Газотермодинамика новой России

Геннадий Александрович Салтанов, 2021

Представлены исследования удивительных аналогий естественнонаучных и социогуманитарных процессов и явлений уникального 30-летия трансформаций и потрясений, рождения и становления новой России (1991–2021). Основа – богатейший документальный материал, опыт и практика активного участия автора в крупномасштабных проектах и событиях этого периода. Показано, что естественнонаучные подходы (системный анализ, методы математического моделирования, инструменты неравновесной газотермодинамики, новые теории хаоса) могут быть весьма эффективными при анализе и прогнозировании социально-экономических и политических процессов, особенно в периоды кризисов, неравновесности, нестабильности и турбулентности сложных систем. В качестве базы аналогий используются события трансформации страны в эпоху «шоковой терапии», радикального реформирования страны и др. Предлагаются способы трансформации менталитета социума с целью осмысления непредсказуемых и трудноформализуемых изменений с позиции законов физики.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Газотермодинамика новой России предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 3. Трансформеры неравновесных турбулентных систем

3.1. Наука умеет много «Гитик

10

»

Трансформеры — любимые игрушки детей и современной молодежи.

В науке трансформеры — это модели преобразования и самоорганизации неравновесных систем.

К концу 1993 г. понял: самолеты, помидоры, металлы, кофе — купля продажа, фантастические и зачастую нереализованные организационно-финансовые схемы сделок — все это не мое.

И куда бросаться в этой турбулентной «болтанке»?

Но, как говорится, «Наука умеет много гитик», а в ней — базовое и комфортное для меня направление — «неравновесная газотермодинамика» и математическое моделирование в формате трансдисциплинарности (синергетики).

Концептуально подходы синергетики используются в близких мне областях науки: неравновесная газотермодинамика, нелинейный математический анализ, теория Хаоса и др.

Апологеты полагают, что синергетика не образ мира, но стиль, образ мышления о нем.

Для моих задач синергетика — направление науки, объясняющее образование и самоорганизацию моделей и структур в открытых нелинейных системах, далеких от термодинамического равновесия.

Основные принципы синергетики, используемые в данном исследовании.

• Неравновесность является необходимым условием появ-ления нового порядка, т.е. — развития;

• Общее для всех эволюционирующих систем: неравновесность, спонтанное образование новых микроструктур, возникновение новых свойств системы, этапы самоорганизации и фиксации новых качеств системы;

• Развивающиеся системы всегда открыты и обмениваются энергией вещества с внешней средой, за счет чего и происходят процессы локальной упорядоченности и самоорганизации. В этом случае используется понятие — диссипативные структуры;

• Образование новых типов структур указывает на переход от хаоса и беспорядка к организации и порядку.

Эти подходы декларируются и в знаменитой монографии И. Пригожина11, И. Стенгерс. «Порядок из Хаоса. Новый диалог человека с природой», М., Прогресс, 1986 г.

Поскольку «Наука умеет много Гитик» используем этот «мэм» (точнее «великую стратегию» GT) для анализа и применимости научно-технических явлений как полезных аналогий радикальных социогуманитарных процессов самоорганизации неравновесных систем эпохи бурной турбулентности последнего 30-летия (1991–2021).

3.2. Встреча со «странным» аттрактором

Мои первые соприкосновения с аттрактором — этой странной ипостасью непостижимой турбулентности произошли почти 50 лет назад.

Именно тогда я впервые услышал поразившее меня словосочетание «странный аттрактор». (Ассоциативно — слышится и «очарованный странник», и вообще — романтика математики). Пытаюсь выяснить у коллег — что же это такое — и не понимаю. Сейчас в 20-х XXI века, ясно, что это было только самое начало, зарождение новой удивительной науки — теории Хаоса, самоорганизации в неравновесных системах.

1977 год. Очередная школа молодых ученых, в основном — продвинутых мехматовцев. Все молодые (до 40 лет), активные, амбициозные. Будущие знаменитости (например, мои друзья — Роберт Нигматулин — будущий академик, Василий Фомин — тоже будущий академик, Юрий Буевич — будущий профессор Стенфордского университета и др.)

«Гуру» этой школы — (для меня — небожитель) — знаменитый академик А. Самарский. Именно он предвидел радикальное развитие математического моделирования, в том числе и в областях гуманитарных.

Самое удивительное для меня, что именно он как руководитель государственной программы по развитию математического моделирования в отраслях народного хозяйства [16] продвинул и реализовал идею создания системы Главных математиков в ведущих отраслях СССР.

И опять же зигзаги истории — первым Главным математиком в отрасли энергомашиностроения по его предложению был определен Г.А. Салтанов, а ВНИИАМ — головным институтом отрасли по внедрению математического моделирования и САПР в отрасли. Далее, формирование и развитие межотраслевого проекта АН СССР, ВНИИАМ, ВНИИАЭС (еще десятки НИИ, АЭС и заводов) на базе гос. программы «Атомэнергомашэксперт». Руководители — акад. Самарский А.А., Институт прикладной математики РАН (ИПМ), Г.А. Салтанов, д.т.н., профессор, зам. директора — Главный математик ВНИИ Атомного энергомашиностроения СССР. И это спустя 10 лет после школы на Енисее!

3.3. О неслучайных совпадениях

1977 г. События.

• Школа математиков на Енисее. Мое личное знакомство с великим академиком А.А. Самарским, а также со «странным аттрактором»;

• Защита докторской диссертации Салтанова Г.А. по на-правлению «Нестационарные волновые процессы в газодинамике неравновесных двухфазных сред». Главный оппонент и мой защитник — д.т.н. Роберт Нигматулин (будущий академик РАН);

• Илья Пригожин (Бельгийский виконт русского проис-хождения) получает Нобелевскую премию за работы в области термодинамики необратимых и неравновесных процессов и диссипативных систем.

1979 год. Прорывы, формирование направления

• Салтанов Г.А. «Неравновесные и нестационарные про-цессы в газодинамике однофазных и двухфазных сред. М., Наука, 1979г.;

• Николс Г., Пригожин И. «Самоорганизация в неравно-весных системах. От диссипативных структур к упорядоченности через флуктуации». М., Мир, 1979 г.;

• Моисеев Н.Н. «Математика ставит эксперимент». М., Наука, 1979 г.

1979 год.

• Крупнейшая авария на АЭС Три-Майл-Айленд, США.

Моя встреча с доктором Джексоном (Лос-Аламос, США) на международном Конгрессе в Югославии. Джексон в то время главный специалист по анализу и расчетам аварий на АЭС. Триггер моего осознания актуальности и приоритета математического моделирования вычислительного эксперимента при анализе гидродинамических процессов на АЭС.

Вот такое удивительное и вряд ли случайное совпадение встреч, интересов, увлеченностей и направлений. Как будто что-то вызревало и прорвалось.

Итак, для меня лично 1977–1979 годы — момент крутой бифуркации. Ветвление и выбор нового направления «математическое моделирование и вычислительные исследования сложных неравновесных систем».

3.4. Бифуркации и другие полезные понятия

Интересно посмотреть на события турбулентных 90-х годов новой России с позиции неравновесной газотермодинамики, бифуркаций и самоорганизации в неравновесных системах.

Приведем несколько базовых и удивительных характерных терминов неравновесной термогазодинамики и теории Хаоса, которыми произвольно или в качестве речевых оборотов часто пользуются люди как в повседневной жизни, так и при кризисных событиях.

Бифуркация — раздвоение. В теории динамических систем — качественная перестройка системы. В синергетике — это точки неустойчивого равновесия, точки «выбора» дальнейшего развития системы. Предтеча некоего фазового перехода.

Принципы бифуркации удивительно разнообразны: от точки выбора «куда пойти учиться» после школы до выбора принципиально другой системы жизни.

Распад СССР, пожалуй, самая значимая точка бифуркации глобальной неравновесной турбулентной системы мира. В синергетике и теории Хаоса точка бифуркации представлена как критическое состояние системы, при котором система становится неустойчивой относительно флуктуаций. Возникает неопределенность: станет ли состояние хаотичным или система перейдет на новый, более дифференцированный и высокий уровень упорядоченности.

Флуктуации. В точке бифуркации большое значение имеют флуктуации, когда их случайное «вторжение» в неравновесную систему может резко нарушить баланс метастабильности.

В неравновесной газодинамике роль флуктуации проявляется наиболее ярко в процессах спонтанной конденсации перенасыщенности пара. [14]

Теория флуктуации (Д. Гиббс), их экспоненциального роста, расчета скорости образования центров конденсации, разработанные Френкелем и Зельдовичем, активно использованы в работах автора.

Диссипативные структуры.

Одно из основных понятий теории самоорганизации. Диссипативная структура — это открытая динамическая система, оперирующая вдали от термодинамического равновесия и связанная с рассеянием (диссипацией) энергии, вещества или информации.

По И. Пригожину — «динамические системы образуются как энергетически более экономные, выгодные образования в сильно неравновесных системах, условиях. При этом производство энтропии (неупорядоченности) и диссипация (рассеяние) энергии — минимальное.

Образование новых типов структур указывается на переход от хаоса и беспорядка к организации и порядку. Эти диссипативные динамические микроструктуры являются прообразами будущих состояний системы, так называемых фракталов.

3.5. Фракталы и аттракторы

И опять — математическое моделирование.

Фрактал — математическое множество, обладающее свойством самоподобия. Фрактальное моделирование, на основе развития компьютерных технологий — ключ к эффективной визуализации этих структур, их исследования, анализа и использования. Классический образец визуализированного фрактала — Множество Мандельброта (Рис. 3-1).

Примеров визуализации самых разнообразных фрактальных форм — великое множество. См., например, фрактал «Кочан капусты сорта Романенко» (Рис. 3-2), фрактал «Вязаные кружева» (Рис. 3-3) и др.

Рис. 3-1. Множество Мандельброта.12

Рис. 3-2. «Кочан капусты сорта Романеско».13

Рис. 3-3. Вязаные кружева.14

Фрактальные структуры отмечаются во многих областях реального мира. Ветви дерева, структура легких, графики данных о продаже акций, облака, снежинки, система кровообращения (Рис. 3-4) — все они обладают самопохожестью.

Рис. 3-4. Лист дерева.15

Фракталы — это структуры, состоящие из частей, которые в каком-то смысле подобны целому (самоподобные). Это означает, что небольшая часть фрактала содержит информацию о фрактале.

Инвариантность фрактала. В любом масштабе мы всегда видим одно и тоже, или нечто подобное. По идеологии создателя фрактальной геометрии Б. Мандельброта «Фрактальное мышление позволяет обнаружить закономерность в хаосе».

Создав фрактальную структуру объекта, мы можем с высокой точностью прогнозировать поведение реального прототипа, проводя компьютерный эксперимент с фракталами.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Газотермодинамика новой России предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

10

От английского GreatTactics (GT) — лучшая стратегия (отличная тактика). См. также Л. Кассиль. «Кондуит и Швамбрания».

11

Илья Романович Пригожин. Бельгийский и российский академик. Один из основателей неравновесной термодинамики, первооткрыватель диссипативных структур (Нобелевская премия, 1977).

12

https://math.stackexchange.com/questions/323334/what-was-the-first-bit-of-mathematics-that-made-you-realize-that-math-is-beautif/323676

13

https://pixnio.com/ru/растения/овощи/романеско-брокколи

14

https://commons.wikimedia.org/wiki/File:Julia001-3.png

15

https://stocksnap.io/photo/fall-leaf-ATCU7OBQN7

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я