмов, отражающих отношения между объектами. Это перекликается с представлением мира в ипостасях материальной части и некоторого нематериального (например, информационного) описания отношений элементов материальной структуры. Примеры такого представления систем активно рассматриваются отечественными исследователями, некоторый спектр которых, например, приведен в дважды переиздававшейся монографии Л. Т. Кузина: «Основы кибернетики».

Некоторый феноменологический анализ систем

Как подчеркивал английский математик П. Т.Джонстон, одной из принципиальных особенностей теории категорий является то, что она принимает “морфизм” (отношения между объектами), как первичное понятие на одном уровне с понятием “объект”. При несомненном различии философского и математического определения категорий, в методологическом отношении обращает на себя внимание тот факт, что сам по себе принцип категориального представления о предмете познания предопределяет много общего, развиваемого в теории познания, понимания механизмов формирования этого представления. Формирование категориального феноменологического представления системы, как и в теории познания, осуществляется одновременно с формированием категории представления системы субъектом, при этом для фиксированного феноменологического представления все необходимые свойства системы оказываются однозначно определенными категорией представления.

Интересным свойством формализации «условий жизни» системы в рамках феноменологического описания является присутствие в ней потенциальных возможностей исследования эволюции и коэволюции систем в условиях имманентной и трансцендентной изменчивости. Для живых систем это связано с процессами онто — и филогенеза. Для искусственных систем это ассоциируется с процессами, которые в последнее время связываются с понятием «стратегии up grade», определяющий реальные процессы реструктуризации системы в её жизненном цикле. Достаточно часто можно наблюдать ситуации, при которых реструктуризация какого-либо уровня феноменологической стратификации системы может приводить к катастрофической развязке, т.е. к реальной или формальной гибели системы, а может и не приводить к такой ситуации. Вследствие этого, не смотря на внутренние или внешние причины возникновения реструктуризации каких-либо системных уровней, возможно обеспечение продолжения существования системы. Например, распространение видов может сопровождаться реструктуризацией трансцендентного уровня, но за счет мобилизации внутренних потенций имманентного уровня обеспечивается жизнеспособность вида в новых условиях.

Другим примером является имманентная реструктуризация. И в этом случае возможны варианты, когда потенциальные возможности внешних слоев феноменологической стратификации системы обеспечивают условия ее жизни. Это — возникновение нового вида. Хотелось бы отметить, что тезис реструктуризации порой более естественен, на наш взгляд, чем концепция эмерджентности — спонтанного создания качественно новых системных образований. Ни история развития искусственных систем, ни представления об эволюции живого мира не дают нам в явном виде таких феноменов именно с точки зрения спонтанности возникновения нового качества. В реальных условиях явление эмерджетности — скачкообразного появления нового качества, обычно является следствием реализации вполне легитимных ситуаций на основе избыточных потенциальных возможностей каждого феноменологического уровня системы. Можно, пожалуй, в этом смысле отметить, что реструктуризация — это представление о содержательной стороне преобразования имманентных аспектов, в то время как эмерджетность суть трансформации трансцендентных представлений.

Наряду с вопросами устойчивости условий существования и развития систем естественно встает проблема завершения их жизненного цикла. Понятие «жизненного цикла» уже давно перекочевало из сферы биологии в проблематику искусственных технических систем. Не подтверждает ли это лишний раз феноменологическое единство системного подхода, которое было высказано уже его основателем Л.Берталанфи. По-видимому, понятие жизненного цикла для реальных открытых систем является обязательным атрибутом и феноменологически фундаментально для них так же, как и понятие границы системы. В обще созерцательном плане можно отметить, что возможно именно в этом понятии отражаются единство и противоположность материального воплощения систем и системных отношений.

Завершение жизненного цикла системы, также как и в предыдущих рассуждениях, может быть связано с вопросами реструктуризации различных уровней феноменологической стратификации систем. Нам представляется интересным отметить два аспекта: завершение жизненного цикла отдельного образца системы (особи, индивидуума) и определенного класса систем (например, биологического вида). В обоих случаях возможны имманентные и трансцендентные причины, но акценты и феноменологическая интерпретация гибели образца и класса систем, на наш взгляд, различны.

Исключим из рассмотрения ситуации абсолютных катастроф, при которых происходит полная деструктуризация того или иного уровня феноменологической стратификации систем. Очевидно, что в этом случае представление о системе теряет полностью смысл вследствие отсутствия, по крайней мере, представления о ее границе, как фундаментальном свойстве системы. Представим наше мнение о возможных сценариях окончания жизненного цикла образцов и классов систем.

Если существуют непреодолимые причины реструктуризации имманентного уровня SII феноменологической стратификации, которые не могут быть компенсированы потенциальными возможностями поддержания легитимности системных отношений за счет других уровней, то каждый образец системы гибнет, но класс систем сохраняется (персонализированная деградация представителей системного класса). Этой ситуацией для технических систем занимаются, практически, все инженерные и производственные силы общества. Методологическая основа этой проблематики в рассматриваемом феноменологическом ракурсе заложена в наибольшей степени, пожалуй, в теории надежности. Для биологических систем это предмет деятельности всей совокупности биологических наук и медицины.

Реструктуризация любых других уровней феноменологической стратификации, которая не может быть компенсирована потенциальными возможностями поддержания легитимности системных отношений, приводит к неминуемой гибели класса систем.

Выделим здесь уровни SIT и STI феноменологической стратификации систем, реструктуризация которых, на наш взгляд, является основой формирования экологической проблематики. По всей видимости, и большинство медицинских проблем обусловлено реструктуризацией именно этих уровней. Для искусственных систем, к которым можно причислить и общественное обустройство, по-видимому, реструктуризация межграничных уровней SIT и STI феноменологической стратификации систем является полем деятельности по проблематике безопасности в широком смысле этого понятия.

Отметим для технических систем последствия реструктуризации уровня STT феноменологической стратификации систем. Даже в условиях возможной потенциальной компенсации реально происходящей реструктуризации, например, для технических систем возникает эффект, так называемого, «морального старения». Преодоление этого феномена связывают обычно со «стратегией up grade», обеспечивающей без разрушения системы ее перевод в состояние необходимого уровня общесистемной легитимности.

Одной из проблем моделирования систем является обеспечение полноты представления реальной системы её моделью. Эта проблема особенно обостряется при исследовании гетерогенных систем, компоненты которых участвуют одновременно в обеспечении и выполнении различных процессов, связанных с функционированием (жизнью) системы.

Подход категориального описания моделей системы в определенной степени обеспечивает возможности построения многообразия категориальных описаний, упорядочение которых определяется функторными отношениями. Подобный же подход возможен как при дифференциации, так и при интеграции системных объектов. Такая конвергенция модельного описания систем подчеркивает определенную симметрию систем на разных уровнях их декомпозиции по произвольным факторам дифференцирования и независимо от масштаба представления системы.

Актуальность системного подхода на основе феноменологической модели при рассмотрении Живой природы, на наш взгляд, достаточно ярко иллюстрируется позицией академика Российской академии наук Г. А.Заварзина, которую он представил в докладе «Эволюция микробных сообществ» на теоретическом семинаре геологов и биологов «Происхождение живых систем» в августе 2003 г., Горный Алтай. «…жизнь изначально дискретна и не может быть представлена в виде"супа живого вещества". Она представлена организмами. Слово прямо предполагает определенную организацию, основанную на взаимодействии компонентов. Простейший организм представлен прокариотной клеткой, включающей 4 компонента: мембрану, генофор ДНК, аппарат синтеза белка (рибосому), цитоплазму, представляющую кастрюлю, где создаются предшественники и идут процессы метаболизма[10]. Ни один компонент не может существовать без взаимодействия с другими. Отсюда жизнь и является свойством системы, в то время как отдельные компоненты несут лишь отдельные функции. Организм как носитель жизни существует лишь как составная часть"экосистемы", включающей среду обитания… Все, что не является организмом, не является живым… Если вы исследуете вот эту систему, вы должны учесть не только элементы системы, но вы должны учесть, во-первых, в какую большую систему вписывается исследуемая вами система, и второе, какие подсистемы работают внизу». Именно методология системного анализа, на наш взгляд, сподвигла академика Г. А.Заварзина к гипотезе дать операционное определение жизни «как эмерджентное свойство системы компонентов, объединенных в организм».

Приведенные рассуждения о структуре феноменологической модели систем ориентированы на методологию дальнейшего представления материала. Оценивая качественные явления развития живой природы, внимание, по возможности, уделяется всем сторонам феноменологического многообразия описания каждого этапа эволюции жизни на земле. Это, на наш взгляд, позволяет методологически поддержать, по крайней мере, в рамках представленной феноменологической модели, системность подхода при описании рассматриваемых явлений.

Фрактальность

Одним из оснований, порождающих дискуссии об эволюции живого мира (и в определенной степени обеспечивающих живучесть теорий целенаправленности развития жизни), является кажущееся несоответствие скорости реализации процедур естественного отбора и времени существования жизни на Земле. Случайный перебор на молекулярном уровне вследствие практической бесконечности вариантов фактически исключает возможность закономерной эволюции, что создает впечатление необходимости присутствия промысла высших сил. Попытки рационального объяснения закономерностей развития не только живой природы, но и материального мира в целом не покидали человечество на протяжении всей истории.

Одним из подходов преодоления кажущего противоречия были попытки установления некоторых общих принципов структуризации материи, на основании которых реализуются рациональные пути ее развития, существенно ограничивающие количество возможных вариантов формообразований. Наиболее значительной парадигмой такого подхода, вдохновляющей людей на всем протяжении их попыток познания мира, является идея симметрии. Говоря словами замечательного немецкого ученого Г.Вейля, внесшего, быть может, решающий вклад в современное понимание роли симметрии в науке, искусстве и философии, симметрия — в широком или узком смысле — является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.

Симметрия воспринимается как фундаментальное свойство природы, с которым связаны «законы сохранения» (энергии, количества движения и др.), свойства элементарных частиц, строение атомов и молекул, структура кристаллов и т.п. Развитие физики элементарных частиц происходило под знаком все углубляющегося понимания той исключительно важной роли, которую играют свойства и принципы симметрии в строении микро — и макромира, в определении, как состава элементарных частиц, так и основных закономерностей их взаимодействий. В физику была перенесена концепция Ф.Клейна, утверждающего симметрию как образующий принцип геометрии.

Симметрия в формах биологических тел издавна вызывала пристальный интерес как одно из наиболее замечательных и загадочных явлений природы. С вопросами о биологических симметриях связаны многие направления и концепции в биологии, например, закон гомологических рядов Н. И.Вавилова, теория морфогенетического поля А. Г. Гурвича, гипотеза В. И.Вернадского о неевклидовой геометрии живого вещества, биологическая значимость реакционно диффузионной модели морфогенеза А. М.Тьюринга и др.

Принципиально новые возможности открываются при рассмотрении биологических структур с позиций фрактальных объектов. Инвариантность по отношению к масштабу является как бы свойством «симметрии» фрактальных объектов, которая создает возможности формирования «законов сохранения», позволяющих представить их как определенный universum.

Английский ученый Л. Ф.Ричардсон измерял с помощью обыкновенной рулетки длину определенного участка побережья Англии. Естественно было думать, что при уменьшении шага рулетки периметры получаемых «вписанных в побережье» ломанных будут стремиться к конечному пределу, указывающему длину побережья. Однако в силу большой изрезанности побережья получаемые числа неограниченно возрастали, откуда Л. Ф.Ричардсон вывел, что «математически» побережье представляет собой не линию, а какой-то странный образ с пространственной размерностью промежуточной между 1 и 2.

Существуют и более ранние примеры описания подобных «странных» объектов. Г.Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Множество точек, оставшееся после удаления всех этих интервалов называется канторовым множеством. Оно не содержит не одного отрезка и в тоже время имеет мощность континуума. Континуум[11] — мощность множества действительных чисел, которая обозначается введенным Г.Кантором символом א. Известно, что мощность א больше мощности א0 счетных множеств.

Д.Пеано нарисовал особый вид линии (кривая Пеано), являющейся непрерывной кривой в смысле Жордана[12], целиком заполняющей некоторый квадрат, т.е. проходящая через все его точки.

Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из несвязных точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Вплоть до ХХ века шло накопление данных о таких странных объектах, без какой либо попытки их систематизировать. Так было, пока за них не взялся франко-американский математик Б.Мандельброт — отец современной фрактальной геометрии, который и предложил термин «фрактал»[13] для описания объектов, структура которых повторяется при переходе ко все более мелким масштабам.

Фрактал можно определить как объект произвольно сложной формы, получающейся в результате простого итерационного цикла. Итерационность и рекурсивность обуславливают такие свойства фракталов, как самоподобие — отдельные части похожи на весь фрактал в целом. Уникальным свойством фрактальных тел является их нецелочисленная размерность, что приводит к зависимости плотности фракталов от масштаба.

Большое внимание при исследовании систем уделяется тезису, обобщенно представляемому в виде — «целое больше суммы его частей», что является принципиальным отрицанием механистического мировоззрения — «целое является суммой его частей». Преодоление этого противоречия возможно на основе гипотезы представления систем как фрактальных объектов, которые обладают нецелочисленной размерностью. Этим фактором объясняется зависимость плотности фрактальных объектов от их масштаба при неизменности структуры. Плотность фрактала уменьшается с увеличением его размеров. Не по тем же ли причинам при системной организации ресурса обеспечивается увеличение его качественных возможностей и стимулировании эффекта эмерджетности?

По отношению к масштабу представления фрактальные объекты обладают определенной инвариантностью, являющейся как бы их симметрией. Это создает возможности формирования определенных «законов сохранения», что созвучно с многообразием представления систем феноменологической моделью. Вопросы межкатегориальных отношений в определенной степени могут рассматриваться на основе введенного в математической теории категорий функтора. Свойство уменьшения плотности фрактала с увеличением его размера крайне перспективно для живых организмов. При увеличении сферы активности во внешней среде экономятся внутренние ресурсы (биомасса и связанные с ней энергетические затраты). Образно говоря, чем больше фрактальная структура, тем большее количество ресурса внешней среды связано с каждым отдельным элементом фрактала. Возможно, это обуславливает многообразие и необычность форм биологических объектов, а также проявление системных закономерностей в виде, например, гомологических рядов Н. И.Вавилова. Универсальность образований в Природе на основе фрактальной организации отмечается достаточно широко. Рассматривая проблемы естественного и искусственного интеллекта С. П. Расторгуев так характеризует его структуризацию: «Он должен содержать в себе своё алгоритмическое самоподобие в виде множества интегрированных компонент, способных к различным видам взаимозависимой деятельности». Фактически на основе фрактальной структуризации материи во Вселенной академик Российской академии наук С. С.Григорян выдвинул, например, космологическую гипотезу, которая позволяет представлять феномен «Большого взрыва» как некоторое локальное явление некоторого масштаба фрактальной организации Вселенной.

В качестве иллюстрации формирования фрактальных структур достаточно интересна модель фрактального роста на основе агрегации, ограниченной диффузией, предложенная Т. А.Уиттеном и Л. М.Сандером, из фирмы Exxon Research and Engineering Company. Представим себе объект — кластер, растущий следующим образом: время от времени к нему присоединяется одна молекула, так что когда частица входит в контакт с растущим объектом, она прилипает к нему и не ищет другого места, а, попросту говоря, остается на месте. Такой процесс называется агрегацией. Он представляет собой крайний пример неравновесного процесса роста, поскольку в нем совершенно отсутствует переупорядочение. Теперь предположим, что частицы диффундируют к кластеру в ходе случайного движения, т.е. последовательности шагов, длина и направление которых определяется случайным образом.

Благодаря наличию «шума», или случайной статистики, в движении частиц на поверхности образуются мелкие бугорки и ямки. Бугорки растут быстрее ямок, потому что, приходя по изломанным траекториям, частицы с большей вероятностью прилипнут к вершине бугорка или в ее окрестности. На пути в глубь ямки частица почти наверняка скорее прилипнет к стенке, чем достигнет дна. Благодаря преимущественному осаждению частиц вблизи вершины бугорка он становится круче. В результате заполнение ямок становится все менее вероятным. Не являются ли всем известные кружева сосулек на крышах домов демонстрацией роста фрактальных объектов на основе агрегации, ограниченной диффузией?

Этот пример фрактального роста приведен для иллюстрации возможности относительной простоты процессов, создающих фрактальные структуры. Существенным здесь является не сложность процесса, а его нелинейность в смысле математического описания. Этот фактор, по-видимому, был определяющим в том, что еще задолго до Б.Мандельброта математики, рассматривающие такие структуры, окрестили их «чудовищами». В то время уровень и возможности математической науки был весьма ограничен для исследования нелинейных процессов.

Активное внедрение в математические исследования компьютерных технологий существенно сдвинуло возможности анализа нелинейных систем, стимулируя развитие направления исследований, которое получило название синергетика.[14]

Синергетическая организация и антропный принцип

Одним из побуждающих тезисов для проводимого авторами анализа, или даже императивом, явилось обсуждение, так называемого, антропного принципа. Именно, исходя из него возникла попытка рассмотрения и обсуждения причин эволюции живой природы. Антропный принцип имеет длительную мировоззренческую предысторию, начало которой теряется в истоках человеческой культуры. Идея единства человека и Вселенной разрабатывалась во многих философских и религиозных учениях. На рубеже 20-х веков эта проблема стала все больше привлекать внимание естествоиспытателей, что привело к попыткам более строгих формулировок, как самого принципа, так и концептуального фона, на котором он проявляется. Один из авторов современной интерпретации антропного принципа Б.Картер противопоставлял его безапелляционному тезису, что «мы не должны, не имея на то оснований, предполагать, что занимаем центральное положение во Вселенной». Эта догма, по мнению Б.Картера, несостоятельна, если принять во внимание, что «а) необходимой предпосылкой нашего существования являются благоприятные условия (температура, химический состав окружающей среды и т. д.), б) Вселенная эволюционирует и не является пространственно однородной». Отсюда следует, что «хотя наше положение не обязательно является центральным, оно неизбежно в некотором смысле привилегированное». В чем же состоит эта привилегированность? Большинство исследователей, занимающихся антропным принципом, имеют в виду связь процессов формирования во Вселенной сложно организованных структур (вплоть до человека) не только с локальными, но, прежде всего, с глобальными свойствами расширяющейся Вселенной. Этим подчеркивается определенная универсальность мироздания.

На основе этого антропный принцип представляется не как какое-либо мистическое обоснование появления и развития жизни на Земле, а как, в определенной степени, квинтэссенция результатов теории синергетического анализа, касающихся вопросов эволюции открытых систем в модели современного мира. Обращая внимание на различие в глубине и сложности механизмов моделей классического системного анализа и синергетического подхода, академик Российской академии наук Н. Н.Моисеев, указывая на их связь, подчеркивал отличие эволюции синергетических систем от эффектов простой эмерджентности (спонтанного скачкообразного возникновения нового качества). Синергетический подход обуславливает возможность анализа коэволюции системы в условиях изменяющейся внешней обстановки, но наиболее принципиальное, на наш взгляд, это то, что синергетический подход дает возможность объяснения эволюции открытых систем не как следствие реакции на изменчивость внешней среды, а как процесс развития системы на основе ее внутренних, имманентных факторов в достаточно широком диапазоне стабильности внешней среды.

Работы школы члена-корреспондента Российской академии наук, директора Института прикладной математики имени М. В. Келдыша Российской академии наук С. П.Курдюмова по исследованию нелинейных открытых систем вскрыли процессы их самоструктуризации из первичного «хаоса» не на основе влияния внешних возбуждений, а именно вследствие нелинейности внутрисистемных процессов. Это приводит, на первый взгляд, к парадоксальному явлению: система самоусложняется, а ее структуризация приводит к снижению энтропии не за счет какой-либо внешней «воли», а именно вследствие объективных внутрисистемных (не мистических) потенций. Такое «самосовершенствование» систем вначале было обнаружено отнюдь не на живых системах, а в процессах горения и термоядерного синтеза, что позволяет оставить в покое на этом уровне влияния сверхъестественных сил.

Феноменологический аспект явления возможности имманентного системного самосовершенствования позволяет в несколько новом ракурсе взглянуть на процессы эволюции и коэволюции открытых систем. Признавая живую природу объективно существующей реальностью, следует признать, что нет каких-либо веских причин, исключающих возможность ее имманентного самосовершенствования и усложнения. Если это так, то «генератором» эволюции может выступать не внешняя среда (или ее изменчивость), а именно имманентные свойства организации живой природы. Согласование процессов жизни в живой природе и их объединений со средой порождает процессы коэволюции, которая реализуется по достаточно жестким правилам естественного отбора. Бескомпромиссность этих правил наряду с изменчивостью среды, которая вызвана как внешними гео — и космофакторами, так и влиянием самой живой природы на нашу планету, ограничивают время жизни элементов живой природы, создавая, по-видимому, условия не только поддержания процессов эволюции, но и возможно, при определенных условиях, их ускорение.

Кому-то представленная позиция может показаться очередной убогой интерпретацией автогенеза (номогенеза Л. С.Берга; витализма, берущего свое начало от Платона и Аристотеля, с его энтелехией; аристогенезом с аристогенами), либо ортоламаркизмма, психоламаркизма Ламарка, с их заранее определенной причинностью, целесообразностью развития и сверхестественным жизненным началом, а возможно, наоборот, с эктогенезом, рассматривающим историческое развитие живой природы как процесс прямого приспособления организмов к среде и простого суммирования изменений, приобретаемых организмами под воздействием среды. Выбор такого суждения — право читателя. Претензия очерков не распространяется на декларацию обустройства мира, истинной причинности и целесообразности его существования, включая живую природу. Следует подчеркнуть, что рассматриваются ситуации отсутствия внешнего волевого, целенаправленного воздействия на процессы эволюции систем и процесс коэволюции происходит лишь за счет естественных объективных факторов взаимодействия систем с окружающей средой. Именно в этих условиях, как отмечено, теория исследования систем выявила предпосылки и возможности реализации неуправляемого (в смысле конечной цели) процесса эволюции (усложнения) открытых систем и их последовательного совершенствования в результате естественного отбора, обеспечивающего коэволюцию с внешней средой.

В этом смысле антропный принцип можно интерпретировать как реализацию последовательности стадий естественной самоорганизации систем в условиях баланса действия диссипативных[15] факторов и нелинейных факторов, создающих неоднородности. Под балансом понимается состояние, при котором не происходит катастрофических бифуркаций, разрушающих достигнутую структуру системных отношений. Конкуренция между этими классами факторов — действием нелинейных обратных связей и диссипативными, рассеивающими процессами — приводит к различным режимам развития процессов в нелинейных системах.

С.П.Курдюмов подчеркивает:…«главное чудо в том, что мир устроен так, что он допускает сложное. Сложность наблюдаемой Вселенной определяется очень узким диапазоном сечений первичных элементарных процессов и значениями фундаментальных констант». И в этом «прокрустовом ложе» осуществляются пути интеграции различных, развивающихся в разном темпе структур, образующих системные эволюционные целостности. Динамика развития сложной структуры, указывает С. П.Курдюмов: «требует согласованного развития подструктур разного возраста и разных темпов жизни… Это должно обеспечиваться механизмами синхронизации, создающими внутреннюю, имманентную когерентность — согласование темпов жизни структур, объединенных в систему… Одним из таких механизмов является память».

Функция памяти может осуществляться за счет регулирования динамики протекающих процессов, что характерно для большинства физических и физико-химических процессов, обуславливающих развитие и существование Вселенной в космогоническом масштабе, который абсолютно определяется отношениями взаимодействия микрочастиц. Однако возможности процессуально динамической памяти весьма ограничены. Принципиально новые возможности возникают при переходе к информатизации процессов управления динамикой жизни систем. Информатизация управления создает качественно новые отношения обеспечения согласования «жизни» структур, объединенных в систему. Создаются возможности формирования практически неограниченных элементов памяти и нелинейных отношений произвольного вида на основе программного управления, а не только за счет обусловленных уже сложившейся на определенном уровне системной организации динамики процессов.

Информация

Прежде чем начать обсуждение вопросов информационной феноменологии жизни, напомним некоторые представления непосредственно об информации. Мы не будем давать какое-либо из принятых определений понятия «информация», потому что, на наш взгляд, информация — это свойство природы, которое настолько обще и фундаментально, что выделяет его как самостоятельную философскую категорию представления отношений в природе. Встанем на позицию российского биофизика В. И. Корогодина из Объединенного института ядерных исследований, считающего, что «определение информации через описание форм её проявления и её свойств представляется вполне правомочным».

Рассмотрим некоторые из основных свойств, присущих информации. Одними из основополагающих, на наш взгляд, являются следующие три свойства: свойство системности, свойство возможности передачи информации и свойство тиражируемости информации. Специфические особенности этих свойств информации являются предметом исследований самостоятельных прикладных научных направлений, в рамках которых выработаны подходы к формированию и оценке конкретных различных количественных и качественных показателей информации. Попробуем проинтерпретировать их в структуре этих свойств.

Системность

Информации принципиально присущи системные свойства, связанные с обязательным наличием наряду с информацией, как самостоятельным объектом, таких связанных с ней объектов как источники информации и потребители (приёмники) информации. Образно говоря, информация выполняет некоторую «услугу» между «источником» и «потребителем». Только их обоюдное наличие порождает информационные отношения. В противном случае — при их обоюдном отсутствии, информация абсолютно теряет смысл, т.е. перестает существовать как содержательный объект. Отсутствие источника и потребителя информации создает ситуацию ее полного отсутствия. Таким образом, информация как категория представления формы и развития природы достаточно адекватно совпадает с феноменологической моделью системы.

Системные свойства информации проявляются не только в структуризации объектов: источник(информация(потребитель, но и в их жесткой системной связности в информационном смысле. Действительно, информация приобретает смысл только в том случае, когда процедуры формирования информации источником позволяют воспринимать ее потребителю. Это достигается при наличии у источника и потребителя внутренних согласованных механизмов организации процедур формирования и восприятия информации. Согласованность действия таких механизмов обеспечивается на основе выполнения некоторых соглашений, которые в совокупности с алгоритмами реализации этих соглашений составляют самостоятельный системный объект — программное[16] обеспечение функционирования источника и приемника информации. Оно является таким же обязательным атрибутом любой информационной системы, как источник и потребитель.

Вместе с тем программное обеспечение само по себе является информационным объектом, в результате чего может возникнуть впечатление некоторого парадокса: «информация создает информацию». Но такие свойства различных объектов достаточно традиционны. Например, в математической теории множеств достаточно естественно представление, что подмножество некоторого исходного множества может включать в себя исходное множество. Однако для феноменологии информационных систем это обстоятельство весьма существенно. Именно на основе его можно предположить возможность формирования системных эволюционных процессов за счет лишь имманентных факторов, без необходимости наличия каких-либо внешних (трансцендентных) целей.

Принципиальным феноменологическим свойством программного обеспечения и, по сути дела, каждой программы является обязательное сопоставление им императива[17] внутренней цели: «исполнение программы». Таким образом, организация процессов на основе программного управления становится вполне детерминированной, по крайней мере, в отношении указанной цели. Это выводит системы, имеющие имманентное программное обеспечение и действующие на его основе, в отдельный специфический класс (категорию), для которого внешнему наблюдателю представляется их поведение как целенаправленное. Именно трансцендентная интерпретация целенаправленности систем, функционирующих на основе программ, порождает, на наш взгляд, порой не совсем адекватное представление об их генезисе[18]. Напомним, что императив цели: «реализация (исполнение) программы», — это атрибут программы и совсем не обязательно именно он является первоисточником (либо причиной) появления программы. Так, например, сложившиеся концепции и реальные версии системного программного обеспечения компьютеров третьего и четвертого поколений и персональных компьютеров в значительной степени определили цели их функционального назначения.

Передача информации

В обобщенном виде «услуга», осуществляемая информацией, сводится к передаче информации от источника к потребителю. Это является принципиальным свойством информации, без реализации которого разговор об информации теряет смысл. Напомним, что передача информации может осуществляться как в пространстве, так и во времени. В реальных условиях эти процессы обычно в той или иной степени совмещаются и имеют много общего по форме представления информации, но каждый из них порождает свою специфическую атрибутику для реализации возможностей передачи информации. Передача в пространстве связана с динамическими объектами, такими как сигнал, а передача во времени со статическими объектами — память.

Исследования способов передачи информации в пространстве (по каналам связи) явились основой становления классической теории информации, в рамках которой выявлены и сформулированы основные свойства формы представления и передачи информации. Основополагающим фактором классической теории информации является, пожалуй, парадигма воздействия окружающей среды на информационную систему при передаче информации, в частности, передача информации по каналам связи при наличии помех (шумов — термин, доставшийся в наследство от исследования каналов передачи звуковой информации). Фундаментальными положениями теории информации являются введенные в ней понятия количества и скорости передачи информации при выбранном способе ее дискретного представления. Показано, что дискретное представление информации никоим образом не сужает общего понятия «информация». Это обосновано теоремой академика Российской академии наук В. А.Котельникова, сформулированной им в 1933г. в работе «О пропускной способности"эфира"и проволоки», утверждающей, что любые реальные непрерывные процессы могут быть представлены некоторой дискретной последовательностью без потери информации.

В математике достаточно давно разработаны различные приемы представления разных форм отношений в других формах, более удобных для применения в конкретных ситуациях. Одним из распространенных способов такого представления является разложение в ряд — феноменологически, по сути, переход от континуальной формы к дискретной форме интерпретации отношений. Одной из задач при проведении такой аппроксимации является оценка точности аппроксимации. В. А.Котельниковым доказана теорема (теорема Котельникова). Если непрерывный сигнал x(t) имеет спектр, ограниченный частотой Fmax, то он может быть восстановлен по его дискретным отсчетам, взятым с частотой fd= 2 Fmax..

С онтологической точки зрения мы имеем дело с принципиально своеобразным классом объектов. Дискретное представление информации обладает уникальной особенностью — возможность создания копий, абсолютно идентичных с точки зрения их смыслового содержания. Это принципиально не достижимо при аналоговом представлении, т.к. любое воспроизведение аналоговых сигналов доступно лишь с некоторой точностью, зависящей от свойств материальных объектов, участвующих в информационном процессе.

Интересна в этом смысле категориальная модель семантики информации, разработанная отечественным ученым В. Г.Толстовым. Концептуально-методологические основы теории представления этой модели декларируют квантовый (дискретный) характер содержательного смысла (семантики) информации, а не только ее возможностей дискретного представления с целью передачи и тиражирования.

Достигнутые к настоящему времени фундаментальные положения теории определили универсальную форму представления информации в виде кодов[19], что обеспечивает связь информационных процессов с реальными материальными физическими процессами обработки, передачи и хранения информации.

Алфавит

Кодирование — дискретное представление информации, основано на использовании некоторого алфавита, с помощью которого по определенным правилам создаются кодовые комбинации, своим многообразием обеспечивающие уникальное представление той или иной информации. Каждый алфавит являет собой некоторое конечное множество элементов, которые соответствуют событиям представления информации для ее передачи в том или ином виде (в пространстве, или во времени). Для конкретной информационной системы знаки (буквы) алфавита — элементы множества, обычно соответствуют событиям представления некоторого кванта (минимальной порции) информации.

Конец ознакомительного фрагмента.

Оглавление

  • Некоторые ассоциации вместо введения

* * *

Приведённый ознакомительный фрагмент книги Информационная феноменология жизни. Часть I: Внутриклеточные информационные отношения предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

1

Латынь: Природу побеждает тот, кто ей повинуется.

2

В некотором смысле это по духу перекликается с концепциями Л.А. Заде из калифорнийского университета при введении теории нечетких множеств. «Тот факт, что с помощью только логики и анализа нельзя создать новые идеи даже в прошествии долгого времени, уже давно стал своего рода аксиомой в области системотехники, имеющей дело с синтезом и оптимизацией крупных систем. Для этого разрабатываются различные эвристические методы… Научная методология требует логической строгости, но проблемы доказательства не вызывают энтузиазма. Причины этого явления в науке и технике, по-видимому, заключаются в том, что предпосылки и гипотезы, также как, в прочем, и аксиомы в математике, сами по себе нелогичны. Подобные проблемы решаются в настоящее время благодаря опыту и интуиции специалистов». Прикладные нечеткие системы. Под редакцией Т.Тэрано, К.Асаи, М.Сугэно. Перевод с японского Ю.Н.Чернышов. — М.: Мир, 1993.

3

От греческого φαινόμενον — то, что кажется, что видится, от φαινόμενα — небесные явления,[к φαίνο — свечу(сь), являю, показываю] и λόγος — слово, суждение, беседа, тема.

4

От греческогоόν — род, όντος — сущее и λόγος.

5

Другими словами — “открытой системы”.

6

В данном случае речь идет об аксиоматическом подходе построения формальных систем Principia Mathematica и аксиом Цермело — Френкеля для теории множеств, развитых в дальнейшем Дж. фон Нейманом.

7

На наш взгляд это можно отнести к любой формализуемой теории.

8

Это, в определенной степени, отражает главное феноменологическое свойство теории множеств, естественно в сопровождении существенного аксиоматического обрамления с целью исключения возможных парадоксов.

9

На наш взгляд именно этот дуализм является принципиальной феноменологической особенностью абстракций теории категорий.

10

От греческого μεταβολισμος — перемена: обмен веществ — совокупность процессов анаболизма и катаболизма в живых организмах.

Анаболизм — от греческого αναβολισμος — подъём: совокупность реакций обмена веществ в организме, соответствующих ассимиляции (от латинского assimilation — уподобление, сопоставление) — образование в организме сложных органических веществ из более простых.

Катаболизм — от греческого κάταβολισμος — сбрасывание вниз: совокупность реакций обмена веществ в организме, соответствующих диссимиляции (от латинского dissimilation — расподобление) — распад сложных органических веществ, обычно сопровождающийся освобождением энергии, используемой в процессах жизнедеятельности организма.

11

От латинского continuum — непрерывное.

12

Жорданова кривая, геометрическое место точек M(x, y) плоскости, координаты которых удовлетворяют уравнениям: x=φ(t), y=ψ(t), где φ и ψ — непрерывные функции аргумента t на некотором отрезке [a, b]. Иначе, Жорданова кривая есть непрерывный образ отрезка [a, b].

13

Латинское fractus означает «составленный из фрагментов».

14

От греческого δυνεργια — содействие, соучастие.

15

Диссипация от латинского dissipatio — рассеивание.

16

От греческого πρόγράμμα — распоряжение,объявление, наказ, от πρό впереди γράμμα — запись, линия.

17

От латинского imperativus — повелительный, настоятельное требование

18

От греческого γένεσις — происхождение, возникновение; процесс образования и становления развивающегося явления

19

От французского code — система условных обозначений и названий, применяемых для передачи, обработки и хранения различной информации, от латинского codexкнига,

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я