Секреты датасетов: практическое руководство по анализу и обработке данных

Виталий Александрович Гульчеев, 2023

"Секреты датасетов: практическое руководство по анализу и обработке данных" представляет собой всеобъемлющий и доступный ресурс для специалистов и начинающих исследователей данных. Книга охватывает ключевые аспекты работы с датасетами, начиная с источников данных, форматов и структур, и заканчивая предобработкой, анализом и визуализацией. Она предоставляет примеры работы с датасетами с использованием популярных языков программирования и библиотек, таких как Python, R, pandas и dplyr.Автор делится опытом и лучшими практиками по балансировке данных, аугментации, разделению датасета на обучающую, валидационную и тестовую выборки, а также исследовательскому анализу данных. Книга также освещает важные этические аспекты сбора данных и обработки персональных данных.Это практическое руководство подходит для всех, кто хочет улучшить свои навыки в работе с датасетами и получить ценные знания о современных подходах к анализу данных.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Секреты датасетов: практическое руководство по анализу и обработке данных предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2: Источники датасетов

2.1 Общедоступные ресурсы и базы данных

Существует множество источников, где можно найти готовые датасеты для анализа данных и машинного обучения. Некоторые популярные ресурсы и базы данных включают:

Kaggle (https://www.kaggle.com/): платформа для соревнований по анализу данных и машинному обучению, которая предлагает большое количество датасетов на различные темы, включая финансы, здравоохранение и технологии.

UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/index.php): один из старейших репозиториев датасетов, содержащий сотни датасетов для задач машинного обучения, включая классификацию, регрессию и кластеризацию.

Google Dataset Search (https://datasetsearch.research.google.com/): поисковик от Google, который позволяет найти датасеты, размещенные на различных веб-сайтах и порталах.

Data.gov (https://www.data.gov/): официальный портал правительства США, предоставляющий доступ к датасетам на различные темы, такие как экономика, здравоохранение, образование и климат.

Европейский портал открытых данных (https://www.europeandataportal.eu/): портал, содержащий датасеты от различных стран Европейского союза.

Пример использования датасета с Kaggle: предположим, что вы хотите проанализировать данные о продажах видеоигр. На Kaggle есть датасет"Video Game Sales"(https://www.kaggle.com/gregorut/videogamesales), который содержит информацию о продажах видеоигр, платформах, жанрах и рейтинге.

2.2 Создание собственного датасета

В некоторых случаях готовых датасетов может быть недостаточно, и вам придется создать свой собственный датасет. Некоторые способы сбора данных:

Веб-скрапинг: сбор данных с веб-сайтов с использованием инструментов и библиотек, таких как BeautifulSoup и Scrapy для Python. Веб-скрапинг позволяет извлекать информацию с веб-страниц и преобразовывать ее в структурированный формат, например таблицу.

API (Application Programming Interface): использование API предоставляет доступ к данным из различных сервисов и платформ, таких как социальные сети, погодные сервисы и финансовые платформы. API обычно возвращает данные в формате JSON или XML, которые можно преобразовать в структурированный формат и добавить в свой датасет.

IoT-устройства и датчики: сбор данных с помощью датчиков, встроенных в различные устройства и системы, такие как смартфоны, автомобили и промышленное оборудование. Эти данные могут быть использованы для анализа и прогнозирования поведения устройств, определения аномалий и оптимизации процессов

Опросы и анкеты: сбор данных с помощью анкетирования пользователей или экспертов, чтобы получить качественные и количественные оценки по определенным вопросам или проблемам.

Пример создания собственного датасета с использованием веб-скрапинга: предположим, что вы хотите собрать данные о стоимости жилья в вашем городе. Вы можете использовать веб-скрапинг для сбора информации о ценах, местоположении, площади и других параметрах с сайтов по недвижимости.

2.3 Этические аспекты сбора данных

Сбор данных может иметь этические последствия, особенно когда данные связаны с личной информацией людей. Некоторые ключевые этические аспекты, которые следует учитывать при сборе данных, включают:

Защита конфиденциальности: соблюдение конфиденциальности пользователей, собирая только те данные, которые необходимы для вашей задачи. Обезличивание данных, скрывая личную информацию и уникальные идентификаторы, может помочь обеспечить приватность пользователей.

Согласие на сбор данных: получение разрешения от пользователей или владельцев данных перед сбором и использованием данных. Это может быть особенно важно при использовании веб-скрапинга или API, так как некоторые сайты и сервисы могут иметь ограничения на использование данных.

Недискриминация: избегание сбора и использования данных, которые могут привести к дискриминации или неравному обращению с определенными группами пользователей.

Прозрачность: информирование пользователей о целях сбора данных, методах обработки и хранения, а также о том, как их данные будут использоваться. Это важно для создания доверия и уважения к личной информации пользователей.

Компетентность и ответственность: обеспечение правильного и аккуратного сбора данных, а также надлежащего их использования. Необходимо избегать намеренного искажения результатов, основанных на данных, и следить за актуальностью данных, чтобы обеспечить точность анализа и прогнозов.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Секреты датасетов: практическое руководство по анализу и обработке данных предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я