Современные методы криминалистической ДНК-идентификации в расследовании преступлений

В. А. Мамурков

Решение задач криминалистической идентификации в расследовании преступлений становится возможным на основе обнаружения и исследования следов крови, спермы, слюны, изолированных клеток внутренних органов, волос, пота, костных фрагментов. Передовые методы экспертных исследований биологических следов основаны на анализе ДНК человека, отличающейся высокой специфичностью для каждого индивидуума. Развитие технологий исследования позволяет получить профиль ДНК из малого и сверхмалого количества ДНК.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Современные методы криминалистической ДНК-идентификации в расследовании преступлений предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

1. Индивидуальные признаки генотипа человека как основа криминалистической идентификации

Известно, что геном человека создавался в процессе эволюции путем отбора соответствующих хромосом — групп сцепления, несущих определенный набор генов, необходимых для функционирования генотипа как системы. Геном человека состоит из 46 хромосом, расположенных в клеточном ядре и содержащих генетическую информацию. Все ядра соматических клеток человека содержат двойной (диплоидный) набор из 46 хромосом, и только половые клетки — сперматозоиды и яйцеклетки — несут половинный (гаплоидный) набор — 23 хромосомы, из которых 22 хромосомы имеют соответствующую пару, а одна непарная хромосома определяет пол человека. В яйцеклетках это всегда две Х-хромосомы, в сперматозоидах это одна Х-хромосома и одна Y-хромосома.

Носителем генетической (наследственной) информации в хромосомах является закрученная спираль дезоксирибонуклеиновой кислоты — ДНК, состоящая из двух комплементарных цепей. Генетическая информация копируется при разделении цепей ДНК, что позволяет каждой из них служить матрицей для новой комплементарной пары.

Элементами ДНК, как и других генетических структур (генов, хромосом), являются нуклеотиды — мельчайшие условно неделимые частицы ДНК. Нуклеотидный состав ДНК, составляющий различные человеческие организмы, характеризуется разным количественным соотношением в них пуриновых (аденин/тимин) и пиримидиновых (гуанин/цитозин) оснований. Это означает, что последовательность нуклеиновых кислот в ДНК имеют видовую и индивидуальную специфичность, то есть состав ДНК характерен как для каждого вида, так и для каждого отдельного организма, которому она принадлежит. При этом обнаруживается бесконечное количество вариантов сочетания нуклеотидных пар, взаимодействующих друг с другом по принципу комплементарности.

Таким образом, ДНК обеспечивает колоссальное биологическое многообразие даже внутри одного вида, не говоря уже о разных видах живых существ. При этом важно, что ДНК, выделенная из разных тканей представителя одного вида, имеет одинаковый нуклеотидный состав, который не меняется на протяжении всего жизненного цикла организма, не зависит от изменений окружающей среды и вида жизнедеятельности организма.

По причине огромного разнообразия генетического состава невозможно встретить двух людей, обладающих одинаковым генетическим кодом, за исключением однояйцевых (гомозиготных) близнецов.

Индивидуальные различия, вариации генов в структуре хромосом являются следствием определенных генетических процессов, которые приводят к реорганизации полинуклеотидных цепей ДНК и позволяют регистрировать их индивидуальный структурный полиморфизм. На последнем этапе генетического исследования формируется распознаваемый графический образ, составленный чередующимися полосами (дисками) различной ширины и степени потемнения.

Установлено, что для каждого человека характерен свой специфический рисунок чередования и ширины темных и светлых полос, так называемых вариабельных участков генома — минисателлитов. Эта картина имеет даже более высокую индивидуальную специфичность, чем папиллярные узоры пальцев. Информативность маркерных систем, основанных на гипервариабельных локусах, чрезвычайно велика благодаря мультиаллельности участков хромосомной ДНК (локусов). Использование этих систем для маркирования геномов стало основой технологии генетической идентификации индивидуума.

Таким образом, в геноме человека было выявлено несколько гипервариабельных локусов (участков ДНК), в каждом из которых вариабельная последовательность состояла из повторяющихся тандемов минисателлитов (олигонуклеотидов).

Как отмечено в исследованиях генетиков, информативность маркерных систем, основанных на гипервариабельных локусах, чрезвычайно велика вследствие их мультиаллельности. Использование этих систем для маркирования генома индивидуума стало основой технологии «геномной дактилоскопии», позволяющей получать специфические, генетически закрепленные картины гибридизации для отдельных индивидуумов.

Для каждого человека характерен свой, присущий только ему набор специфических вариабельных участков генома, называемых минисателлитами. Вариабельные участки генома демонстрируют более высокую индивидуальную специфичность, чем папиллярные узоры, поэтому они могут служить генетическим удостоверением личности.

Обнаружение в геноме человека гипервариабельных минисателлитных и микросателлитных участков привело к разработке методов, позволяющих проводить однозначную идентификацию личности. Каждый человек может быть идентифицирован на молекулярном уровне вследствие того, что молекула ДНК высокополиморфна у разных людей и в то же время ДНК всех клеток одного и того же организма идентична по структуре [1].

Известно, что именно в участках максимального накопления структурного гетерохроматина располагается особый тип гипервариабельных локусов, содержащих тандемные повторы нуклеотидов с изменяющимся числом копий — минисателлитная ДНК. Именно вариабельная последовательность состоит из тандемно повторяющихся коротких минисателлитов, аллельные варианты которых различаются числом повторяющихся звеньев [2].

Расположение отдельных линий гибридизационной «картинки» варьируется у разных людей, создавая их индивидуальную совокупность. Каждая поперечная полоса или диск представляет собой определенный локус на определенной хромосоме, пронумерованный в соответствии с общепринятой международной стандартизацией [3].

В гибридизационном анализе крови человека регистрации и учету обычно поддаются около 18—20 поперечных полос как рестрикционных фрагментов, обеспечивающих идентификацию неродственных индивидуумов.

Очевидно, чем меньше частота встречаемости определенной совокупности признаков при исследовании генотипа, тем выше уровень индивидуализации этой совокупности признаков и тем выше достоверность проведенной идентификации.

Графическое выражение геномного «отпечатка» и достоверная оценка его специфичности в более ранних исследованиях зависела от используемого фермента (рестриктазы), при этом одновременное использование двух или более ферментов приводило к существенному повышению достоверности и наибольшей информативности различных участков — локусов каждой хромосомы. С увеличением числа применяемых ферментов увеличивается количество исследуемых локусов, каждый из которых характеризуется своим набором аллелей, определяющих индивидуальность и специфику исследуемой хромосомы. «Вероятность совпадения картинок для двух неродственных индивидуумов при использовании одной поликоровой пробы оказалась равной 10—11. Иными словами, эти гибридизирующиеся последовательности были специфичны для данного индивидуума в большей степени, чем папиллярные узоры, достоверность которых равна 10—6» [4].

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Современные методы криминалистической ДНК-идентификации в расследовании преступлений предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я