1. книги
  2. Программирование
  3. Виталий Александрович Гульчеев

Справочник по нейронным сетям: от теории к практике

Виталий Александрович Гульчеев (2023)
Обложка книги

Вас привлекает мир искусственных нейронных сетей? Это руководство содержит введение в нейронные сети, их построение и применение. Благодаря четким и лаконичным объяснениям вы узнаете об основах нейронных сетей и их роли в машинном обучении. Вы изучите различные типы нейронных сетей, включая сверточные и рекуррентные сети, и узнаете о лучших методах построения, обучения и развертывания моделей. Вы получите практический опыт работы с популярными инструментами и библиотеками, такими как TensorFlow, Keras и PyTorch, а также с созданием веб-приложений с помощью Flask. Если вы начинающий специалист по работе с данными, инженер машинного обучения или исследователь ИИ, это руководство поможет вам освоить основы и продвинуть свои знания и навыки на новый уровень. Содержащая практические примеры, рекомендации по литературе и советы по достижению успеха, эта книга является обязательным ресурсом для всех, кто хочет использовать возможности нейронных сетей для решения реальных задач.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Справочник по нейронным сетям: от теории к практике» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2: Подготовка данных

Предварительная обработка данных — важнейший шаг в построении нейронной сети, поскольку она может значительно повлиять на производительность модели. В этой главе мы рассмотрим важность предварительной обработки данных, а также методы обработки отсутствующих данных, нормализации и стандартизации данных и одноточечного кодирования категориальных переменных.

Важность предварительной обработки данных

Предварительная обработка данных — это процесс очистки, преобразования и подготовки данных к анализу. Качество и структура данных могут оказать значительное влияние на производительность нейронной сети, поэтому важно убедиться, что данные имеют правильный формат и не содержат ошибок.

Одной из распространенных проблем с необработанными данными являются пропущенные значения. Нейронные сети предназначены для работы с числовыми данными, поэтому любые отсутствующие значения должны быть обработаны до того, как данные можно будет использовать.

Обработка отсутствующих данных.

Существует несколько методов обработки отсутствующих данных, в том числе:

Удаление: Самым простым методом обработки отсутствующих данных является простое удаление всех записей с отсутствующими значениями. Этот метод подходит только в том случае, если количество записей с отсутствующими значениями невелико по сравнению с общим количеством записей.

Импутация: Этот метод заменяет отсутствующие значения на замещающее значение, например, среднее или медиану столбца. Это может быть сделано с помощью таких алгоритмов, как k-nearest neighbors или деревья решений.

Интерполяция: Этот метод использует математическую функцию для оценки отсутствующих значений на основе значений других записей в том же столбце.

Нормализация и стандартизация

После обработки отсутствующих данных важно нормализовать и стандартизировать данные. Нормализация изменяет масштаб данных так, чтобы все значения находились в диапазоне от 0 до 1. Стандартизация изменяет масштаб данных так, чтобы среднее значение данных было равно 0, а стандартное отклонение — 1.

Нормализация и стандартизация важны, поскольку нейронные сети чувствительны к масштабу данных. Нормализуя и стандартизируя данные, вы обеспечиваете одинаковый масштаб каждой характеристики, что может улучшить производительность нейронной сети.

Одноходовое кодирование

Категориальные переменные — это переменные, которые принимают ограниченное число значений, например,"да"или"нет", или"красный","зеленый"и"синий". Нейронные сети предназначены для работы с числовыми данными, поэтому категориальные переменные должны быть преобразованы в числовые данные, прежде чем их можно будет использовать. Одноточечное кодирование — это распространенный метод преобразования категориальных переменных в числовые данные.

При одномоментном кодировании каждое уникальное значение категориальной переменной преобразуется в новый двоичный столбец. Например, если категориальная переменная имеет три уникальных значения,"красный","зеленый"и"синий", будут созданы три новых столбца:"is_red","is_green"и"is_blue". Значения в этих столбцах равны 0 или 1, в зависимости от того, принадлежит ли запись к соответствующей категории.

В заключение следует отметить, что предварительная обработка данных является важным шагом в построении нейронной сети. Обработка отсутствующих данных, нормализация и стандартизация данных, а также одноточечное кодирование категориальных переменных позволяют обеспечить правильный формат данных и отсутствие ошибок, что может значительно улучшить производительность модели.

Кроме того, важно помнить, что предварительная обработка данных — это итеративный процесс, который может потребовать нескольких итераций для обеспечения надлежащей очистки и форматирования данных. Также важно учитывать потенциальное влияние выбора предварительной обработки на общую производительность модели и проверять результаты этапа предварительной обработки, чтобы убедиться, что она не внесла смещения и не исказила исходные данные. Тщательная обработка и подготовка данных позволяет более эффективно обучать нейронные сети, что приводит к созданию более точных и надежных моделей.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Справочник по нейронным сетям: от теории к практике» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я