Дарвинизм в XXI веке

Борис Жуков, 2020

Книга Бориса Жукова “Дарвинизм в XXI веке” посвящена современному состоянию теории эволюции и месту в ней изначального дарвинизма. Автор подробно описал историю эволюционного учения, разобрал аргументы его противников и контраргументы сторонников, показал слабые и сильные места теории эволюции, ее связь с генетикой, эмбриологией и другими науками. И все это щедро приправил многочисленными примерами из животного и растительного мира, научными экспериментами и описаниями палеонтологических находок. В формате a4.pdf сохранен издательский макет.

Оглавление

Из серии: Библиотека фонда «Эволюция»

* * *

Приведённый ознакомительный фрагмент книги Дарвинизм в XXI веке предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Часть I

В переводе с викторианского

Глава 1

Дарвинизм на трех китах

В наше время первое знакомство с теорией Дарвина для большинства людей начинается в школе. И начинается оно с тех самых понятий, в которых когда-то изложил эту теорию сам ее создатель: “изменчивость”, “наследственность”, “естественный отбор”. Сегодня, как много десятилетий назад, школьные учителя отчаянно пытаются втолковать своим подопечным разницу между определенной и неопределенной изменчивостью — хотя со времен выхода “Происхождения видов” прошло полтора века и такие расплывчатые понятия, как “неопределенная изменчивость”, практически не используются в научном обиходе. Да что там ученые — сегодня любой школьник, даже не слишком увлекающийся биологией, знает, что наследственность — это гены, а изменения генов — это мутации. Правда, на вопрос, что означают эти слова, ответит уже не всякий.

Ну вот давайте и начнем с выяснения того, что сегодня знает наука об этих явлениях. И первым делом поговорим о том, что такое ген.

Атомы наследственности

Все мы со школьных времен помним хрестоматийную историю о том, как скромный августинский монах из провинциального города Брюнна в Австрийской империи (ныне Брно в Чехии) разгадал загадку наследственности, не поддававшуюся самым выдающимся и знаменитым умам того времени. Поэтому не будем сейчас останавливаться подробно на этом поучительном сюжете. Отметим лишь одно: ни сам Грегор Мендель, ни ученые, повторившие спустя треть века его открытия и создавшие на их основе классическую генетику, ничего не знали о материальной стороне изучаемых ими генов: из чего они состоят, как устроены, как работают и как обеспечивают формирование наследуемых признаков. Некоторые весьма уважаемые биологи совершенно серьезно рассматривали даже гипотезу, что гены суть вообще не материальные объекты, а некие “чистые формы” вроде геометрических фигур и тел — круга, треугольника, куба и т. п.

При этом, как ни странно, ученые того времени знали о генах не так уж мало. Им было известно, что каждый конкретный ген может существовать в нескольких вариантах, или версиях, — аллелях. Что в организме каждый ген представлен двумя экземплярами — одним от папы, другим от мамы. Таким образом, одна особь не может иметь более двух разных аллелей одного гена — хотя всего их могут существовать десятки. При половом размножении особь передаст каждому из своих потомков только по одному аллелю каждого гена, причем если они разные, то какой достанется данному конкретному потомку — дело чистого случая. Если в организме встречаются два разных аллеля одного гена, то обычно один из них внешне не проявляется, но при этом не исчезает, не изменяется и может быть передан последующим поколениям. И самое главное — гены не смешиваются и не делятся на части, каждый из них наследуется по принципу “всё или ничего”, то есть дискретно. Выражаясь современным языком, можно сказать, что наследственная информация существует и передается от родителей к потомкам только в цифровой записи[6].

Все это было известно уже Менделю, хотя он и не пользовался термином “ген”. Но лишь почти через сто лет после его работы наука наконец-то выяснила материальную природу гена. Оказалось, что ген — это участок молекулы дезоксирибонуклеиновой кислоты (ДНК). Длинные двойные цепочки этого полимера обладают замечательным свойством: каждая из них может служить матрицей для воссоздания второй (подобно тому, как с ключа можно сделать слепок, со слепка — новый ключ и т. д.). Это обеспечивается уникальной последовательностью азотистых оснований, которыми эти цепочки соединяются друг с другом. И эта же последовательность с помощью довольно сложного молекулярного механизма определяет последовательность аминокислот — молекулярных “кирпичиков”, из которых строятся белки.

Таким образом, ген — это участок молекулы ДНК, кодирующий тот или иной белок. Работа этого белка в организме и формирует то, что мы называем наследственным признаком. Например, красные цветы красны потому, что в организме растения работает белок-фермент, производящий красный пигмент. А у растений с белыми цветами этот фермент отсутствует или неактивен из-за “опечатки” в соответствующем участке ДНК.

Впрочем, довольно скоро выяснилось, что все не так просто. Вот, скажем, клетки нашей кожи производят белок кератин. Для этого у них есть соответствующий ген. Он есть и во всех прочих клетках нашего организма, но ни нейроны, ни лимфоциты, ни клетки слюнных желез кератина не производят. Да и клетки кожи могут менять объемы его производства: те участки, которые постоянно обо что-то трутся, производят кератина больше (так возникают мозоли). Оказалось, что помимо кодирующих участков в ДНК есть и другие — включающие-выключающие ген и регулирующие интенсивность его работы. Ученые договорились было считать, что ген — это кодирующий участок плюс его “выключатели”. Однако выяснилось, что один регуляторный участок (энхансер) может управлять сразу несколькими кодирующими.

Мало того, большинство генов оказалось гораздо длиннее, чем нужно для кодирования последовательности аминокислот в их белках. Когда с такого гена снята “рабочая копия” (матричная рибонуклеиновая кислота, мРНК), специальные ферменты вырезают из нее лишние куски, и только после этого она идет в работу. Причем “лишними” могут в одном случае оказаться одни куски, а в другом — другие. В результате с одного участка ДНК считываются несколько довольно разных белков — как если бы там было закодировано, скажем, победоносец, а после вмешательства ферментов получались бы то обед, то понос, то донос, то бес, то песец

На самом деле это сравнение не вполне точно: “победоносец” — слово хоть и не очень естественное, но вполне осмысленное и понятное. А та молекула РНК, которая считана с гена, выглядит совершенно бессмысленной последовательностью “букв”, из которой только после “редактирования” ферментами (ученые называют этот процесс сплайсингом) можно получить осмысленные “слова”.

Это скорее напоминает эффект ключа-трафарета, знакомого всем по титрам культового советского фильма “Приключения Шерлока Холмса и доктора Ватсона”. Помните? Весь экран заполнен стилизованными буквами, не складывающимися ни в какие слова. Но вот невидимая рука накладывает на этот буквенный хаос черный лист с прорезями в определенных местах — и в этих прорезях появляется надпись: “Шерлок Холмс — Василий Ливанов”.

Примерно так и работает сплайсинг — с той только разницей, что выполняющие его ферменты-“редакторы” имеют дело не с двумерным буквенным полем, а с линейной последовательностью “букв” — нуклеотидов. Зачем и почему почти вся наша наследственность устроена подобным “криптографическим” образом — вопрос, конечно, интересный, но мы его сейчас обсуждать не будем. (Скажем лишь, что дело тут, вероятно, не в шифровании, а в возможности компактно закодировать несколько вариантов одного и того же инструмента-белка — что-то вроде отвертки или дрели с разными насадками.) Нам сейчас важно другое: тот участок ДНК, который таким образом кодирует целый набор разных белков, — это один ген? Или несколько разных?

Однако при любом толковании понятия “ген” для него остаются в силе те свойства, о которых мы говорили выше: дискретность, вариативность, случайное распределение и независимое наследование, двойной набор в каждом организме[7].

И еще одно качество, о котором не знал ни Мендель, ни создатели классической генетики: как отдельный ген, так и любая их совокупность (хромосома, геном) представляет собой не что иное, как текст. И понимать это нужно не метафорически, а буквально: ген обладает всеми общими свойствами привычных нам текстов, и к нему приложимы все известные методы работы с ними. А то, что буквами в этом тексте служат мономеры нуклеиновых кислот — нуклеотиды, — ничего принципиально не меняет: человеческая культура знавала и более странные алфавиты.

Ошибки, которые делают нас

О том, что ген может изменяться, сегодня знают все. Слова “мутация” и “мутант” прочно вошли в разговорный язык — решительно изменив при этом свой первоначальный смысл[8] (как это часто случается с научными терминами, попадающими в обыденную речь). Согласно широко распространенным представлениям, мутации появляются сразу у множества особей, резко противопоставляют их особям нормальным и всегда вредны и опасны — либо для своих носителей, либо для всех остальных. Мутантом же сейчас именуют любое существо с уродливой или просто необычной внешностью — будь то безглазая рыбка, пятирогая коза или абсолютно нормальный, но никогда ранее не виденный вашим собеседником черный слизень.

Кроме того, почти все при слове “мутация” первым делом вспоминают об ионизирующем излучении — урановых рудах, атомных реакторах, рентгеновских установках и озоновых дырах, о Чернобыле и Хиросиме. О химических мутагенах помнят гораздо реже — хотя встреча с ними для человека, не имеющего дела по работе с изотопами и рентгеновскими установками, гораздо вероятнее, чем с радиацией. А вопрос о том, могут ли мутации происходить сами по себе, без радиации и мутагенов, поначалу вызывает замешательство — с чего бы это им тогда происходить?

Любителям анекдотов про чернобыльских мутантов будет, вероятно, интересно узнать, что специальные генетико-популяционные исследования полевок, обитающих в зоне отчуждения Чернобыльской АЭС (и даже конкретно в местах массового выпадения радионуклидов), не выявили сколько-нибудь заметного повышения у них частоты мутаций по сравнению с популяциями тех же видов из районов, не затронутых катастрофой. С этим согласуются и данные японских генетиков, обследовавших детей хибакуся (так в Японии называют тех, кто пережил атомную бомбардировку): частота новых мутаций у них оказалась не выше, чем у других японцев, родившихся в те же годы.

В той же Чернобыльской зоне на многих сильно загрязненных радионуклидами участках выросли целые рощи уродливых сосен — низкорослых, со странно укороченными ветками. Казалось бы, вот они — мутанты. Но когда “чернобыльские бонсаи” дали семена, ученые высеяли их на делянку с нормальным радиационным фоном. И из семян “мутантов” выросли обычные молодые сосенки. Уродство деревьев-родителей оказалось не мутацией, а морфозом: радиация грубо нарушила у них процессы индивидуального развития и формообразования, но практически никак не повлияла на их гены.

Откуда же взялось всеобщее убеждение в том, что радиация — главная и чуть ли не единственная причина мутаций? Косвенно виноват в этом замечательный американский генетик Герман Мёллер. Именно он в 1927 году впервые в мире показал возможность искусственного мутагенеза, использовав для этого рентгеновские лучи. Объектом в этих опытах служило любимейшее существо генетиков того времени — плодовая мушка дрозофила. Именно из-за ее необычайной популярности у коллег Мёллер ее и выбрал: генетику дрозофилы к тому времени уже неплохо изучили, и можно было воспользоваться уже выведенными чистыми линиями (группами организмов, внутри которых отсутствует генетическое разнообразие по одному, нескольким или вообще всем признакам), в которых гораздо легче выявлять вновь возникшие мутации. Впоследствии мутагенное действие всех разновидностей ионизирующего излучения подтвердили на дрожжах и других представителях царства грибов, на бактериях и иных организмах, а также на культурах клеток.

Почему же тогда этот эффект не обнаруживается у полевок, сосен и людей? Во-первых, разные виды излучения обладают разной проникающей способностью. Мёллер использовал рентгеновские лучи, хорошо проникающие даже сквозь значительную толщу биологических тканей[9]. К тому же у дрозофил толщина всех тканей, отделяющих половые клетки от внешней среды, составляет доли миллиметра, и рентгеновские кванты проникают к ним практически беспрепятственно. Тем более это справедливо для микроорганизмов и клеточных культур, где между лучом и клеткой-мишенью нет вообще никаких экранов.

Примерно такой же проникающей способностью обладает гамма-излучение, сходное по природе с рентгеновским: и то и другое представляет собой поток высокоэнергетических электромагнитных волн, только у гамма-лучей энергия (а значит, и разрушительное действие) каждого кванта еще выше. А вот у других видов радиации проникающая способность гораздо ниже. Альфа-частицы (ядра гелия) даже в воздухе летят недалеко, в плотных же средах (в том числе в живых тканях) их проникающая способность измеряется микронами. Бета-частицы (электроны, образовавшиеся в ходе ядерных реакций) проникают в живую ткань на несколько миллиметров[10]. Оба типа частиц полностью поглощаются одеждой. Даже нейтроны, слабо взаимодействующие с веществом из-за своей электрической нейтральности, в тканях пробегают лишь сантиметры.

Таким образом, в природных условиях реальный шанс подействовать непосредственно на половые клетки организмов размером хотя бы с полевку имеет только гамма-излучение (рентгеновские лучи в земных условиях существуют только в сконструированных человеком аппаратах). Это излучение возникает лишь в ходе ядерных реакций. В местах обитания живых организмов такой реакцией может быть только распад того или иного радионуклида — практически всегда сопровождающийся испусканием альфа — или бета-частиц или/и осколков ядер. Поскольку разрушительное действие всех этих видов излучения на незащищенные ткани гораздо сильнее, чем у гамма-лучей[11], организм, попавший под такой “обстрел из всех калибров” (будь то при ядерном взрыве, выбросе на АЭС или естественном выносе на поверхность пород, содержащих радиоактивные элементы), скорее всего, погибнет от рака кожи или даже лучевой болезни раньше, чем его половые клетки получат дозу гамма-лучей, достаточную для существенного повышения числа мутаций в них. Этим, вероятно, и объясняется парадоксальная невосприимчивость геномов разнообразных (но достаточно крупных) организмов к радиационному воздействию.

В отличие от радиации, химические мутагены способны проникать в сколь угодно глубоко лежащие ткани организма любого размера. Но в реальности подавляющее большинство происходящих в природе мутаций не имеют никакого отношения ни к радиации, ни к химии и представляют собой… самые обычные опечатки. Вспомним: каждая клетка несет в себе весь геном — полный набор генов данного организма. Перед делением этот набор должен быть скопирован, чтобы обе дочерние клетки получили по одному экземпляру. Копировальный аппарат клетки обеспечивает такую надежность копирования, о которой мы со всеми нашими средствами технического контроля до сих пор можем только мечтать, — он делает в среднем одну ошибку на десятки или даже сотни миллионов копируемых знаков[12]. Такая точность, поразительная сама по себе, выглядит просто немыслимой, если вспомнить, что речь идет о механизме квантовом: значащие части “букв” нуклеотидного кода — азотистые основания — состоят всего из 12–16 атомов.

Взаимодействие объектов такого размера подчиняется законам квантовой механики — что, в частности, означает, что оно всегда вероятностно и его результат никогда не может быть предопределен однозначно. Тем не менее живым организмам удалось свести долю “нештатных” исходов взаимодействия до неправдоподобно малых величин. Но поскольку, например, наш собственный геном содержит 3,2 миллиарда знаков-нуклеотидов, при каждом делении любой из наших клеток неизбежно возникает сколько-то “опечаток” — мутаций[13]. А поскольку формирование половых клеток тоже включает в себя неоднократное деление[14], то каждый из нас при зачатии гарантированно получает добрую сотню мутаций — опечаток, которых не было ни у мамы, ни у папы. Так что не нам испуганно вздрагивать при слове “мутант” — мы все мутанты. Буквально все до единого[15].

На этом месте читатель, представляющий себе мутации и мутантов по фантастическим ужастикам, нервно начнет осматривать себя: нет ли у него чешуи, копыт, глаз на стебельках, не набухает ли под кожей зачаток третьей руки или второй головы? Не торопитесь пугаться: около 90 % всего объема нашего генома составляют некодирующие участки ДНК, и подавляющее большинство ваших мутаций приходится на них. Из оставшегося десятка немалая доля — это синонимичные замены[16], которые в принципе не могут никак проявиться. Наконец, в любом белке большинство аминокислот не так уж важны для его функции: их замена так же мало затрудняет его работу, как написание “сковародка” или “винограт” — понимание нами смысла неправильно написанного слова. Ну а если уж вам совсем не повезло и какая-то мутация изменила одну из немногих ключевых аминокислот в жизненно важном белке — что ж, как известно, подавляющее большинство генов у нас имеются в двух экземплярах, так что даже если один из них будет производить дефектный белок, нужды вашего организма с успехом обеспечит второй[17].

И тем не менее в каждом поколении рождаются люди, которым не повезло еще сильнее — мутации изменили облик или функциональные возможности их организма. Происходит это по разным причинам. Например, если мутировал ген, расположенный в Х-хромосоме и потому имеющийся у мужчин в единственном экземпляре. Или если дефектный белок, производимый мутантным геном, не просто не выполняет свои функции, а вызывает какие-то нештатные, непредвиденные эффекты (например, если это сигнальный белок, а мутация изменила его таким образом, что, связавшись со своим рецептором, он долго не “слезает” с него, в результате чего рецептор ведет себя как залипшая кнопка). Или — чаще всего — если мутация, не вызывая видимых эффектов, понемногу распространилась в популяции, и в конце концов какой-то дальний потомок мутанта получил ее и от отца, и от матери. Как бы то ни было, мутация, получившая внешнее проявление, поступает на суд естественного отбора — последнего рубежа обороны, ограничивающего распространение вредных мутаций.

О том, насколько важен этот рубеж, можно судить по феномену так называемых псевдогенов. Так называют нуклеотидные последовательности, похожие на те, что у других видов присутствуют в качестве нормальных генов. Отличия невелики, но достаточны, чтобы с псевдогена не мог считываться никакой осмысленный белок.

Подобно кэрролловой Фальшивой Черепахе, которая в юности была Настоящей Черепахой, каждый псевдоген когда-то был настоящим геном. Он работал, производил нужный организму продукт, а если в нем происходила мутация, то естественный отбор отсекал ее или по крайней мере ограничивал ее распространение. Но затем что-то изменилось в условиях или образе жизни обладателей этого гена, и он стал ненужным (как, скажем, ген фермента гулонолактоноксидазы, синтезирующего аскорбиновую кислоту, для обезьян, в избытке получающих этот витамин в своей обычной пище). В новых условиях носители его неработоспособных мутантных версий ни в чем не проигрывали своим нормальным собратьям, и такие мутации не вычищались отбором. В конце концов “правильных” версий гена не осталось вовсе — в ходе многократного копирования все его экземпляры оказались непоправимо испорчены накопившимися опечатками. Теперь если нужда в его продукте вновь возникнет (скажем, человеку после перехода на тепловую обработку пищи очень пригодилась бы способность самостоятельно вырабатывать аскорбинку), использовать старый ген уже невозможно: вернуть ему работоспособность могут только несколько согласованных мутаций. Такое событие по своей вероятности уже мало отличается от чуда. Такова судьба гена, вышедшего из-под контроля отбора[18].

Примерно так обстоит дело с мутациями не только у человека и его ближайших родичей, но у всех живых существ, по крайней мере — у всех эукариот. Про мутации и их отношения с организмом, в котором они происходят, можно рассказать еще очень много интересного, но эта книга — все-таки не о мутациях, а об эволюции. Поэтому ограничимся сказанным, еще раз подчеркнув главное: мутации — это по большей части опечатки, ошибки копирования. Они возникают случайно, им подвержены (хотя и в разной степени) любые участки генома. Мутационный процесс идет постоянно; некоторые факторы окружающей среды могут усиливать или ослаблять его, но полностью он не прекращается никогда. Каждая конкретная мутация (замена конкретного нуклеотида в конкретном гене) крайне редка, так что вероятность одновременного появления в одной популяции нескольких одинаковых мутаций практически равна нулю. Как и всякая случайность, мутация может оказаться счастливой, дающей своему обладателю некоторые дополнительные возможности (о примерах этого мы поговорим несколько позже), но сами по себе мутации не могут создать сколько-нибудь сложной новой структуры. Наконец, мутации происходят во всех делящихся клетках, но значение для эволюции имеют только мутации в тех клетках, которые могут дать начало новому организму (у человека и других высокоразвитых животных это могут быть только половые клетки).

И напоследок. Все сказанное выше относится к так называемым точечным мутациям, они же SNP, или “снипы[19], — заменам одного нуклеотида другим. Между тем мутациями, строго говоря, называются любые изменения генетического материала: потеря хромосомы или ее куска, развал одной хромосомы надвое, слипание двух хромосом в одну, перенос куска одной хромосомы в другую, инверсия (переворот участка внутри хромосомы задом наперед), появление лишней копии одной из хромосом — все это тоже мутации. Наконец, мутацией считается и удвоение (или другое кратное умножение) всего генома целиком — полиплоидизация.

Причины подобных перестроек не всегда ясны и подчас становятся предметом споров. Еще более спорным является вопрос об их эволюционном значении — особенно феномена полиплоидности. Ниже (в главе “Откуда берутся новые гены?”) нам представится случай поговорить об этом подробнее.

Неотвратимая случайность

Заметим, что в основе всех вышеприведенных рассуждений о мутациях лежит взгляд на них как на чисто случайные ошибки. Именно так рассматривают их все версии и редакции дарвинизма — и именно этот взгляд неизменно становится объектом критики со стороны всех недарвиновских теорий эволюции. Можно сказать, что вопрос о случайности мутаций — важнейшая точка размежевания между дарвиновскими и недарвиновскими эволюционными концепциями.

Впрочем, о недарвиновских теориях эволюции мы поговорим несколько позже (во второй части книги), а пока попробуем разобраться с мутациями. Собственно говоря, существование случайных мутаций не отрицал никто: все понимали, что никакая реальная система копирования не может работать абсолютно точно, а значит, случайные ошибки в копируемых ею текстах всегда возможны. Как бы трепетно ни относились средневековые монахи-переписчики к священным библейским текстам, сохранившиеся экземпляры рукописных книг того времени содержат вполне ощутимое число случайных описок — это охотно подтвердит любой специалист по средневековым текстам.

Но тот же специалист скажет и другое: переписывая другие, светские тексты (сочинения античных авторов, летописи и хроники миновавших эпох и т. д.), монахи не стеснялись целенаправленно редактировать их в духе времени и собственных взглядов. В результате чего, например, убежденный фарисей Иосиф Флавий оказывался автором благоговейного отзыва об Иисусе Назаретянине. Неужели организм не делает ничего подобного со своими генами?

Мы знаем, что практически все организмы способны в тех или иных пределах изменяться адекватно условиям окружающей среды. Даже у самых простых из современных живых существ — бактерий — есть такие возможности. Если, скажем, в среду, где живет культура кишечной палочки, добавить молочный сахар (лактозу), очень скоро в клетках бактерий появится фермент лактаза, способный его расщеплять. Кончится лактоза — прекратится и синтез фермента. Различные бактерии умеют менять форму, отращивать или убирать жгутики и цитоплазматические выросты, покрываться плотной оболочкой или сбрасывать ее — в зависимости от ситуации.

Еще более разнообразны возможные ответы на вызовы среды высокоорганизованных существ. Они могут изменять свое поведение (кочевки, переход на сезонные корма), физиологию (зимняя спячка), морфологию (сброс листьев, отращивание новых побегов), биохимию. Некоторые организмы включают “запасную” программу развития: если развивающиеся личинки некоторых видов кобылок видят вокруг себя мало соплеменников, они развиваются в одиночных кобылок, если много — в саранчу (подробнее см. главу 11). Словом, организмы способны к адаптивным изменениям на самых разных уровнях. Так не логично ли предположить, что и их геном может меняться не только случайно, но и целенаправленно, соответственно требованиям окружающей среды?

О поисках “направленных мутаций” можно написать толстую книгу. Но подробный рассказ об этой драматической эпопее не входит в нашу задачу. Здесь же скажем лишь, что за несколько десятилетий энтузиасты так и не нашли ничего хоть сколько-нибудь убедительного. Неоднократно раздававшиеся крики “Эврика!” неизменно смолкали — либо после первой же корректной проверки, либо даже без нее, когда самим авторам не удавалось повторить свой результат.

Тем не менее в ряде публикаций последних десятилетий можно найти утверждения, что неслучайность мутаций все-таки обнаружена и более того — что представление о чисто случайном характере мутаций полностью опровергнуто. В тех случаях, когда авторы этих утверждений дают себе труд привести какие-либо подробности, речь обычно идет о некоторых действительно интересных феноменах, открытых в 1980-е годы.

Во-первых, обнаружилось, что у одного и того же вида частота мутаций различных участков генома может различаться очень сильно — порой на порядок. Во-вторых, оказалось, что при размножении в стрессовых (умеренно неблагоприятных) условиях частота мутаций в бактериальных клетках резко возрастает. Удалось даже выяснить механизм этого явления: при стрессе в клетке работает “альтернативная” ДНК-полимераза, делающая гораздо больше ошибок, чем “штатная”. Влияние стресса на частоту мутаций вроде бы найдено и у эукариот, хотя там разница не так велика и само ее существование удается заметить не всегда.

Наконец, был расшифрован молекулярный механизм формирования антител — иммунных белков, связывающих любые достаточно крупные чужеродные молекулы, попавшие в организм. Оказалось, что при размножении В-лимфоцитов (клеток, производящих антитела) гены антител необычайно интенсивно мутируют. Поскольку все прочие гены этих клеток мутируют “в обычном режиме”, остается сделать вывод, что гипермутагенез (так ученые назвали это явление) есть не что иное, как проявление какого-то специального механизма, изменяющего строго определенные гены. А это означало, что мутации могут быть результатом не только случайных ошибок копирования или внешних повреждающих факторов, но и целенаправленного воздействия организма на собственные гены[20]. Правда, процесс этот известен лишь для специализированных иммунных клеток, никогда не передающихся потомству. Но если это может делать лимфоцит, почему бы этого не делать гоноцитам — предшественникам половых клеток?

Если вам после прочтения двух последних абзацев показалось, что эти новые факты и в самом деле несовместимы с представлением о случайности мутаций, прошу представить, что вы пришли в казино. Вот за ближайшим к вам столиком крупье закончил принимать ставки и энергично крутанул рулетку. Случайны ли его действия? Конечно, нет — они вполне целенаправленны и включают в себя использование довольно сложного механизма, созданного специально для этих целей. А вот результат их совершенно случаен. И именно это является целью нашего крупье: заметив, что шарик останавливается на одних номерах чаще, чем на других, он (если только он не шулер) сочтет такую рулетку неисправной и перестанет ею пользоваться. Иными словами, целенаправленность механизма, обеспечивающего те или иные события, совершенно не исключает случайности самих событий.

Именно это и имеет место в рассмотренных нами случаях. Специальные исследования показали: и в случае повышенного мутагенеза у попавших в стрессовые условия бактерий, и в случае гипермутагенеза генов антител при размножении В-лимфоцитов возникают все возможные варианты мутаций. И вероятность каждого из них по отношению к другим — та же, что и в обычном, “фоновом” мутагенезе. Просто все они вместе случаются гораздо чаще.

Получается, что во всех случаях, когда обстановка требует внесения в генетический текст адаптивных изменений, это достигается только через внесение изменений случайных и их последующий отбор. Это кажется абсолютно нелогичным, противоречащим здравому смыслу. Если поведение, физиология, формообразовательные процессы в той или иной степени способны к прямым адаптивным изменениям — почему этого не происходит с генами? Если гены управляют не только всей повседневной деятельностью каждой клетки, но и всем процессом развития многоклеточного организма, следят за балансом внутренней среды, обходят блокированные биохимические пути, отвечают на вызовы внешнего мира и т. д. — как может быть, что ими самими управляет слепая случайность?!

Но давайте вернемся ненадолго к бактерии, умеющей синтезировать фермент только тогда, когда для него есть работа. Это происходит потому, что у нее есть, во-первых, ген данного фермента и, во-вторых, регуляторный участок ДНК, реагирующий на лактозу. Достаточно вывести из строя (скажем, мутацией) любой из этих участков, чтобы клетка утратила способность адекватно реагировать на присутствие лактозы, хотя бы от этого зависела ее жизнь[21]. Иными словами, способность организма к адекватным изменениям обеспечивается его геномом и им же задаются пределы этой способности. У более сложно устроенных организмов связь между изменением работы генов и внешними изменениями гораздо длиннее, включает множество промежуточных звеньев и не всегда может быть прослежена. Но принцип остается тем же: и сама способность меняться определенным образом в ответ на определенные внешние воздействия, и пределы этих изменений заданы геномом.

Меньше всего я хотел бы, чтобы меня поняли в том смысле, будто ни один организм не может в течение жизни создать ничего нового, а может только извлечь из генома подходящую программу, если она там есть. Это, конечно, не так — что легко видеть даже в нашем повседневном поведении. Практически любой более-менее здоровый человек может научиться ездить на двухколесном велосипеде или танцевать вальс — несмотря на то, что его геном не содержит информации о соответствующих последовательностях движений. Достаточно того, что он обеспечивает нам определенный набор элементарных движений и умение строить из них цепочки неограниченной длины и сложности. Примерно так же человек или техническая система, зная лишь 32 буквы русского алфавита, может прочесть или написать текст какой угодно длины и сложности. Но при этом не сможет прочесть даже один символ, которого не было в исходном алфавите (скажем, китайский иероглиф или знак из деванагари — традиционной индийской письменности). Некоторые люди, например, не могут правильно произносить русскую фонему “р”. Это — врожденная особенность, и никакие тренировки тут не помогут: у таких людей просто нет мышечных волокон, позволяющих языку совершать нужные вибрации в нужном положении. В лучшем случае такой человек может научиться издавать подобие нужного звука, производя его другими частями речевого аппарата — например, гортанью (получается что-то вроде французского r). Индивидуальная адаптация, для которой нет генетической базы, невозможна.

Но если геном может изменять самые разные признаки организма в ответ на изменение внешних условий — кто или что может целенаправленно изменять сам геном?

Первый напрашивающийся ответ: сами гены, только другие. Мы сегодня знаем, что белки, кодируемые изрядной частью наших генов (по меньшей мере примерно тремя тысячами — при том, что их всего чуть более 21 тысячи), нужны исключительно для управления активностью других генов. И это — не считая регуляторных участков ДНК, которые управляют работой генов, не кодируя собственные белки. Если одни гены могут изменять активность других — почему они не могут изменить их содержание?

Могут. И даже иногда делают это (как, например, в случае с кодированием антител). Но чаще всего — одним, уже хорошо знакомым нам способом: внесением случайных ненаправленных изменений. Иногда — удвоением нужного гена, его вырезанием и т. д. И никогда — целенаправленным изменением последовательности составляющих его нуклеотидов в некоторую определенную сторону[22].

Причина этого, если вдуматься, проста. Целенаправленные изменения — в отличие от случайных — должны иметь программу, которую нужно как-то записать. Значит, кроме генетической инструкции по построению и функционированию организма должна существовать еще вторая инструкция, описывающая будущие изменения первой. А поскольку она должна описывать эволюцию генома в течение неограниченного времени, то и объем такой инструкции должен быть бесконечным. Понятно, что это абсурд.

Можно, конечно, предположить, что программа будущих целенаправленных изменений генома содержится не в нем самом и записана как-то иначе, не на языке нуклеотидных последовательностей[23]. Но это предположение ничего не меняет в наших рассуждениях: где бы эта программа ни находилась, каким бы компактным ни был способ ее записи, она должна иметь бесконечный объем. Иначе она рано или поздно будет полностью выполнена — и эволюционирующему виду останется либо остановиться в своем развитии, либо умереть[24].

Если мы все еще не хотим расстаться с идеей о целенаправленном изменении генов, нам остается одно: предположить, что у каждого вида есть этакий демон-программист, который непрерывно исправляет и дополняет генетическую программу вида, сообразуясь с наличными условиями внешней среды. Но тут уж одно из двух: либо это сверхъестественное, бессмертное и, вероятно, бестелесное разумное существо — либо…

Либо это наш старый знакомый — “демон Дарвина”[25], он же естественный отбор. В каком-то смысле он выполняет для каждого вида именно такие функции. Но о нем — немного позже. Пока что мы еще не до конца разобрались с тем, что его порождает.

Забытый кит

Строго говоря, классическая триада, с которой мы начали — изменчивость, наследственность, естественный отбор, — не вполне соответствует дарвиновской схеме. В ней у отбора были не две, а три предпосылки: изменчивость, наследственность и борьба за существование.

В той версии дарвинизма, которую всем нам преподавали в школе, положение этого третьего “кита” было довольно двусмысленным: не то чтобы его отрицали или замалчивали, но старались на нем подробно не останавливаться — особенно на внутривидовой борьбе. (Оно и понятно: идея борьбы за существование целиком взята Дарвином у небезызвестного Томаса Мальтуса, а основы школьного курса теории эволюции были заложены в советские времена, когда имя и идеи этого мыслителя были абсолютно одиозными.) Свою роль сыграл и не вполне удачный (но давно устоявшийся и уже не подлежащий замене) перевод довольно многозначного английского struggle куда более определенным русским словом “борьба”.

В результате многие выносят из школы впечатление, что термин “борьба за существование” описывает в основном отношения организма с внешней средой, а также отношения между разными видами. Применение же его к внутривидовым отношениям вызывает искреннее удивление: разве существа одного вида так уж обязательно должны между собой враждовать?

Поэтому нам придется сказать несколько слов об этом забытом “ките” дарвинизма.

В главе о борьбе за существование Дарвин обсуждает широкий спектр взаимодействий организма с внешними агентами: природными стихиями (засухой, морозом, ветрами и т. д.), существами других видов (хищниками, паразитами, кормовыми объектами, конкурентами) и особями собственного вида[26]. Однако он неоднократно подчеркивает, что под борьбой за существование понимает в основном конкуренцию, причем в первую очередь — внутривидовую. Дарвиновское представление о борьбе за существование основано на простом и очевидном факте: всякая самовоспроизводящаяся группа живых существ (вид, популяция, штамм, линия, клон и т. д.) в принципе способна к неограниченному размножению, в то время как ресурсы, необходимые для жизни этих существ, всегда ограничены. Значит, не все, кто мог бы родиться, рождаются; не все родившиеся выживают и не все выжившие оставляют потомство. Это и есть внутривидовая борьба за существование — ни больше, ни меньше. В общем случае она не предполагает ни враждебности между участниками этого необъявленного соревнования, ни вообще каких-либо целенаправленных усилий с их стороны. То есть такие усилия могут быть, а могут отсутствовать или могут быть направлены в противоположную сторону (на смягчение конкуренции между сородичами) — сути дела это не меняет. Можно, как медведь, при каждом удобном случае убивать любого встречного детеныша своего вида; можно, как куропатка, подбирать осиротевших птенцов-соплеменников и растить их наравне со своими детьми; можно, как волк или лысый уакари[27], вовсе отказываться от собственного размножения ради выращивания братьев/сестер или племянников. Но ни один из этих образов действия не отменяет борьбы за существование — это лишь разные стратегии в этой борьбе. Кстати, не всегда альтернативные: тот же благородный дядюшка-волк, посвятивший жизнь воспитанию племянников, не задумываясь, порвет насмерть чужого переярка (волка-подростка), случайно забредшего на территорию стаи.

Но несмотря на все оговорки Дарвина (что борьба за существование — это прежде всего конкуренция, что он употребляет это выражение в сугубо метафорическом смысле и т. д.) очень многие читатели истолковали это понятие именно как активную и целенаправленную взаимную агрессию, “войну всех против всех” и даже как оправдание такой войны. Знаменитый русский революционер и видный идеолог анархизма князь Петр Кропоткин (в молодости занимавшийся натуралистическими исследованиями на Дальнем Востоке) в 1902 году выпустил книгу “Взаимопомощь как фактор эволюции”, в которой, не отрицая дарвиновской борьбы за существование, резко противопоставлял ей взаимопомощь животных одного вида, считая эти отношения взаимоисключающими. При этом взаимопомощи Кропоткин придавал куда большее эволюционное значение, нежели борьбе, и считал, что “никакая прогрессивная эволюция видов не может быть основана на периодах острого соревнования” и “лучшие условия для прогрессивного отбора создаются устранением состязания путем взаимопомощи и поддержки”.

Книга Кропоткина, написанная по-английски и изданная в Англии, получила некоторую известность в мировой эволюционной литературе. Однако при чтении ее становится очевидным, что автор просто перенес на отношения организмов в природе свои социально-политические идеи о роли взаимопомощи в человеческом обществе и истории. Не будем сейчас обсуждать, насколько адекватно представлял себе мятежный князь природу людей и образуемых ими общностей. Достаточно сказать, что главная идея ее “биологической части” (к которой относятся лишь две первые главы из восьми, а также часть приложений) основана, в сущности, на недоразумении — непонимании смысла понятия “борьба за существование”.

Еще одно недоразумение, связанное с этим понятием, выражается в том, что оно-де устарело, так как сегодня мы знаем, что для эволюции важно не столько выживание, сколько успех в размножении. Поэтому некоторым видам присущи специальные приспособления, понижающие шансы своего обладателя на выживание, но компенсирующие это увеличением числа его потомков: от знаменитого хвоста павлина и подобных ему структур (о которых мы будем подробно говорить в главе 3) до поведения самцов некоторых пауков и богомолов, позволяющих своим партнершам съесть себя во время или сразу после спаривания. Это вполне понятно, если вспомнить, что при любом способе размножения воспроизводятся не особи, а их гены. Поэтому естественный отбор поддержит любые изменения, ведущие к увеличению суммарного числа потомков (т. е. копий генов), независимо от того, как достигается это увеличение — большей вероятностью выживания особи с такими признаками или каким-то иным путем. Более того: если обстоятельства складываются так, что, помогая родителям или братьям, обладатель данного набора генов увеличивает вероятность воспроизводства этих генов эффективнее, чем заводя и выращивая собственных детей, — естественный отбор поддержит те генные вариации, которые склоняют своих носителей именно к такому поведению. Даже если при этом оно обрекает самих носителей на бездетность.

Научная литература, посвященная тому, при каких условиях живым существам выгоднее помогать выжить сородичам, нежели собственному потомству, необозрима и включает в себя как полевые и лабораторные исследования реальных видов, так и построение моделей (математических и компьютерных). Мы не будем далее углубляться в эту проблематику[28]. В конце концов, все эти феномены не более удивительны, чем поведение самки, тратящей немалые ресурсы на своих детенышей (а то и рискующей ради них жизнью), — ведь она тоже обеспечивает не собственное выживание, а воспроизводство своих генов.

Но вот тем, кто на этом основании считает, что понятие “борьба за существование” устарело, нелишне будет знать, что сам Дарвин, ничего не ведая о генах, тем не менее ясно и недвусмысленно включал в это понятие и репродуктивный успех. “Я должен предупредить, что применяю этот термин в широком и метафорическом смысле, включая сюда зависимость одного существа от другого, а также включая (что еще важнее) не только жизнь особи, но и успех в оставлении потомства [курсив мой — Б. Ж.]”, — писал он в III главе “Происхождения видов”, в которой и вводилось понятие борьбы за существование.

На этом можно бы и закончить, но я уже слышу читательский вопрос: а что, к отношениям между разными видами понятие борьбы за существование неприменимо вовсе?

Было бы очень жаль, если бы меня поняли таким образом. Разные виды тоже могут бороться за существование между собой. Но такая борьба происходит в основном не там, где ее обычно привыкли искать. Можно, конечно, сказать, что заяц, удирая от волка, тем самым борется за свое существование. И это даже будет правдой — с одной маленькой оговоркой: борется-то он борется, но не с волком, а в первую очередь с другими зайцами. А во вторую — с потенциальными жертвами волка из числа других видов.

Это утверждение может показаться издевательством над здравым смыслом. Жизни зайца угрожает преследующий его волк, никаких других зайцев в поле зрения нет — так с кем же борется заяц? Даже если (как мы договорились выше) понимать “борьбу” не как прямую схватку, а как состязание, все равно участниками его выступают волк и заяц. Кто из них окажется быстрее — тот и выживет. При чем тут другие зайцы и другие виды?!

Но давайте немного изменим условия нашего мысленного эксперимента: заменим волка… ну, скажем, коровой или козой, а зайца — куртиной клевера. Вы готовы на полном серьезе утверждать, что клевер борется за существование с коровой? А ведь по сути отношения между коровой и клевером ничем не отличаются от отношений между волком и зайцем: один вид регулярно служит пищей другому.

Оставим на время терминологию и обратимся к сути дела. Итак, травоядное животное ест растение. Растение не может убежать, спрятаться или отбиться от своего поедателя и должно сохранять себя иным способом. Стратегия клевера — быстрое отрастание, позволяющее восполнить съеденные коровой побеги. Значит, при регулярном выпасе коров на клеверище преимущество будут получать те индивидуальные растения, которые быстрее других наращивают массу после объедания. Они будут успешнее выживать и размножаться за счет более медлительных растений того же вида и в конечном счете вытеснят их с этого луга вовсе — чего не произошло бы, если бы там регулярно не паслись коровы. Иными словами, в этом состязании за жизнь корова — фактор конкуренции, а самими конкурентами выступают разные особи (точнее, разные генетические варианты) клевера. Это они соревнуются (т. е. “борются”) друг с другом посредством коровы.

Подставим обратно на место коровы — волка, а на место клевера — зайца. Изменилось ли что-нибудь в справедливости нашего рассуждения? Теперь мы ясно видим, что поначалу нас ввело в заблуждение внешнее сходство действий хищника и жертвы: волк бежит — и заяц бежит[29]. Тем не менее как и в случае с коровой и клевером, волк — фактор конкуренции, а заяц — ее участник, соревнующийся с другими зайцами: самые быстрые (а также осторожные, хорошо маскирующиеся и т. д.) выживут, более медлительные пойдут на прокорм волку[30].

Но и это еще не все. Вернемся к клеверу и корове. Допустим, рядом с лугом, на котором растет клевер и пасутся коровы, расположен перелесок. Растущие в нем березы, осины и ивы постоянно осыпают луг своими семенами. Некоторым из них удается достигнуть почвы и прорасти. Несколько лет — и над лугом поднялись бы молодые деревца, сомкнули бы кроны и постепенно подавили бы под собой и клевер, и прочие луговые растения. Но этого не происходит: коровы охотно поедают молодые неодревесневшие побеги, а соревноваться с клевером и другими травами в скорости отрастания деревья не могут. Иными словами, пасущиеся коровы выступают фактором не только внутривидовой, но и межвидовой конкуренции — без них луговые травы давно вынуждены были бы отдать свою территорию деревьям.

Это отнюдь не умозрительная схема: такой процесс в последние 25–30 лет можно наблюдать воочию во многих местах нечерноземной России — луга, где (в силу известных социально-экономических изменений) прекратились выпас скота и косьба травы, неуклонно превращаются в мелколиственные леса. В Кавказском заповеднике можно наблюдать еще более интересную картину: завезенные туда в 1940-х годах зубробизоны пасутся в основном на лугах — и за несколько десятилетий заметно увеличили площадь лугов за счет леса. Иными словами — расширили жизненное пространство для своих “жертв”, превратившись в их наступательное оружие в борьбе с лесными видами.

Так кто же с кем борется, когда заяц бежит от волка?

Но вернемся к исходному вопросу. Когда коровы помогают луговым растениям бороться с лесными — это можно считать примером межвидовой борьбы. Но это борьба больших коалиций — на каждой из сторон выступает целостное сообщество, представленное множеством видов: растениями, животными, грибами, бактериями и т. д.[31] А бывает ли “дуэльная” межвидовая борьба, когда два вида борются друг с другом, не затрагивая (по крайней мере, непосредственно) интересы всех прочих?

Бывает. Например, когда серая американская белка, завезенная в Европу, вытесняет привычную нам рыжую белку или серая крыса-пасюк повсеместно в городах вытесняет черную крысу. Заметим: борьба происходит между близкими (не только по происхождению, но и по образу жизни) видами, нуждающимися в одних и тех же ресурсах и потому вынужденными конкурировать за них. В обоих приведенных случаях борьба настолько остра, что ее результаты можно заметить “простым глазом” — они проявляются за время, сопоставимое с длительностью человеческой жизни. Такая острота борьбы связана с тем, что борющиеся виды долгое время развивались независимо друг от друга, а затем внезапно вступили в контакт. Можно предположить, что, живи они все время на одной территории, они бы еще во время своего становления каким-нибудь образом поделили те ресурсы, на которые претендуют, уйдя тем самым от острой конкуренции.

В теоретической экологии это утверждение известно как “принцип Гаузе”. В начале 1930-х годов московский биолог Георгий Гаузе экспериментировал с разными видами знакомых всем нам по школьному учебнику инфузорий-туфелек. Все выбранные им для опытов виды прекрасно росли порознь в лабораторных сосудах, питаясь бактериями и клетками дрожжей. Но когда Гаузе попытался вырастить в одной емкости “золотистых” и “хвостатых”[32] инфузорий, численность “хвостатых” после недолгого роста начала падать, и вскоре туфельки этого вида полностью исчезли. Ученый, которому тогда было немногим больше 20 лет, сделал вывод: два вида не могут стабильно занимать одну и ту же экологическую нишу в одной и той же экосистеме. Либо они достаточно быстро найдут способ ее разделить (как это сделали некоторые другие пары видов инфузорий в дальнейших опытах Гаузе), либо один из них неизбежно вытеснит другой.

Столь широкое обобщение на основе изучения лабораторных популяций немногих видов единственного рода выглядело, мягко говоря, слишком смелым. Однако в последующие десятилетия принцип Гаузе прочно утвердился в теоретической экологии. И хотя сегодня известно довольно много исключений из него, специальных случаев и т. д., но когда на одной территории оказываются два близких вида, скорее всего их взаимодействие закончится либо разделом первоначально общей ниши — либо исчезновением одного из них.

Со вторым вариантом все понятно, а как может выглядеть первый? В случае с белками, например, выяснилось, что та же серая белка успешнее рыжей в широколиственных лесах, но неспособна жить в лесах хвойных. Поэтому нынешняя завоевательная война, скорее всего, кончится “мирным договором”: дубравы и буковые рощи достанутся серым захватчикам, а за аборигенами останутся хвойные леса, а также те островки лиственных, которые отделены от основных массивов морем или полосами хвойных пород[33]. Говоря научными терминами, виды поделят исходно общую экологическую нишу, снизив тем самым остроту конкуренции.

В принципе, то же самое может произойти и в ходе внутривидовой борьбы: две группы особей одного вида могут поделить между собой его экологическую нишу и в дальнейшем совершенствоваться в использовании получившихся “наделов”. Но это практически неизбежно ведет к видообразованию, разделению исходно единого вида на два. Мы еще вернемся к этому вопросу, когда будем рассматривать видообразование. А пока перейдем к главному герою теории Дарвина.

Отбор в натуре

Ну вот, теперь все предпосылки вроде бы в сборе. Живые организмы — это системы, воспроизводящие себе подобных. Это воспроизведение не абсолютно точно: в каждом поколении появляются “разночтения” в генетической программе, наследуемые затем потомками той особи, у которой они появились. Возникающие таким образом варианты могут влиять в ту или иную сторону на жизнеспособность, плодовитость и прочие важные характеристики своих обладателей. А поскольку численность какого бы то ни было вида не может расти неограниченно, в каждом следующем поколении должна увеличиваться доля тех особей, чьи индивидуальные особенности более способствуют выживанию и размножению, чем особенности других. Или, возвращаясь к терминологии Дарвина и его современников, — там, где есть изменчивость, наследственность и борьба за существование, должен происходить естественный отбор.

Должен?

“Измышленный Дарвином естественный подбор не существует, не существовал и не может существовать”, — уверенно писал в 1885 году один из самых яростных критиков Дарвина, русский философ и публицист Николай Данилевский. При этом он признавал фактом и изменчивость организмов, и ее наследуемость, и способность любого вида размножаться в геометрической прогрессии, и даже борьбу за существование. Это особенно сердило полемизировавшего с ним пламенного дарвиниста Климента Тимирязева: “Итак, все посылки верны, но необходимый логический вывод из них, естественный отбор, — фантазм, мозговой призрак. Как это объяснить?”

Тимирязев подверг сочинение Данилевского сокрушительному разбору, убедительно показал несостоятельность всех его доводов, порочность его логики, незнание критикуемой теории и т. д. Для окончательного посрамления противника оставалось сделать самую малость — привести конкретные примеры действия естественного отбора в природе. Но этого Климент Аркадьевич сделать так и не смог при всей своей огромной эрудиции и страстной приверженности дарвинизму. Такими примерами биология конца XIX века попросту не располагала. И во времена полемики Тимирязева с Данилевским, и десятилетием позже естественный отбор оставался не более чем “необходимым логическим выводом”, столь же умозрительным, как и в год выхода “Происхождения видов”. Даже на рубеже XIX и XX веков известные ученым случаи реальных селективных процессов в природе можно было пересчитать буквально по пальцам одной руки. Было, например, известно, что куколки бабочек-крапивниц, окраска которых сходна с окружающим фоном, чаще доживают до вылупления, чем те, чья окраска с этим фоном контрастирует. Что средняя ширина головогруди крабов, обитающих в загрязненных водах, уменьшается по сравнению с шириной головогруди их сородичей, живущих в чистой воде (хотя и там, и там можно найти крабов как с широкой, так и с узкой головогрудью). Наконец, было известно наблюдение американского натуралиста Хермона Бампаса, подобравшего в 1896 году во время снежной бури сотни замерзающих воробьев. В теплом помещении к жизни вернулось лишь около половины находок — остальные умерли от переохлаждения. Бампас не поленился измерить всех живых и мертвых птиц — и обнаружил, что у выживших длина крыльев близка к средней, в то время как почти у всех погибших крылья были либо заметно длиннее, либо заметно короче.

Эти наблюдения были, конечно, интересны (работу Бампаса до сих пор активно цитируют в научной литературе, да и мы к ней еще вернемся в главе “Стабилизирующий отбор: марш на месте”), но для обоснования механизма, породившего все живые формы, существующие или когда-либо существовавшие на Земле, со всеми их характерными особенностями, столь ограниченного набора фактов было, мягко говоря, маловато. И что еще хуже, ни один из этих примеров ничего не доказывал. Ни для одного из рассматриваемых признаков не было известно, насколько он обусловлен именно наследственными факторами (между тем известно, что окраска куколок насекомых зависит, например, от температуры, при которой развивалась личинка). В двух случаях из трех была неочевидна и связь между признаком и тем фактором среды, который оказывал избирательное воздействие. Чем полезна узкая головогрудь при загрязнении воды? Каким образом длина крыльев связана с устойчивостью к холоду? Ну и, наконец, ничто не говорило о том, что подобные процессы могут привести к эволюционным сдвигам: превратить один вид в другой или хотя бы вывести отдельный признак за пределы видовой нормы. Наоборот, из данных Бампаса прямо следовало, что естественный отбор скорее противодействует любым возможным изменениям, поддерживая существующую норму. Именно такую роль, как мы увидим ниже, отводили отбору многие оппоненты дарвинизма: мол, он, может, и существует, но это чисто консервативный фактор, отсеивающий уродства и отклонения, но бессильный создать что-либо новое.

Искусственная эволюция

Нехватку данных о действии естественного отбора пытались восполнить, моделируя его отбором искусственным. Однако вопрос о правомерности перенесения полученных таким образом данных на природные процессы всегда оставался спорным — что наглядно показывает история самого знаменитого из таких экспериментов. В 1903 году датский генетик Вильгельм Иогансен[34] попытался проверить, так ли всемогущ естественный отбор, как предполагали классики дарвинизма (прежде всего Август Вейсман, о котором речь пойдет в главе “Август Вейсман против векового опыта человечества”, и “дублер” Дарвина Альфред Уоллес). Он проделал простой опыт: высаживал семена фасоли, принадлежащей к одной из чистых линий. Фасоль — строгий самоопылитель, так что цветы на выросших растениях опыляли себя сами, и новым генам взяться было неоткуда. Иогансен собирал созревшие фасолины, взвешивал каждую, выбирал самые крупные, снова сажал их, снова дожидался урожая и выбирал самые крупные бобы… То есть проверял, как действует естественный отбор на признак, разнообразие которого не отражает различий в генах. Оказалось, что отбор не действует никак: сколько бы раз Иогансен ни отбирал самые крупные семена, средний вес фасолин в каждом поколении оставался одним и тем же, испытывая лишь небольшие колебания в ту или другую сторону, и никакой отбор не мог его никуда сдвинуть.

Сегодня вывод датского ученого звучит тавтологией: там, где нет генетического разнообразия, отбор в самом деле невозможен, так как ему попросту не из чего выбирать[35]. Однако в свое время эти опыты воспринимались чуть ли не как наглядное опровержение дарвинизма. Дело в том, что дикие растения и животные внешне гораздо более единообразны, чем культурные сорта и породы. Казалось само собой разумеющимся, что этому внешнему единообразию соответствует генетическая однородность, — а значит, природные популяции можно моделировать чистыми линиями.

О том, как было преодолено это представление, речь впереди (см. главу 2). Нам же сейчас важно, что уже этот ранний опыт показал: использовать искусственный отбор как модель отбора естественного вообще можно только, что называется, в первом приближении. Правда, в опытах Иогансена неадекватность модели определялась не тем, как велся отбор, а тем, какой “исходный материал” ему предлагался. Но позднее обнаружились и различия в самой природе искусственного и естественного отбора. Важнейшее из них состоит в том, что человек может вести отбор по одному или немногим признакам, не интересуясь, как при этом меняются прочие признаки и насколько организм в целом остается приспособленным ко всей совокупности факторов окружающей среды. Например, при одомашнивании кур древние селекционеры сознательно или бессознательно вели отбор на увеличение массы тела, уменьшение осторожности (пугливости) и снижение способности к полету. Если бы такому отбору подверглась популяция птиц, живущая в природе, этому противодействовал бы встречный отбор со стороны наземных хищников, который наверняка остановил бы подобные изменения задолго до приобретения домашними курами своего нынешнего облика. Человек же мог не только защитить своих несушек от лис и шакалов, но и компенсировать им те виды кормов, которые при таком телосложении оказываются для них недоступными. Понятно, что в природе таких “гарантий” не бывает — на организм всегда действует целый комплекс факторов отбора, обычно весьма разнонаправленных, и смоделировать его в эксперименте крайне трудно.

Даже когда человек не ведет отбора по собственному усмотрению, а предлагает экспериментальной популяции эволюционировать самостоятельно, результаты такой “эволюции в пробирке” порой радикально отличаются от эволюции тех же существ в реальной экосистеме. Например, сравнение генетических механизмов устойчивости насекомых-вредителей к ядохимикатам в эксперименте и на реальных полях и плантациях показали, что эти механизмы сильно различаются. В лаборатории вредители приспосабливались в основном “по-дарвиновски” — путем постепенного накопления множества мутаций, каждая из которых лишь немного уменьшала чувствительность к отраве. Реальные же “расы супервредителей” чаще всего приспосабливались скачком — мутантным у них оказывался часто всего один ген, но эта единственная мутация сразу давала высокую устойчивость. Причина такой разницы в том, что “высокополезные” мутации крайне маловероятны, а лабораторные популяции были слишком малы, чтобы в них случались столь редкие события. Но когда тот или иной яд применяется на десятках и сотнях миллионов гектаров, он становится фактором отбора для астрономического числа индивидуальных генотипов, — и среди них нужная мутация обязательно найдется, какой бы редкой она ни была. После чего ее обладатель сразу получает огромное преимущество не только перед вовсе неустойчивыми, но и перед “слабоустойчивыми” к яду собратьями.

Но это еще случай относительно простой: здесь удалось довольно быстро выяснить, почему одни и те же виды по-разному приспосабливаются к одному и тому же фактору в поле и в лаборатории. Чаще разницу между “лабораторной” и реальной эволюцией остается лишь констатировать. В ряде лабораторий разных стран мира прошли или проходят эволюционные эксперименты, в ходе которых ученые предоставляют популяциям организмов с быстрой сменой поколений возможность свободно эволюционировать, фиксируя ход эволюционных изменений. Особенно удобны для таких работ бактерии — не только потому, что они могут давать тысячи поколений в год, а солидная популяция их легко умещается в колбе или чашке Петри, но еще и потому, что часть их можно в определенный момент заморозить, а затем, разморозив, снова запустить эволюцию с выбранной точки и посмотреть, насколько результаты второй попытки совпадут с результатами первой (т. е. какие эволюционные изменения закономерны, а какие, наоборот, непредсказуемы). Самый известный и длительный эксперимент такого рода проводит непрерывно с 1988 года группа профессора Ричарда Ленски в Мичиганском университете. За это время сменилось множество (на момент написания этих строк — свыше 71 тысячи) поколений “подопытных”, принесших ученым немало интереснейших сведений о реальной, наблюдаемой воочию эволюции.

Практически во всех подобных экспериментах эволюция идет непрерывно: штаммы, обладающие полезными мутациями, вытесняют прежнюю норму, а затем у кого-то из их потомков появляются признаки, делающие их еще более приспособленными, и носители этих признаков вытесняют вчерашних победителей. Между тем, работы по эволюции бактерий не в пробирке, а в реальной среде их обитания показывают совсем другую динамику. В главе 14 мы поговорим подробнее и об эксперименте Ленски (и некоторых его совершенно неожиданных результатах), и об интереснейшей работе датских исследователей, сумевших проследить реальную эволюцию нескольких линий бактерий на протяжении времени, сопоставимого с экспериментом мичиганской группы. Там же мы обсудим и возможные причины противоречий в результатах этих исследований. Сейчас же нам важно зафиксировать, что даже самопроизвольная, никак не “модерируемая” человеком эволюция в лаборатории может протекать не так, как эволюция тех же (или сходных) организмов в естественной среде обитания. И значит, если мы хотим получить надежные представления именно о естественном отборе и его характеристиках, надо наблюдать его именно в природе[36].

На земле, в небесах и на море

Однако непосредственно наблюдать проявления естественного отбора очень трудно. Надо поймать появление нового, ранее отсутствовавшего признака, доказать его наследственную природу и селективную значимость, а затем проследить динамику изменения его частоты в популяции. Эта динамика должна быть достаточно быстрой (не вести же наблюдения веками!), но именно в случае быстрых изменений мы, скорее всего, не успеем застать эволюционные сдвиги “в процессе”. Отдельно еще нужно будет показать, почему такой-то признак дает преимущество при действии такого-то фактора: мы знаем, например, что хомяки-меланисты (полностью черные особи) лучше переносят зимовку, чем хомяки обычной расцветки, — но какая связь между избытком меланина и устойчивостью к долгой и холодной зиме?

Те немногие исследования, авторам которых удается выполнить все эти условия, можно считать настоящими научными подвигами. Таким героизмом, например, отмечена работа английских орнитологов супругов Питера и Розмари Грантов, в течение 40 лет (с 1973 по 2012 годы) изучавших дарвиновых вьюрков на Галапагосских островах. Им удалось показать, в частности, четкую связь между многолетними колебаниями климата, изменением среднего размера семян кормовых растений и изменением клювов вьюрков. Публикуемые ими работы попадали в разряд классических сразу после обнародования, а сами Гранты собрали обширную коллекцию научных наград, однако мало кто из их коллег оказался готов последовать их примеру.

Поэтому чаще биологи, пытаясь наблюдать в природе действие отбора, поступают наоборот: не подкарауливают появление нового перспективного признака, а вводят новый фактор отбора (или ищут случаи появления таких факторов по не зависящим от них причинам) и смотрят, как на него будет реагировать та или иная популяция.

Одна из самых известных работ такого рода — полевые опыты американских биологов со всем известными рыбками гуппи в речках острова Тринидад. Эти опыты ведутся уже более 40 лет — с 70-х годов прошлого века[37], — разными группами ученых, причем позднейшие исследователи имеют возможность продолжать и видоизменять эксперименты, начатые их предшественниками. За это время в речках сменилось более 50 поколений рыбок.

Исходная ситуация такова. В горных речках и ручьях относительно глубокие и медленно текущие плесы чередуются с перекатами и небольшими водопадами. Гуппи держатся в основном на плесах, на перекаты заплывают редко, а водопады для них почти непреодолимы. В результате все гуппиное население реки превращается в цепочку локальных популяций, изолированных или почти изолированных друг от друга. В тех же реках живут и враги гуппи — хищные рыбы, но для них мелководья и водопады — препятствия еще более серьезные, чем для гуппи. Поэтому хищников много в низовьях, по мере подъема вверх по реке их разнообразие уменьшается, и до верховий доходит только один вид — самый мелкий, нападающий в основном на молодь гуппи, в крайнем случае на взрослых самцов. (Все, кто держал гуппи в аквариуме, знают, что самцы у этих рыбок намного мельче самок, но при этом гораздо ярче окрашены, имеют большой вуалевидный хвост и другие украшения.) В результате в нижнем течении рек гуппи все время находятся под угрозой нападения хищников (причем разных и применяющих разные способы охоты), в то время как в самых верховьях рыбке, дожившей до “совершеннолетия”, уже почти ничто не угрожает.

Ученые пересаживали рыбок из популяций, находящихся под прессом хищников, в безопасные местообитания и наоборот — из безопасных плесов в воды, кишащие хищниками; подпускали хищников в мирные заводи и т. д. И во всех случаях смотрели, какие изменения в облике, физиологии и поведении гуппи повлечет за собой изменение риска быть съеденным. В этих исследованиях было получено много интереснейших результатов, позволивших проверить целый ряд ранее высказанных частных гипотез об экологических и эволюционных взаимоотношениях хищников и жертв. Но нас сейчас интересует “базовый” результат, полученный еще в самых первых опытах: что происходит с гуппи, когда в прежде безопасной среде вдруг появляются хищники?

Оказывается, уже через несколько поколений[38] облик рыбок заметно меняется. Самцы становятся менее ярко окрашенными, их хвосты — менее декоративными и более функциональными. Изменялось и поведение гуппи: они делались более осторожными, начинали внимательнее относиться к тому, что происходит вокруг, чаще резко срывались с места, а скорость таких рывков намного возрастала. Но самое важное изменение заключалось в том, что новые поколения гуппи достигали зрелости быстрее и при меньших размерах, чем их предки, жившие в безопасных условиях. Это уже не могло быть ни результатом индивидуального обучения (как повысившаяся пугливость), ни эффектом сдвига средних величин за счет “выедания” одного края — уменьшение сроков взросления и конечных размеров шло поступательно в течение многих поколений.

Кстати, в 1998 году, когда эксперименты в тринидадских речках шли уже более 20 лет, другая группа американских биологов опубликовала работу об изменениях у тех видов морских рыб, которые в последние десятилетия подвергались интенсивному промыслу. Эти изменения оказались очень похожи на уже знакомый нам эволюционный ответ гуппи на появление хищника: у совершенно неродственных друг другу видов в самых разных регионах Мирового океана быстро сокращались сроки достижения зрелости и средние размеры взрослой особи. Изменения были настолько велики, что, например, значительная часть популяции североатлантической трески спустилась вниз на одну ступеньку пищевой пирамиды — то есть из хищников, питающихся более мелкой рыбой, превратились в поедателей планктонных рачков и прочей морской мелочи (став тем самым конкурентами своей прежней добычи). Десятилетием позже уже другая группа ученых сравнила эти данные с показателями близких, но не являющихся объектами промышленного лова видов рыб, — и удостоверилась, что с ними в те же годы не происходило ничего похожего.

Аналогичные данные были получены и для сухопутных животных, интенсивно добываемых человеком. А в 2010 году канадский зоолог Андре Дероше, измерив параметры крыльев у 851 экземпляра мелких певчих птиц (представлявших 22 разных вида), добытых в разные годы в лесных районах провинции Квебек, показал, что со временем у птичек менялась форма крыла — оно становилось острее. При этом совсем рядом, в штатах Восточного побережья США, в последние десятилетия ХХ века этот процесс шел в обратную сторону — концы крыльев мелких птиц приобретали более сглаженную форму. Наиболее бросающееся в глаза различие между этими регионами заключалось в том, что в Квебеке велись и ведутся масштабные вырубки хвойных лесов, в то время как в Новой Англии в последние десятилетия идет интенсивное лесовосстановление — отдельные лесные островки смыкаются в крупные массивы. Между тем морфологам и биомеханикам давно известно, что при обитании в кронах деревьев, где полет не может быть ни далеким, ни слишком быстрым, зато требуется высокая маневренность, птицам выгоднее иметь относительно короткие крылья с широкими концами. Жителям же открытых пространств, летающим далеко и быстро, полезнее удлиненные и заостренные крылья.

Конечно, придирчивый читатель может сказать, что изменение размера промысловых рыб и формы крыльев певчих птиц — не совсем чистый пример природных селективных процессов, поскольку фактором отбора тут выступал человек (пусть и ненамеренно и даже вопреки собственным интересам). Но и без человеческого вмешательства в природе оказывается достаточно факторов, избирательно влияющих на выживание и размножение тех или иных живых существ. Особенно много работ, где обнаруживалась эта селективность, стало выходить в самые последние десятилетия, когда у исследователей появилась возможность не просто фиксировать поведение животных при помощи киносъемки или видеозаписи, а поставить крошечную, но качественную и надежную автоматическую видеокамеру буквально под каждым кустом. Не меньшую роль сыграло и развитие технологии секвенирования ДНК, позволяющей, в частности, однозначно определить родственные связи особей в популяции и генетический вклад каждой из них в следующее поколение.

Используя эти методы, британские и испанские биологи обнаружили, например, что у полевых сверчков крупные самцы оставляют достоверно больше доживающих до “совершеннолетия” потомков, а среди мелких самцов успешнее размножаются те, что громче и дольше поют. Ничего сенсационного в этом, конечно, нет[39] — так оно и предполагалось всеми теоретиками едва ли не со времен Дарвина. Но теперь это уже не теоретические рассуждения, а твердо установленный факт.

“Мы выбираем, нас выбирают…”

Вообще, надо сказать, именно половой отбор оказался наиболее удобен для прямого изучения — возможно, потому, что он часто идет по заметным, хорошо различимым признакам.

Да и оценить его эффективность можно значительно быстрее, чем “классического” отбора на выживание: не надо наблюдать за носителями разных признаков всю их жизнь, чтобы выяснить, у кого она окажется длиннее, — достаточно сравнить число потомков, оставленных ими после первого же сезона размножения (а то и вовсе число успешно завершившихся ухаживаний). Между тем еще полвека назад в литературе, посвященной эволюционным процессам, о половом отборе почти не вспоминали, да и теперь некоторые биологи старой школы недолюбливают это понятие. Главная их претензия — половым отбором можно объяснить что угодно. Допустим, у какого-нибудь вида некий признак никак не поддается дарвинистскому истолкованию: он требует затраты ресурсов, делает своего обладателя более уязвимым для хищников и т. д. и т. п., а пользы от него решительно никакой. При этом признак из популяции не исчезает, переходит из поколения в поколение, порой даже увеличивает частоту и выраженность. Казалось бы, наглядное опровержение теории Дарвина? Ничуть не бывало — всегда можно сказать, что этот признак развился под действием полового отбора! А почему особи данного вида испытывают странное влечение к явно дисгармоничным формам — так кто ж их знает?

Доля правды в таком отношении, несомненно, есть: слова “половой отбор” слишком часто выглядят фиговым листком, прикрывающим неспособность автора той или иной работы дать сколько-нибудь правдоподобное объяснение обсуждаемым фактам (либо примирить эти факты с какой-нибудь милой его сердцу теорией). Но все же в нарисованной картине краски явно сгущены. Во-первых, половым отбором обычно объясняют явно бесполезные или гипертрофированные признаки, присущие только одному полу (чаще всего самцам). В самом деле, очень трудно представить себе, что критерии сексуальной привлекательности окажутся одинаковыми у обоих полов одного вида животных — так ведь недолго доиграться и до утраты сигнальных признаков пола[40]! (Не говоря уж о том, что объяснять что-то “половым отбором” можно только для животных с активным и достаточно сложным брачным поведением — попытка объяснить таким образом яркую окраску лишайника или необычную форму паразитического червя в лучшем случае будет воспринята как шутка.) А во-вторых, сегодня подобные чисто теоретические объяснения могут считаться достаточными разве что при попытках реконструировать происхождение чего-нибудь, эволюция чего не оставляет материальных следов, — например, прямохождения или человеческого языка. В тех же случаях, когда речь идет о современности, предположения о роли полового отбора принято подтверждать фактами — именно потому, что в наши дни такие предположения поддаются проверке. В результате мы сегодня знаем, что огромный хвост самцов длиннохвостой вдовушки, кожные выросты-“усы” на верхней губе самцов диких родичей аквариумной рыбки моллинезии и ряд других гротескных (на взгляд человека) структур, включая знаменитый хвост павлина, действительно имеют значение для успеха их обладателей у противоположного пола. Это уже не домыслы изворотливых теоретиков, а экспериментальный факт.

О половом отборе, о том, как причудливо он связан с отбором естественным, о теоретических моделях, которыми исследователи пытаются описать и объяснить этот круг явлений, и о той путанице, которая порой при этом возникает, мы будем специально говорить в главе 3. Здесь мы коснулись этой темы лишь как примера селективных процессов, постоянно происходящих в природе.

Разумеется, помимо представлений противоположного пола о красоте, на живые существа действуют и другие факторы — и столь же избирательно. И в некоторых случаях эту избирательность удается показать наглядно. Несколько таких случаев мы уже упомянули выше; к ним можно добавить неоднократно показанную в экспериментах действенность маскировочной окраски — от знаменитых опытов Алессандро Чеснолы, показавшего еще в начале ХХ века, что насекомые, окрашенные в тот же цвет, что и растения, на которых они находятся, имеют куда больше шансов избежать птичьего клюва, чем особи того же вида, чья окраска отличается от фона, и до недавней работы шотландских исследователей, продемонстрировавших парадоксальный факт: эффективность маскировки жертв основана на способности хищника обучаться различению съедобных и несъедобных предметов, т. е. на приспособительном поведении самого хищника. Столь же неоспоримо показано, что носители разных версий некоторых генов сильно различаются по восприимчивости к тем или иным инфекционным болезням и другим важным для их выживания факторам.

Примеры такого рода можно приводить и дальше, но их механическое перечисление уже не даст нам ничего нового. Куда интереснее посмотреть на некоторые нетривиальные подробности, обнаруженные в работах по изучению естественного отбора в природе.

Когда организм не согласен с эволюцией

Известно, что любому живому существу постоянно приходится искать компромисс между противоречивыми требованиями окружающей среды — в частности, между нуждами размножения и самосохранения. Слишком страстные сексуальные устремления, слишком большой вклад в потомство, раннее созревание, минимизация резервов организма и т. д. неизбежно влекут увеличение рисков — быть замеченным и съеденным хищником, не пережить неблагоприятный сезон и т. д. И наоборот: особь с неброской внешностью, неактивная в поисках партнера, легко прерывающая брачные ритуалы при малейшей угрозе, долго растущая и накапливающая запасы, прежде чем вступить в размножение, проживет, скорее всего, дольше других, но рискует не оставить потомков. Значит, надо выбирать какую-то промежуточную стратегию, а при изменении обстановки (например, резком возрастании угрозы нападения хищников) — смещать ее в ту или иную сторону. Такие же компромиссы приходится, согласно современным эволюционным моделям, искать и виду в целом.

Так вот, российский этолог Владимир Фридман, комментируя результаты опытов с тринидадскими гуппи, обратил внимание на то, что в этом смысле изменения в индивидуальном поведении рыбок и эволюционные изменения в популяции пошли в разных и до некоторой степени противоположных направлениях. В популяциях, столкнувшихся с внезапным появлением хищников, гуппи (особенно самцы) стали осторожными, пугливыми, расходовали гораздо меньше времени и сил на ухаживания и всегда готовы были их прервать — то есть отдавали приоритет личной безопасности перед размножением. А в ряду поколений изменения шли в сторону мелких, быстро созревающих, сексуально активных особей — т. е. в сторону роста “вложений” в размножение за счет уменьшения “вложений” в собственный рост и безопасность.

Это означает, что наблюдаемые сдвиги — не результат суммирования индивидуальных адаптивных изменений, а именно эволюционный процесс, протекающий независимо от намерений и устремлений членов эволюционирующей популяции и даже порой вопреки им. Помимо всего прочего, это показывает наивность эволюционных концепций, пытающихся как-то увязать механизмы эволюции с “желаниями”, “стремлениями”, “волевым порывом” и прочими субъективными мотивами индивидуумов[41], включая и пресловутое ламарковское “упражнение или неупражнение органов” (см. главу “Август Вейсман против векового опыта человечества”). Да, живые организмы могут приспосабливаться к изменениям среды как на индивидуальном уровне — изменяя свою физиологию и/или поведение, — так и в ряду поколений. Да, реакции индивидуумов могут совпадать (и чаще совпадают) по направлению с эволюцией популяции как целого. Но это не более чем совпадение: такие реакции развиваются независимо друг от друга и могут проходить в разных направлениях. Внутренняя связь между ними — примерно того же порядка, что между разогревом-остыванием печки в доме и сменой времен года.

В 2014 году относительную независимость индивидуального приспособительного поведения и адаптивной эволюции подтвердили зоологи из Университета Монтаны — совсем другим образом и на другом объекте. Они изучали поведение американских беляков. Эти зайцы, как и их “тезки” из Старого Света, обитают в местах, где зимой подолгу лежит снег, и дважды в год меняют окраску: весной — с белой на серовато-бурую, осенью — наоборот. Линьки беляков довольно точно приурочены к средним за много лет срокам установления снежного покрова и схода снега в данной местности. Но год на год не приходится, да и преобладающий цвет пейзажа меняется не в одночасье — особенно весной, когда уцелевшие сугробы перемежаются проталинами. Понятно, что белый заяц на бесснежном участке леса заметен издали даже в густом кустарнике, равно как и бурый заяц на снегу: маскирующая окраска превращается в демаскирующую. Ученых интересовало, учитывают ли сами косые соответствие цвета своей шубки цвету окружающей местности. Например, в период чересполосицы зайцы в белой зимней шерсти могли бы больше времени (хотя бы того, когда они сидят неподвижно) проводить на снегу, а зайцы в “летней форме” — на проталинах. Или когда цвет шубки совсем не соответствует цвету пейзажа (скажем, заяц уже перелинял на зиму, а снега все нет и нет), они могли бы сократить активность (хотя бы дневную) и больше времени проводить в естественных укрытиях.

Проведенные исследования показали, что ничего этого беляки не делают: бурые и белые зайцы одинаково предпочитают сидеть на проталинах (видимо, просто потому, что там теплее), а их активность и привязанность к убежищам никак не зависят от соответствия или несоответствия их окраски преобладающему цвету. При этом дополнительные исследования подтвердили, что сомневаться в полезности покровительственной окраски не приходится: там, где глобальное изменение климата сдвинуло сроки выпадения и схода снега, время линьки начинает сдвигаться в ту же сторону. Т. е. естественный отбор действует независимо от того, пытаются ли сами животные индивидуально приспособиться к меняющимся условиям или (как в данном случае) нет.

Отбор взад-вперед

В опытах с тринидадскими гуппи (к которым мы еще не раз вернемся в этой книге) была показана и еще одна важная вещь: результат селективных процессов может оказаться контринтуитивным, нелинейным, и о нем нельзя судить по первым видимым сдвигам. Еще ярче этот эффект проявился в другой замечательной работе, также посвященной изучению естественного отбора и по общей схеме очень сходной с тринидадскими исследованиями.

Авторами ее были биологи из Гарвардского университета и Калифорнийского университета в Дэвисе во главе с профессором Джонатаном Лозосом, а объектом — ящерицы Anolis sagrei. Эти рептилии обычно обитают на земле, но нередко забираются и на деревья. Группа Лозоса выпустила на шести маленьких островках Багамского архипелага, где жили анолисы, хищных игуан Leiocephalus carinatus, охотящихся на анолисов. Шесть других островков, на которых у анолисов не было наземных врагов, служили контролем.

Через полгода численность анолисов на островах с хищниками упала вдвое, а у выживших средняя длина лап заметно увеличилась по сравнению с исходной. Еще через полгода анолисы на этих островах встречались только на деревьях, а их лапы стали в среднем короче, чем до начала эксперимента. (Считается, что длинные лапы позволяют быстрее бегать по земле, а короткие более удобны для жизни на деревьях.) При этом на островах, где хищников не было, ни численность, ни пропорции анолисов не претерпели никаких изменений.

Судя по крайне сжатым срокам изменений, первую фазу можно назвать эволюцией только условно: хищники просто переловили половину популяции раньше, чем она успела найти эволюционный ответ на их появление. “Удлинение” лап здесь — эффект не эволюционный, а чисто статистический: если из корзины с сотней яблок разной величины убрать полсотни самых мелких, средний размер яблок в корзине заметно увеличится, хотя ни один конкретный фрукт не станет больше. Однако этот эффект показывает, что игуаны ловили в основном коротконогих анолисов, т. е. действовали именно селективно (избирательно) — хотя на земле эти хищники способны поймать даже самого длинноногого анолиса.

Гораздо интереснее последующее укорочение ног. Его уже нельзя объяснить простым “выеданием самых длинноногих”: средняя длина лапы упала ниже исходного уровня, чего никак не могло получиться в результате механического изъятия сначала всех коротконогих, а затем всех длинноногих — от популяции бы просто ничего не осталось. Значит, в новых поколениях анолисов длина лап уменьшилась за счет последовательного отбора, сумевшего на базе имеющегося генетического разнообразия не только вернуть этот показатель к исходному значению, но и продвинуть его в противоположную сторону. (Через несколько лет группа, возглавляемая одним из соавторов Лозоса — Томасом Шёнером, — показала, что лапы у анолисов, живущих на островах с хищниками, стали еще короче; при этом анолисам оказалась доступной значительно бóльшая часть кроны, чем через год после вселения хищников.) Заметим, что изменения коснулись не только строения, но и поведения анолисов — именно их переход к древесному образу жизни сделал коротконогость выгодной[42].

В этой красивой работе заслуживает внимания еще одно обстоятельство — то, что именно такой двухфазный ответ (первоначальное удлинение лап с последующим их укорочением при переходе к древесному образу жизни) предсказывали предварительные расчеты на компьютерной модели. Таким образом, распространенное мнение, что “теория Дарвина может все объяснить, но не способна ничего предсказать”, мягко говоря, не вполне верно.

“Сию же минуту проверить веками!”

В наше время научная литература по селективным процессам в природе поистине необъятна. Однако и сегодня в некоторых сочинениях (как правило, не собственно биологов, а представителей смежных специальностей — в частности, историков биологии, а то и просто мыслителей широкого профиля) можно прочитать, что идея естественного отбора остается чистым умозрением, не подкрепленным (или недостаточно подкрепленным) фактами. В некоторых случаях это превращается уже в чисто словесную эквилибристику — когда утверждается, например, что отбор существует “как наглядная реальность”, но не “как фактор эволюции” (не спрашивайте меня, что это значит). Другие критики полагают, что примеры конкретных селективных процессов, о которых шла речь выше, — это капля в необозримом океане биологических явлений, и то, что некоторые из этих явлений хорошо объясняются дарвиновскими механизмами, еще не означает, что этими механизмами можно объяснить и все остальные случаи. Интересно, что эти авторы любят ставить в пример дарвинистам физику — в ней, мол, соотношение эмпирических знаний и их теоретических объяснений близко к идеальному, и биологам следует стремиться к такому соотношению, а не утверждать, что теория, подтвержденная для нескольких случаев, справедлива и для несчетного множества остальных.

Между тем в момент рождения ньютоновой механики телá, движения которых она описывала, можно было пересчитать буквально по пальцам: планеты (коих на тот момент было известно шесть), Луна и, возможно, наиболее крупные спутники других планет. К подавляющему большинству известных тогда движущихся тел (живым существам) она была вовсе неприложима, в отношении других (лодка, корабль, выстреленное ядро и т. д.) давала лишь некоторые частные результаты. Даже свой парадный пример — маятник — ньютонова механика описывала с изрядными допущениями, и это описание хорошо совпадало с эмпирическими данными лишь для небольших углов отклонения и короткого времени наблюдения. Тем не менее ее довольно скоро признали образцом научной теории и больше двухсот лет никто не сомневался, что она справедлива для всех тел и всех движений (пока не были обнаружены факты, прямо противоречащие ей[43]). И такое отношение к ней проистекало не из какого-то особого авторитета Ньютона, а из понимания, что в большинстве случаев измерить все силы, действующие на движущиеся тела, технически невозможно. Почему же к эволюционной теории подходят с иными мерками — хотя на ее объекты действует гораздо больше факторов в гораздо более сложных и разнообразных сочетаниях?

Наконец, чаще всего позиция критиков примерно такова: “Ну да, допустим, ваш отбор может обеспечить распространение уже имеющегося приспособления, определяемого обычно одним геном. Но никто никогда не видел, чтобы он создал новую форму живых существ, чье строение тела по многим признакам отличается от их предков”.

Как легко видеть из приведенных примеров, это, мягко говоря, не совсем так: действие отбора продемонстрировано не только на простых признаках, жестко определяемых единственным геном, но и на сложных полигенных признаках[44] — таких, как рост, скорость развития и полового созревания, пропорции тела и поведение. Тем не менее некоторая доля истины в этих утверждениях есть. Можно спорить о том, достаточно ли оснований считать возникшие в эволюционных экспериментах формы видами, но возникновение таксонов[45] более высокого ранга (родов, семейств и т. д.) под действием отбора действительно до сих пор никто не видел.

Точно так же, как никто не видел превращения известковых останков морских планктонных организмов в мел и далее в известняк и мрамор. Как никто не видел рождения звезд и планет из холодных скоплений космического газа и пыли (в лучшем случае у нас есть только “мгновенные снимки”, которые мы интерпретируем как этапы этого процесса — но такие “снимки” у нас есть и для эволюционных процессов). Как никто не видел формирования алмазов в глубине земной мантии (искусственные алмазы не в счет — выводить искусственным отбором сорта и породы живых существ мы тоже умеем, но критиков дарвинизма это не убеждает). Как никто не видел появления новой идеи или образа в мозгу человека — в том числе и в своем собственном. В нашем мире есть много процессов, непосредственное наблюдение которых, мягко говоря, затруднительно — мы имеем дело только с их результатами. В таких случаях у науки остается один путь: строить теоретические модели таких процессов, делать из них выводы и сравнивать их с тем, что доступно наблюдению. Если моделей несколько, нужно выбирать ту, выводы которой лучше всего согласуются с наблюдениями, которая объясняет возможно бóльшую часть наблюдаемых явлений и не делает явно неверных предсказаний. Даже если она может объяснить далеко не всё.

Прошу прощения у читателей за эти азбучные истины научной методологии. Глянем теперь на вопрос о применимости дарвинизма к эволюции крупных (надвидовых) групп организмов с учетом сказанного.

Возможность соотнесения наших знаний об элементарных механизмах эволюции с крупными эволюционными событиями — действительно большая и серьезная проблема, и мы будем специально обсуждать ее в главе 15. Но видеть в ней довод против дарвинизма (или хотя бы против его безраздельного господства в эволюционной биологии) можно было бы лишь в том случае, если бы у нас была какая-то другая теория, предлагающая иной, недарвиновский механизм крупных эволюционных изменений. Тогда можно было бы сравнить, какая из этих теорий лучше объясняет имеющиеся факты.

О соперниках теории естественного отбора и их исторических судьбах мы будем подробно говорить во второй части книги. Здесь же скажем вкратце: те направления эволюционной мысли, которые в разное время выдвигались на роль альтернативы дарвинизму, — это не более слабые теории. Строго говоря, это вообще не теории. Это в лучшем случае “ТЗ[46] на теории”, которые предстоит когда-нибудь создать. Сочинения их сторонников состоят в основном из коллекций различных фактов и попыток убедить читателя, что в рассматриваемых случаях дарвинистские объяснения не работают. Можно спорить о том, насколько справедливо это утверждение в каждом конкретном случае, но нельзя не заметить, что авторы никогда не предлагают никаких иных объяснений — кроме самых общих слов о пока еще не открытых наукой “законах” и “механизмах”.

Кто автор “Давида”?

Здесь нужно сказать несколько слов на тему, без которой не обходится ни одно изложение теории эволюции — от школьного учебника до фундаментальных пособий для будущих специалистов. Тема эта называется “Творческая роль естественного отбора”. И, как показывает практика, воспринимается большинством изучающих ее удивительно плохо.

Однажды я за какой-то надобностью набрал в “Яндексе” слово “мутация”. И на первом же сайте, где оно употреблялось не в переносном смысле, прочел: “Творческие способности суть генетическая мутация… 50 тысяч лет назад в мозге человека произошло резкое изменение, что в итоге привело к возникновению у него способности создавать нечто оригинальное — ради самой оригинальности”. Так вполне серьезный научно-популярный сайт представлял процесс становления не более не менее как человеческого интеллекта. Слово “отбор” в статье не упоминалось вовсе, но нетрудно догадаться, что за отбором было оставлено разве что распространение в популяции случайно возникшего гениального новшества. Бедного “демона Дарвина” в который раз разжаловали из главных конструкторов в дистрибьюторы!

Конечно, это случай крайний — мутациям здесь приписана сверхъестественная способность создавать из ничего сложнейшую психическую функцию, требующую согласованной работы множества отделов и участков мозга. Отсюда уже недалеко до героев цикла рассказов американского фантаста Генри Каттнера — семейки Хогбенов, обретших благодаря мутациям множество чудесных умений, дававших им почти божественное всемогущество. Однако в научной среде до сих пор время от времени обсуждается (правда, в последние десятилетия — в основном кулуарно) идея системных макромутаций, восходящая к “перспективным монстрам” немецкого (впоследствии американского) генетика Рихарда Гольдшмидта. Согласно этой концепции, крупные эволюционные события (становление больших систематических групп, прогрессивное усложнение организации и т. п.) происходят благодаря мутациям, затрагивающим сразу множество признаков и функций организма, разом превращающим его в существо принципиально иной природы.

Такие мутации в самом деле возможны — это изменения в генах, управляющих процессом эмбрионального развития, причем на самых ранних его этапах. Например, нарушив баланс синтеза и инактивации одного-единственного сигнального белка, регулирующего формирование различных структур эмбриона, можно получить вместо человеческого младенца покрытый кожей бесформенный комок живой плоти, не имеющий никаких органов, кроме пупочного канатика, кусочка кишечника и рудиментарного позвоночника. Или, если вывести из строя другой ген, включающийся на более поздних стадиях, вместо обычного поросенка родится существо с двумя пятачками, двумя пастями и тремя глазами. Понятно, однако, что чем сильнее та или иная мутация меняет облик своего обладателя — тем меньше вероятность, что эти изменения приведут к появлению чего-то более совершенного или хотя бы по-своему гармоничного. И если подавляющее большинство обычных, “несистемных” мутаций оказываются вредными или в лучшем случае нейтральными, то можно себе представить, с какой вероятностью может оказаться полезной морфогенетическая катастрофа. Впрочем, даже если бы такое чудо и произошло, у “перспективного монстра” (если он принадлежит к раздельнополому виду) встала бы непростая проблема найти себе брачного партнера.

Остается добавить, что во всех без исключения случаях, когда палеонтологам удавалось более-менее детально проследить становление той или иной группы в истории (а в последние десятилетия это происходит все чаще), никаких “перспективных монстров” в их родословных обнаружить не удавалось[47]. Так что можно лишь подивиться живучести теории, которая продолжает жить в ученых умах, не подкрепляя свои силы ни логическими, ни фактическими аргументами. Так, например, еще в 1990-х — 2000-х годах такие авторитетные исследователи, как Дерек Бикертон и Тимоти Кроу, объясняли глоттогенез, т. е. возникновение человеческого языка: “у кого-то из предков человека появилась генетическая мутация, в результате которой он обрел языковую способность”. При этом сторонники такой точки зрения вполне осознавали, что эта единственная мутация должна была (вполне в духе Гольдшмидта) одновременно сформировать речевой аппарат, изменить формы черепа, перестроить мозг, сформировав в нем способность как к распознаванию чужой речи, так и к построению собственной, — и все эти изменения должны быть строго согласованы друг с другом![48]

Но и те, кто понимает, что любая сколько-нибудь сложная структура не могла возникнуть в результате единственной мутации, все равно видят творческое начало эволюции именно в генетических опечатках. Логика их рассуждений на первый взгляд безупречна: отбор не может действовать на то, чего нет. Значит, сколько бы элементарных преобразований нам ни потребовалось, все они все равно возникают как результат мутаций и только затем подвергаются действию отбора. Следовательно, мутации и создают все живые формы, а отбор только отсекает все лишнее.

Но позвольте, кто же тогда автор знаменитой статуи “Давид”? По этой логике им никак не может считаться Микеланджело Буонарроти — ведь он за всю жизнь не создал ни единого кусочка мрамора и, по его собственному признанию, только отсекал все лишнее! А все, из чего состоит “Давид”, создали фораминиферы — морские раковинные амебы, чьи бесчисленные домики, спрессовавшись под тяжестью земных пластов, образовали каррарский мрамор. Авторы скульптурного шедевра — одноклеточные?!

Разумеется, эта аналогия (как и любая аналогия) неточна. Еще не прикоснувшись резцом к глыбе мрамора, скульптор уже видит внутренним взором прекрасную статую, которая получится после отсечения от этой глыбы “всего лишнего”. У естественного отбора нет никакого внутреннего взора, нет плана или идеала, он не стремится ни к какой наперед намеченной цели и знать не знает, что у него получится из той или иной “заготовки”.

И тем не менее именно естественный отбор — единственный конструктивный фактор эволюции: без него все остальные “слагаемые” эволюционного процесса не способны не только создать что-то принципиально новое, но даже воспроизвести то, что однажды было создано отбором. Вспомним феномен псевдо-генов: несколько обратных мутаций (каждая из которых вполне возможна и время от времени происходит) — и организм получил бы ген, который когда-то у него уже был. Но ни одна из требуемых мутаций не приносит пользы без остальных — и отбор не включается. А без него псевдоген обречен на дальнейшую деградацию — мутации никогда не вернут ему утерянный смысл.

Псевдогены — только одно из проявлений общего принципа необратимости эволюции: любое существо, возвращаясь к образу жизни своих эволюционных предков, не восстанавливает имевшиеся у них приспособления, а создает новые. Во всех классах вышедших на сушу позвоночных есть или были формы, вернувшиеся к жизни в воде, — но никто из них не восстановил у себя жабры[49]. Многие птицы независимо друг от друга отказались от полета — но никто не вернулся к четвероногому передвижению, не отрастил на передних конечностях пальцы.

Принцип необратимости эволюции был сформулирован бельгийским палеонтологом Луи Долло еще в 1893 году, но только сейчас мы начинаем понимать причины этой необратимости.

Главная из них — это то, что невозможно отыскать такой “путь назад”, на котором каждый шаг мог бы быть поддержан естественным отбором[50].

Возможно, представить себе причины необратимости эволюции будет проще, если посмотреть на расположение букв на клавиатуре вашего компьютера. Вероятно, многие из читателей хоть раз задавались вопросом, почему буквы на ней расположены не по алфавиту, а в таком странном порядке? Дело в том, что первые пишущие машинки, появившиеся в последней трети XIX века, были механически весьма несовершенными и не поспевали за движениями натренированных машинисток: при слишком быстром нажатии двух соседних клавиш их рычажки заклинивали друг друга. В попытках хотя бы минимизировать этот эффект конструкторы искали такое расположение букв, чтобы буквы, чаще всего соседствующие в текстах, оказались далеко друг от друга на клавиатуре. Те раскладки, которые лучше всего соответствовали этому условию — QWERTY для латинского алфавита и ЙЦУКЕН для кириллицы, — и стали в итоге стандартными. Потом машинки стали совершеннее, и рычажки на них сцеплялись уже не так часто, затем возникли электрические машинки, на которых этого не случалось почти никогда, и наконец люди стали печатать на компьютерах, где никаких рычажков уже не было вовсе. Однако на самых современных компьютерных клавиатурах остаются те же раскладки, которые были разработаны для пишущих машинок полуторавековой давности — поскольку слишком трудно было бы переучить сотни миллионов людей на какое-то другое расположение букв.

Можно возразить: мутации ничего не могут сделать без отбора, но ведь и отбор бессилен без мутаций (точнее, без создаваемого ими генетического разнообразия) — вспомним опыты Иогансена. Это верно, но такая “симметрия бессилия” оставляет в тени одно важное различие между этими факторами:

в отличие от мутаций отбор — фактор неслучайный и направленный. Впрочем, как мы уже знаем, в реальных геномах реальных организмов мутации происходят постоянно, так что ситуацию “отбор без мутаций” можно рассматривать лишь для отдельных признаков на протяжении недолгого (в эволюционных масштабах) времени. А в главе 2 мы увидим, что ход и темпы эволюции практически не зависят от интенсивности мутационного процесса.

И все же ставить знак равенства между понятиями “эволюция” и “естественный отбор” (как это часто делается не только в научно-популярных текстах, но даже в статьях и книгах профессиональных биологов) все-таки нельзя. Естественный отбор происходит всегда и везде, где есть живые существа или вообще какие-либо самовоспроизводящиеся структуры. Но не везде и не всегда результатом его неустанной работы становится эволюция, т. е. направленное и закономерное изменение признаков этих существ.

Стабилизирующий отбор: марш на месте

“Вот вы говорите, что человек произошел от обезьяны. А почему же тогда сейчас обезьяны в людей не превращаются?” Этот вопрос вот уже полтора столетия снова и снова задают эволюционистам некоторые наивные люди. Нетрудно убедиться, что ими движет не поиск истины, не благородное сомнение, а исключительно жгучее нежелание признавать себя потомками обезьян. Ведь никто же из них не спрашивает, почему на елках не расцветают цветы (если, как говорят те же ученые, цветковые растения произошли от голосеменных), почему ящерицы не становятся птицами и землеройками или, на худой конец, почему бурые медведи прямо на глазах не превращаются в белых.

Но давайте отнесемся ко всем этим вопросам не как к подначке и провокации, а всерьез. В самом деле, почему мы не видим, как одни виды превращаются в другие? Если, как мы убедились выше, все факторы эволюции — наследственные изменения, борьба за существование, естественный отбор — действуют постоянно и непрерывно, если их действие не прекращается ни на минуту — почему же знакомые нам формы жизни остаются удивительно стабильными? Почему в наших лесах растут все те же березы и елки, рябины и дубы, про которые поется в песнях, сложенных нашими предками, а если и попадется где-нибудь в городском парке неведомое дерево, так можно не сомневаться, что это не результат эволюции, а гость из далеких краев? Почему каждую весну к нам прилетают все те же скворцы и жаворонки, ласточки и соловьи?

“Ну, это-то понятно, — скажет почти всякий, кто помнит, что ему в школе говорили об эволюции. — Эволюционные изменения происходят очень медленно, необходимое для них время несопоставимо со сроками человеческой жизни. Ничего удивительного, что мы их не замечаем”.

Такое объяснение кажется убедительным, но оно содержит далеко не всю правду. Как мы уже видели в главе “Отбор в натуре”, эволюционные изменения — причем не только выявляемые специальными измерениями, но и вполне наглядные и очевидные — могут происходить довольно быстро, за время жизни всего нескольких поколений эволюционирующей популяции, что в привычных нам понятиях может составлять считаные годы. С другой стороны, речь идет не только о том, что мы можем наблюдать сами или даже о чем можем узнать из исторических источников.

Едва ли не каждое лето по блогам (а иногда и по средствам массовой информации) прокатывается волна паники: то тут, то там перепуганные дачники и прочие отдыхающие находят каких-то не то мутантов, не то пришельцев — странных, ни на кого не похожих тварей. Людей пугает не только экзотический внешний вид этих “монстров” — причудливой формы панцирь, членистое тело, множество ног и несколько хвостов, — но и то, что они возникают словно бы ниоткуда, заводясь в обычных лужах, остающихся после летних ливней. На самом деле речь идет о совершенно безобидном существе — щитне, примитивном пресноводном ракообразном. Никакой тайны в их появлении в лужах нет: заполнение лужи водой запускает развитие дремлющих в грунте яиц щитней. Вышедшие из них личинки стремительно развиваются, превращаются во взрослых рачков, снова откладывают яйца… и погибают, когда лужа пересыхает или (если им повезет дожить до осени) замерзает. Такой образ жизни избавляет щитня от хищников и конкурентов, но спокойным его не назовешь. Однако в такой нестабильной среде щитни ухитрились просуществовать практически без изменений более 200 млн лет — с раннего мезозоя до наших дней. При этом ископаемые останки самого древнего из известных щитней неотличимы от соответствующих структур одного из современных видов. Миновали две геологические эры, биосферу планеты сотрясло немало великих и грозных событий, возникли, процвели и сгинули динозавры, в небе птицы сменили крылатых ящеров, сушу покрыл ковер бесконечно разнообразных цветов, пришли и ушли ужасные эндрюсархи с их огромными зубастыми пастями, подпирающие небеса индрикотерии, ходячие пернатые гильотины — фороракосы и диатримы, где-то в самом конце промелькнули мамонты и саблезубые тигры — а выпавший из эволюции рачок жил-поживал в своих ненадежных убежищах, не обращая внимания на всю эту суету и не меняясь ни на йоту. А ведь в его генах, как и в любых других, шли мутации. И борьбу за существование для него никто не отменял (см. главу “Забытый кит”) — в луже можно спрятаться от хищников, паразитов и конкурирующих видов, но от геометрической прогрессии размножения не укроет и она. Почему же он не эволюционировал?

Щитень, конечно, случай крайний и исключительный, своего рода рекорд эволюционной неподвижности. Но видов, которые — насколько можно судить по палеонтологическим данным — не претерпели никаких изменений за последние миллион-другой лет, можно насчитать не так уж мало. Что же — на них не действует естественный отбор?

Давайте вспомним один из самых первых примеров природных селективных процессов, описанных в научной литературе, — воробьев Бампаса. Естественный отбор на них безусловно действовал: он отсекал крайние варианты телосложения (как слишком короткокрылых, так и слишком длиннокрылых), сохраняя среднее и типичное. Понятно, что такой отбор, сколько бы он ни действовал, вряд ли приведет к изменению внешнего облика вида. Скорее наоборот: результатом его длительного действия станет уменьшение разнообразия признаков, “устрожение” видовой нормы и в какой-то мере снижение эволюционного потенциала — способности к изменениям в случае необходимости.

Впрочем, воробьев Бампаса отбирал буран — явление хоть и регулярно происходящее, но все же разовое и экстремальное, так что производимый им отбор вряд ли может быть длительным и стабильным. Однако и самые обычные, постоянные и повседневные условия существования могут обеспечить такой же “отбор без эволюции” — пожалуй, даже вернее, чем природные катастрофы. Скажем, начнешь зацветать раньше — будешь чаще попадать под заморозки, позже — меньше запасов сможешь дать семени. Продлишь сроки беременности — увеличится смертность рожениц, сократишь — чаще будут погибать новорожденные.

Как уже говорилось, такое действие естественного отбора охотно признавали почти все противники теории Дарвина, полагая, что этим роль отбора и ограничивается, что ничего другого он, собственно, делать и не может. Совсем по-иному увидел феномен “отбора без эволюции” выдающийся российский эволюционист Иван Иванович Шмальгаузен. Согласно Шмальгаузену, именно такой отбор (он назвал его стабилизирующим[51]) — главная причина наблюдаемой стабильности видов. Иными словами, всякий остающийся неизменным вид — это не лежачий камень, на который не действуют никакие силы, а зависший в воздухе вертолет, который удерживается на месте непрерывной работой двигателя и лопастей.

Всякое отсутствие эволюции — это на самом деле “нулевая эволюция”, своего рода марш на месте, динамическое равновесие противоположно направленных факторов отбора. Если в какой-то момент равновесие сдвинется, если факторы, толкающие вид в какую-то одну сторону, окажутся хоть немного сильнее тех, что противодействуют им, — вид начнет изменяться. Но иногда равновесие сохраняется необычайно долго.

И тогда мы встречаемся с существами вроде щитня или гаттерии — реликтовой новозеландской рептилии, практически не изменившейся за последние 100 миллионов лет: окаменелые останки гаттерий, практически неотличимых от современных, известны из отложений середины мелового периода. При этом, как показывают недавние молекулярно-генетические исследования, скорость фиксации нейтральных мутаций[52] у нее оказалась выше, чем у любого другого изученного на сей предмет позвоночного животного. То есть мутаций за это время произошло предостаточно, но эволюция вида так и не сдвинулась с мертвой точки.

Почему же отбор в одних случаях подолгу удерживает вид на месте, а в других упорно толкает его все дальше и дальше от облика предков? Думаю, многие читатели уже готовы подсказать ответ: в стабильных условиях выгодно оставаться стабильным (по крайней мере, тому, кто к ним достаточно хорошо приспособился) и не искать добра от добра; если же условия меняются, то и обитающим в них живым существам волей-неволей придется меняться. На самом деле, как мы увидим в главе 14, все обстоит несколько сложнее и интереснее. Но в качестве первого приближения такое допущение можно принять.

Итак, мы рассмотрели все предпосылки для эволюции: механизмы наследственности, природу их изменений, борьбу за существование, природные селективные процессы. Осталась вроде бы пара пустяков: во-первых, собрать из этих теоретических деталей правдоподобный и непротиворечивый механизм, способный обеспечить эволюционный процесс, и во-вторых, приложить этот гипотетический механизм к известным нам фактам и посмотреть, насколько он с ними согласуется.

Глава 2

Такая естественная синтетика

“Так подождите, мы же с этого начали! — запротестует внимательный читатель. — Мутации создают разнообразие наследственных признаков, борьба за существование обнаруживает их неравноценность, отбор приводит к тому, что мутации, приносящие выгоду своим обладателям, по мере смены поколений распространяются все шире и в конце концов становятся нормой. И так — до следующей полезной мутации. Мы убедились, что все это реально существует, — чего же нам еще?!”

Внимательному читателю, возможно, будет лестно узнать, что нарисованная им картинка во всех существенных деталях совпадает с той моделью эволюции, которую немногим более ста лет назад предложил Томас Хант Морган — выдающийся американский ученый, глава прославленной школы классических генетиков и автор исторически первой попытки соединить теорию Дарвина с достижениями генетики. “Генетический дарвинизм” Моргана оказался весьма живучим: примерно так и представляет себе до сих пор эволюцию большинство образованных людей (за исключением, с одной стороны, специалистов, а с другой — идейных противников дарвинизма).

Однако с простыми теоретическими рассуждениями Моргана никак не желали сходиться его же собственные экспериментальные данные. Именно Морган и его ученики впервые сумели оценить частоту возникновения мутаций у живых организмов в естественных условиях. У них получилось, что мутация — событие довольно редкое: одна ошибка приходится примерно на сто тысяч актов копирования гена. (Позднейшие, более совершенные исследования показали, что эта частота может очень сильно различаться для разных генов, организмов, видов и условий жизни, но порядок величины Морган определил верно.) Если учесть, что большинство мутаций вредны или как минимум бесполезны, то выходит, что для самого простенького эволюционного изменения требуется невообразимо долгое время или/и астрономическая численность вида[53].

По-настоящему соединить дарвинизм с генетикой, понять генетические механизмы эволюции оказалось задачей гораздо более трудной, потребовавшей усилий многих ученых и занявшей не одно десятилетие. Первый шаг в этом направлении был сделан только в 1926 году, когда московский энтомолог Сергей Сергеевич Четвериков опубликовал статью “О некоторых моментах эволюционного процесса с точки зрения современной генетики”.

Четвериков обратил внимание на то, что большинство привычных нам живых существ диплоидны — имеют двойной набор хромосом и, соответственно, по два экземпляра каждого гена. Вновь возникающие мутации, как правило, рецессивны, то есть при наличии “нормальной” версии гена они внешне не проявляются — но при этом могут быть унаследованы потомками мутанта и даже получить некоторое распространение в популяции. Если так, то природные популяции должны быть насыщены мутантными версиями самых разных генов. За внешним единообразием представителей того или иного вида кроется ошеломляющее генетическое разнообразие, созданное накопленными за всю его предыдущую историю мутациями.

Казалось бы, модель Четверикова только усиливает несоответствие, с которым столкнулся Морган: к времени, необходимому для появления полезной мутации, прибавляется время, необходимое для встречи двух ее носителей, чтобы она могла проявиться в фенотипе. Однако при этом в любой момент в генофонде популяции присутствует огромное число ранее произошедших мутаций, каждая из которых время от времени получает шанс проявиться в фенотипе и поступить на суд естественного отбора. И значит, естественному отбору нет нужды ждать, когда произойдет очередная мутация, — материал для его работы всегда имеется.

Выводы Четверикова немедленно проверили на реальных природных популяциях (прежде всего мушки дрозофилы, генетика которой уже была неплохо изучена), и они полностью подтвердились. Это стало стимулом и отправной точкой для целого ряда исследований — полевых, лабораторных, модельных, — объединенных общим стремлением понять, как поведет себя такая система в длинном ряду поколений — под действием естественного отбора или без него. Понемногу результаты и гипотезы участников этой работы стали складываться в довольно целостную и непротиворечивую картину — что хорошо показал вышедший в 1942 году в Англии итоговый сборник статей. Редактор-составитель сборника Джулиан Хаксли[54] назвал его “Эволюция: современный синтез”. С легкой руки сэра Джулиана все это направление эволюционной мысли получило название “синтетическая теория эволюции” (СТЭ), отражающее то, что новая теория стала синтезом классического дарвинизма с генетикой.

С того времени и до наших дней СТЭ безраздельно господствует в науке о биологической эволюции. Разумеется, за эти семь десятилетий она заметно изменилась — стала более развитой, разработанной и изощренной, обросла множеством более частных теорий, понятий и направлений исследования. За это время она выдержала несколько волн критики, пережила (и частично вобрала в себя) ряд альтернативных концепций и сегодня выглядит почти аксиомой. Аббревиатура “СТЭ” сегодня часто употребляется как абсолютный синоним слова “дарвинизм”[55], и многие — в том числе профессиональные биологи — даже не задумываются о возможности существования иных, не-синтетистских представлений об эволюции.

Такое положение СТЭ обязывает нас ознакомиться с нею поподробнее. Конечно, сколько-нибудь полное и корректное изложение ее потребовало бы отдельной книги. Но у нас нет нужды это делать: за последние десятилетия основы СТЭ неоднократно излагались как в учебниках (в том числе школьных), так и в популярной литературе. Образцом такого изложения, на мой взгляд, служит вышеупомянутая книга Б. М. Медникова, которую я вновь с удовольствием рекомендую любознательным читателям (в данном случае особое внимание стоит обратить на главу 4 — “Великий синтез”). Здесь же мы лишь в самых общих чертах напомним, каким видит эта теория процесс биологической эволюции.

Согласно СТЭ, основные эволюционные события разворачиваются в популяции — совокупности существ того или иного вида, населяющих некоторую местность. У каждого такого существа — особи — есть множество генов. Практически каждый ген, как мы помним, существует в нескольких альтернативных вариантах — аллелях. Каждая особь обладает конкретным неповторимым сочетанием аллелей разных генов — генотипом, совокупность генотипов создает генетическое разнообразие популяции. При бесполом размножении генотипы переходят от поколения к поколению без изменений (если не считать относительно редких мутаций), если же есть хоть какая-то форма полового процесса, каждый потомок получает смесь генов двух своих родителей, что постоянно создает все новые и новые генотипы. Но, несмотря на их уникальность, частота каждого отдельного аллеля (его доля среди всех аллелей данного гена) остается в каждом поколении одной и той же. Причем это соотношение (его называют законом Харди — Вайнберга) выполняется тем точнее, чем больше популяция и чем менее избирательно скрещивание особей внутри нее. Но все это возможно только в том случае, если жизненный успех носителей любого аллеля одинаков. Если же это не так, если некоторые аллели обеспечивают своим обладателям бóльшую вероятность выживания или больший успех в размножении, в дело вступает естественный отбор: частота “выгодных” аллелей в популяции начинает расти от поколения к поколению, а частота альтернативных им — падает. Это и есть биологическая эволюция, элементарным событием которой, согласно СТЭ, всегда является изменение генных частот.

Впрочем, эволюция вида как целого не очень интересует СТЭ. В центре ее внимания находится процесс видообразования. В образцовой, наиболее разработанной модели он начинается с ограничения свободы скрещиваний. Действительно, многие виды занимают порой огромную территорию с весьма различными условиями жизни и, следовательно, разным направлением отбора. Например, волки живут от побережья арктических морей до джунглей Индии. Конечно, киплинговский Акела даже теоретически не мог бы встретиться с джек-лондоновским Белым Клыком, но лежащие между ними необозримые пространства населены волчьими стаями, и те из них, что оказываются соседями, более-менее исправно обмениваются генами. И хотя крайние популяции волков заметно различаются (северные волки крупнее и массивнее своих южных соплеменников, у них относительно маленькие уши, более светлая шерсть и т. д.), все они пока что остаются одним видом Canis lupus, единство которого — как и любого другого вида — поддерживает межпопуляционный обмен генами.

Если же некая преграда вдруг делает его невозможным, в тех частях, на которые она разделила вид, отбор может пойти в разных направлениях. Отличия изолированных друг от друга популяций из плавных и статистических[56] со временем превращаются в резкие и однозначные. Теперь даже если разделившая их преграда исчезнет (как растаял ледник, загнавший когда-то теплолюбивую флору и фауну на противоположные края Евразии), они могут “не узнать” друг в друге соплеменников[57]. Более того, зачастую естественный отбор начинает целенаправленно работать против скрещивания между ними: ведь обе вновь возникшие формы приспособлены каждая к своим условиям обитания, а их гибрид почти неизбежно будет уступать обеим в эффективности использования этих условий. Когда этот процесс закончится и скрещивание вновь возникших форм станет в природе биологически невозможным (или превратится в редкую, не имеющую последствий случайность вроде так называемых межняков — изредка рождающихся естественных гибридов тетерева и глухаря), это будет означать, что акт видообразования свершился: исходный вид разделился на два новых. Когда-нибудь они, эволюционируя независимо друг от друга и порождая новые молодые виды, накопят различия, соответствующие уровню разных родов, потом — разных семейств и т. д. Правда, такого никто не видел, но ведь эти процессы должны идти в геологическом масштабе времени, так что прямое наблюдение их просто невозможно. А поддающиеся такой интерпретации палеонтологические данные найдутся всегда.

Описанный выше механизм видообразования, при котором генетическому разделению вида предшествует его пространственное разделение какой-либо непреодолимой преградой, называется аллопатрическим видообразованием. Считалось, что большинство новых видов появляется в природе именно так. В отношении же альтернативного механизма — симпатрического видообразования, при котором обособляющиеся разновидности на протяжении всего процесса разделения продолжают обитать на одной территории, — мнения эволюционистов-синтетистов разделились. Первоначально среди них преобладало мнение Эрнста Майра, согласно которому симпатрическое видообразование невозможно или, во всяком случае, крайне маловероятно. (Хотя еще в 1913 году русский ботаник Николай Цингер показал, что популяции большого погремка[58], растущие на сенокосных лугах, разделяются на две практически нескрещивающиеся формы — одна успевает процвести и дать семена до покоса, другая приступает к этому только после его окончания. Но как первая статья Цингера, так и его небольшая монография о погремке, вышедшая посмертно в 1928 году в Вологде, были изданы только по-русски и остались почти неизвестными западным ученым.) По мере накопления фактов, указывающих на случаи симпатрического видообразования, полемика по этому вопросу обострялась. “Аллопатрическая партия” признала возможность “мгновенного” симпатрического видообразования в случае полиплоидизации (см. главу “Ошибки, которые делают нас”), крупных хромосомных перестроек или межвидовой гибридизации (также часто связанной с полиплоидизацией), но продолжала отрицать возможность того, что популяция, обитающая на одной территории, может разделяться постепенно под действием отбора. Случаи совместного обитания недавно разделившихся видов объясняли вторичным контактом: мол, виды разделились под действием какой-то преграды, а затем она исчезла, и они снова обитают вместе, но уже не опознают друг в друге соплеменников. Затем была выдвинута концепция “смежной симпатрии”: дескать, на территории обитания предковой популяции могли быть разные биотопы — например, участки хвойных лесов перемежались с лиственными, луга — с перелесками и т. д., — и те микропопуляции, которые обитали в этих биотопах, формально жили на одной территории, но фактически в разных средах и почти не контактируя друг с другом. Они-то, мол, и выделились в конце концов в самостоятельные виды. Возможность же “истинно симпатрического” видообразования школа Майра оспаривала до самой смерти ее главы в 2005 году. Да и сейчас в работах некоторых видных эволюционистов (например, профессора Чикагского университета Джерри Койна) симпатрическое видообразование хотя и не отрицается, но рассматривается как явление редкое и нетипичное. Однако вся совокупность известных сегодня фактов говорит скорее о том, что частота симпатрического видообразования как минимум сравнима с частотой аллопатрического.

За время своего господства СТЭ обросла огромным числом неожиданных и нетривиальных фактов, представляющих собой как бы моментальный снимок постулированных ею процессов. В школьные учебники попала всем известная большая синица, которая распространялась на восток Азии, обходя великие азиатские горные системы двумя путями — с севера (через Сибирь) и с юга (через Индию и Индокитай).

В Сибири с ней ничего особенного не случилось, а вот в южной Азии сформировался вполне отчетливый подвид, от которого на востоке континента отпочковался еще один. Восточный подвид легко скрещивается с южным, а тот, в свою очередь, — с исходным евроазиатским. Но в бассейне Амура, где евроазиатские синицы обитают бок о бок с восточными, они уже не узнают друг друга и ведут себя как “хорошие” виды. Такое явление (получившее название “кольцевой вид”) известно для целого ряда птиц, причем подвидов-“ступенек” там может быть гораздо больше, чем у синицы — порой более десятка.

Иногда процесс видообразования — или, по крайней мере, его ключевые этапы — удается наблюдать непосредственно. В Евразии, Северной Америке и Северной Африке широко распространен серый сорокопут Lanius excubitor. Птицы, обитающие на Пиренейском полуострове, в Африке и в азиатских пустынях, отличаются от своих северных собратьев некоторыми деталями окраски, телосложения, а также гнездовыми привычками и другими признаками. В ряде мест сорокопуты “северного” и “южного” типов встречаются совместно, и натуралисты XIX века нередко фиксировали образование смешанных пар, успешно выводивших потомство. Поэтому “южный” сорокопут считался не более чем подвидом серого — Lanius excubitor meridionalis. Но на протяжении ХХ века случаи образования смешанных пар наблюдались все реже и к концу его вовсе сошли на нет. Видимо, процесс видообразования, начавшийся, вероятно, некоторое время назад, завершился прямо на наших глазах, и сейчас пустынный сорокопут числится полноправным отдельным видом — Lanius meridionalis.

Подобные феномены (например, существование на одном вулканическом острове 23 видов наземных улиток — точно по числу долин между непреодолимыми для моллюсков сухими и холодными хребтами) трудно объяснить иначе как с точки зрения СТЭ. Никакая другая теория сегодня не способна столь же четко и убедительно объяснить такой широкий круг фактов. Так что господствующее положение СТЭ в современных эволюционных представлениях не только понятно, но и вполне оправданно.

Не лезь в концепцию

Означает ли сказанное, что СТЭ полностью и исчерпывающе объясняет все эволюционные явления и фактов, противоречащих ей (или не вписывающихся в нее, не поддающихся интерпретации в ее понятиях), нет? Судите сами.

Для начала зададим простой вопрос: какие организмы эволюционируют быстрее — крупные или мелкие? Если все дело только в динамике генных частот, то скорость эволюции должна зависеть от исходного разнообразия материала (в конечном счете — от частоты мутаций), жесткости отбора, численности вида и скорости смены поколений. Кроме того, согласно СТЭ, на нее может влиять то, насколько легко у данной группы существ возникают преграды, препятствующие обмену генами между популяциями.

Частота мутаций у разных групп живых организмов может заметно различаться, но не обнаруживает явной зависимости от размера (по крайней мере, в расчете на одно поколение). Жесткость отбора может отличаться очень сильно — на порядки, но если она и зависит от размеров организма, то только в том смысле, что в популяциях мелких существ она может достигать значений, которые в популяциях крупных просто невозможны: скажем, в популяции амурских тигров, насчитывающей всего 400–500 особей, не может выживать одна особь из тысячи родившихся. Так что по этому показателю если у кого-то и есть преимущество, то скорее у мелких организмов. По всем же остальным параметрам преимущества последних и вовсе очевидны: они более многочисленны, легче распадаются на изолированные популяции, и у них быстрее сменяются поколения. По всему выходит, что в среднем они должны изменяться быстрее.

В действительности, однако, все обстоит почти строго наоборот — по крайней мере, у животных и одноклеточных эукариот. Видовой состав слонов и крупных копытных обновляется наполовину примерно за 200 тысяч лет. Для мелких млекопитающих этот период составляет 500 тысяч, для насекомых — 3–7 млн, для одноклеточных диатомовых водорослей — 15 млн лет. Можно спорить, насколько адекватен такой показатель для оценки скорости эволюции и означает ли слово “вид” одно и то же для слонов и диатомей (особенно применительно к ископаемому материалу), но общая закономерность слишком очевидна. И ее нужно как-то объяснять.

Другой пример: согласно теории, дискретность видов — их отграниченность друг от друга и целостность каждого внутри себя — поддерживается постоянным обменом генами внутри вида и невозможностью такого обмена между видами. Строго говоря, с этой точки зрения само понятие вида приложимо только к существам с регулярным половым процессом в той или иной форме. Во всяком случае, у форм, размножающихся исключительно бесполым путем, видовая норма должна быть гораздо менее жесткой, а границы между видами — условными.

Между тем некоторые животные (в том числе и довольно высокоорганизованные) способны существовать как с половым размножением, так и без него. Всем известный серебряный карась образует устойчивые популяции из одних самок, размножающихся партеногенезом (процесс, при котором развитие зародыша протекает точно так же, как и при обычном половом размножении, но без оплодотворения и без участия генов самца). Однако их видовая принадлежность определяется так же легко, как и у представителей того же или близкого вида, живущих в нормальной обоеполой популяции. И никакой особенной тенденции к размытию видовых признаков у таких существ не просматривается. Бесполые и партеногенетические виды остаются дискретными у одноклеточных, жуков-долгоносиков, низших водорослей, папоротников и коловраток (причем для последних это показал не кто иной, как Эрнст Майр — один из главных идеологов СТЭ).

Вид — вообще центральное понятие в синтетистской парадигме, рассматривающей всякую эволюцию как процесс реального или потенциального видообразования. Согласно СТЭ, каждый акт видообразования уникален и в принципе неповторим. Никакой вид не может возникнуть независимо второй раз — даже от той же исходной формы и под действием тех же факторов отбора. Это так же невероятно, как то, что два брата, родившиеся в разные сроки, будут генетически идентичны, как близнецы.

Однако еще в начале 60-х годов советский энтомолог Георгий Шапошников экспериментально изучал процессы видообразования у тлей. Тля — исключительно высокоспециализированный паразит, многие виды тлей способны питаться лишь строго ограниченным набором растений, часто — всего одним видом. Если лишить тлей доступа к “своему” кормовому растению, они умрут — даже сидя на сочном побеге, который с аппетитом сосут их ближайшие родичи.

С помощью некоторых ухищрений и ценой высокой смертности среди подопытных Шапошникову все же удалось заставить тлей, питавшихся на купыре, потреблять другое зонтичное растение — бутень. При этом уже через несколько десятков поколений тли-переселенцы приобретали морфологическое сходство с другим видом тлей, исходно обитавшим на бутене. И самое неожиданное — они утрачивали способность скрещиваться с исходным “купырным” видом, зато могли вступать в брак с “бутеневыми” тлями. Если остальные результаты Шапошникова противоречили скорее духу СТЭ, то преодоление межвидового репродуктивного барьера нарушало уже и букву теории: получалось, что ученый в своих экспериментах независимо воссоздал уже существующий конкретный вид. Это попахивало направленностью эволюции и чуть ли не лысенковскими фантазиями о порождении ржи пшеницей и кукушки — пеночкой.

Опыты Шапошникова получили немалую известность, но долгое время не имели никакого теоретического объяснения[59]. Десятилетиями они рассматривались как своего рода курьез, уникальный случай[60] (тем более что работы эти были выполнены в СССР в те времена, когда хотя Лысенко и не имел уже абсолютной власти над советской биологией, его сторонники все еще численно преобладали в исследовательских учреждениях, и работ, исходивших из его “теорий”, в советской научной прессе печаталось немало). Однако много позже зарубежные ученые воспроизвели их на других видах насекомых.

Более того — случаи “повторного видообразования” были обнаружены и в природе. Так, например, на небольших островах Неприступный и Соловей архипелага Тристан-да-Кунья в южной Атлантике живут вьюрки. На каждом из островов встречаются две разновидности этих птиц, хорошо различающиеся по размерам клюва — что и не удивительно, поскольку они питаются семенами разного размера. Большеклювые вьюрки с Неприступного внешне совершенно неотличимы от большеклювых вьюрков с Соловья. То же самое можно сказать и о тонкоклювых птицах с обоих островов. Зоологи нисколько не сомневались, что каждая из этих форм представляет собой единый вид, распространенный на обоих островах. Однако в 2007 году южноафриканские биологи сравнили геномы этих птиц. И оказалось, что большеклювые вьюрки Неприступного генетически гораздо ближе к своим тонкоклювым землякам, чем к большеклювым вьюркам Соловья, а последние, в свою очередь, более близкая родня местным тонкоклювым вьюркам.

Видимо, оба острова были заселены единым предковым видом, который на каждом из них независимо разделился на две формы — каждая из которых удивительно похожа на свой аналог с другого острова.

Но в конце концов, неоднократное возникновение даже чрезвычайно сходных форм на базе одного и того же вида — это еще куда ни шло. В этих случаях отбору приходится иметь дело с одним и тем же исходным материалом — накопленной мутационной изменчивостью (см. начало этой главы). Даже разные, но очень близкие виды теоретически могут породить очень сходные формы — ведь и у них внутривидовое генетическое разнообразие в значительной мере остается общим. Но этими соображениями никак нельзя объяснить широкое распространение параллелизмов и конвергенций[61] в эволюции обширных систематических групп — классов и типов. Между тем палеонтологи все чаще стали замечать: накануне появления больших и славных групп их отдельные признаки возникают независимо в разных, не очень родственных ветвях группы-предка. Например, всем известный и вошедший во все учебники археоптерикс при детальном исследовании оказался вовсе не предком современных птиц, а “конкурирующей моделью” — представителем совсем другой ветви юрских рептилий-архозавров, независимо освоившей полет на перьевых крыльях. Сегодня палеонтологам известно как минимум пять таких эволюционных попыток, и представителям по крайней мере двух ветвей (настоящих птиц и так называемых энанциорнисов, к которым относится и археоптерикс) удалось реально подняться в воздух.

И птицы далеко не уникальны в этом отношении. Когда ученые попытались разобраться, от какой же именно группы триасовых рептилий произошли современные млекопитающие, выяснилось, что различные признаки будущих млекопитающих (специфическое строение слуховых косточек, мягкие губы и т. д.) возникали независимо — хотя и порознь — в шести разных группах зверозубых ящеров (териодонтов). Одна из них, наиболее успешно продвигавшаяся по этому пути, дала начало почти всем современным млекопитающим — как плацентарным, так и сумчатым. От другой до наших дней дожили утконосы и ехидны — странные существа, откладывающие яйца, но выкармливающие детенышей молоком. Еще четыре вымерли полностью — но они существовали довольно долго, более-менее успешно конкурируя с будущими победителями.

Академик Леонид Татаринов, описавший эту “гонку в млекопитающие”, назвал ее “параллельной маммализацией териодонтов”. Позднее выяснилось, что подобные “-зации” предшествуют появлению на свет очень многих крупных групп животных и растений. Например, те же териодонты принадлежат к ныне полностью вымершей ветви рептилий — синапсидам, предки которых, вероятно, приобрели характерные черты рептилий независимо от предков современных пресмыкающихся. (Вообще, судя по всему, окончательный выход позвоночных на сушу происходил широким фронтом: ключевые черты рептилий независимо приобрели потомки сразу нескольких групп амфибий. И хотя большинство из них впоследствии вымерло, даже нынешние пресмыкающиеся — потомки разных групп земноводных.) Еще раньше, в девонском периоде проходила “тетраподизация” кистеперых рыб — сразу несколько групп этого надотряда начали независимо приобретать признаки четвероногих существ. А в конце периода юрского разные семейства голосеменных растений начали рваться в цветковые. И словно бы навстречу им среди тогдашних насекомых возникали формы, удивительно похожие на будущих опылителей — бабочек. Причем если обычно в гонке за право породить новую перспективную группу соревнуются хоть и не близкие, но все же родственники (все “недоптицы” принадлежат к группе архозавров, все “недомлекопитающие” — к териодонтам, все “недоамфибии” — к кистеперым), то подобия цветковых растений и бабочек возникали в самых разных группах голосеменных и насекомых. В частности, формы, удивительно похожие на бабочек, появились в столь далеких друг от друга отрядах насекомых, как сетчатокрылые и скорпионницы.

Согласно СТЭ, такое если вообще может быть, то только как крайне редкое случайное совпадение. Но всевозможные “-зации” оказались слишком частыми и слишком синхронными, чтобы их можно было списать на чистую случайность.

Разумеется, эти факты не прошли мимо внимания оппонентов дарвинизма, особенно из числа приверженцев номогенеза (см. главу 5) или телеологических эволюционных концепций. Они как будто бы прямо подтверждали, что эволюция (по крайней мере, макроэволюция — формирование и развитие крупных групп) — процесс закономерный и целенаправленный. Проблема, однако, заключалась в том, что ни одна из альтернативных дарвинизму эволюционных теорий не могла ни предложить механизмы, обеспечивающие направленность эволюции, ни хотя бы четко сформулировать ее “закономерности” и “цели”. Да и как их сформулируешь, если в одних и тех же группах некоторые виды вступают в очередную “-зацию”, а другие меняются совсем в других направлениях — или почти не меняются вообще? Мы говорили, что среди разных “бабочек” мелового периода были представители отрядов сетчатокрылых и скорпионниц. Оба эти отряда существуют и ныне, хотя их разнообразие и экологическая роль довольно скромны. Современных сетчатокрылых читатели, живущие в средней полосе и далекие от биологии, могут знать по златоглазкам — нежным зеленым созданиям с отливающими золотом глазами, которые летними вечерами кружат вокруг лампы, беззвучно трепеща своими четырьмя крыльями. Современных скорпионниц почти наверняка видел всякий дачник — это довольно крупные насекомые с пестрыми крыльями, немного похожие на комаров-долгоножек, но с задранным кверху концом брюшка (за что эти совершенно безобидные существа и получили свое грозное имя). Ни те, ни другие совсем не похожи на настоящих бабочек, на которых так походили их вымершие родичи.

То же самое можно сказать и о кистеперых рыбах — пока несколько групп этого надотряда соревновались за право стать амфибиями, другие (зачастую представители тех же самых семейств) оставались рыбами и в таком состоянии прожили более 300 миллионов лет — естественно, претерпевая собственную эволюцию. В частности, в начале мезозоя часть кистеперых (сформировавшихся как обитатели мелководий и пересыхающих водоемов, преимущественно пресных) ушла в море. Там и сохранился до наших дней единственный современный род кистеперых — знаменитая латимерия: оба современных вида этих рыб обитают в тропических морях, держась в основном на глубинах в сотни метров. Ни предполагаемая “цель” эволюции группы, ни “тенденции” или “закономерности” на большинство видов кистеперых почему-то не подействовали.

“Наши недостатки — продолжение наших достоинств”

А чем параллелизмы не укладываются в ту картину эволюции, которую рисует СТЭ? Мы уже говорили, что в рамках ее представлений всякий акт видообразования — результат взаимодействия множества факторов, большинство из которых (точнее, все, кроме отбора) случайны и ненаправленны. Поэтому один вид не может возникнуть дважды — даже от одной и той же исходной формы и в одних и тех же условиях. К этому следует добавить, что, согласно СТЭ, механизм образования родов, семейств и более высокоранговых таксонов ничем принципиально не отличается от видообразования: род — это потомки одного исходного вида, семейство — потомки одного рода и т. д.

А значит, все, что справедливо для процесса видообразования, справедливо и для эволюции вообще[62]. Иными словами, возникновение каждой крупной группы живых существ — типа, класса и т. д. — должно быть так же уникально и неповторимо, как и видообразование, и каждая такая группа должна быть строго монофилетичной, то есть происходить от одного-единственного конкретного вида. С этой точки зрения всякая конвергенция, то есть независимое приобретение разными группами сходных черт, представляется явлением редким, нетипичным и, как правило, более или менее поверхностным: скажем, передние конечности крота и медведки внешне похожи друг на друга (что обусловлено их практически одинаковой функцией), но анатомически не имеют между собой ничего общего. Независимое же приобретение разными группами нескольких не связанных друг с другом признаков с точки зрения СТЭ равносильно чуду.

И это не единственное допущение, подразумеваемое СТЭ, но редко высказываемое явно при ее изложении и еще реже становящееся предметом критического обсуждения. Возможно, внимательные читатели даже по приведенному выше краткому изложению заметили, что СТЭ фактически рассматривает организм как набор признаков, каждый из которых эволюционирует словно бы независимо от прочих. При этом признак мыслится тождественным тому гену или генам, которые вовлечены в его формирование. Получается, что между геном и отбором словно бы ничего и нет. Конечно, любой эволюционистсинтетист, хоть разбуди его среди ночи, без запинки отчеканит все необходимые оговорки: что наследуются гены, а отбор действует на фенотипы, что фенотип не определяется однозначно генотипом, что сравнительная адаптивность разных вариантов гена зависит, помимо всего прочего, от “генетического окружения” и т. д.[63] Однако в реальных исследованиях, не говоря уж о моделях, все эти “тонкости” обычно игнорируются.

Само по себе использование упрощений и упрощенных моделей для теории не порок — это стандартный методологический прием, без применения которого наука вряд ли могла бы разобраться в сколько-нибудь сложных явлениях. Но у него всегда есть оборотная сторона — пресловутые “сферические кони в вакууме”, чрезмерные упрощения, лишающие модель какой бы то ни было познавательной ценности. Причем если из такой модели следуют выводы, прямо противоречащие наблюдаемым фактам, — это еще полбеды: в этом случае неадекватность модели сразу будет замечена, и ее скорректируют, а если это не поможет, просто отбросят. Порой гораздо худшие последствия имеет ситуация, когда упрощенная модель успешно объясняет некоторую часть явлений (наиболее простые случаи), создавая при этом впечатление, что со временем она сможет объяснить все.

Вернувшись мысленно к изложению основных положений СТЭ, мы можем заметить, что во всех рассматриваемых ею процессах действует либо один вид, либо два только что отделившихся друг от друга (или даже еще не завершивших это разделение) вида. Разумеется, никто в здравом уме не отрицает, что любой вид существует и эволюционирует, сложным образом взаимодействуя со множеством других видов (хищниками, жертвами, конкурентами, симбионтами и т. д.), что все они так или иначе посредством этих взаимодействий влияют на его эволюцию, а он — на их. Но теоретических инструментов для рассмотрения такого влияния в понятийном аппарате СТЭ по сути дела нет. Чаще всего все виды, кроме того, который находится в центре внимания, рассматриваются просто как элементы внешней среды, а обратное влияние на них изучаемого вида просто игнорируется. В наилучшем случае предметом рассмотрения становятся попарные взаимодействия: “эволюционная гонка вооружений” между хищником и жертвой или между паразитом и хозяином, взаимные приспособления опылителя и опыляемого растения, раздел “сфер интересов” между видами-конкурентами и т. д.

Но, может быть, и в этом нет ничего плохого? Рассмотрим эволюцию каждого вида в отдельности, рассмотрим попарные связи между ними, а потом, когда наше понимание этих процессов будет достаточно полным, попытаемся из них, как из деталей конструктора, собрать общую картину эволюции. Почему бы и нет?

При таком рассмотрении, однако, некоторые интересные и важные эволюционные феномены автоматически оказываются за пределами поля зрения — у теории, идущей “от элементов”, просто нет возможности их увидеть и нет понятий, чтобы их описать. Примером такого важнейшего эволюционного явления, оставшегося за бортом СТЭ (да и вообще эволюционной теории), можно считать феномен симбиоза и особенно его предельный случай — симбиогенез, превращение сообщества организмов разных видов в единый суперорганизм. Еще в 1869 году (заметим: во времена первого триумфа теории Дарвина и попыток приложить ее буквально ко всем явлениям — не только в биологии, но и в истории, социологии, лингвистике и даже в термодинамике) русский ботаник Андрей Фаминцын установил, что лишайники представляют собой “составную конструкцию” из клеток гриба и водоросли, но при этом ведут себя как целостный организм[64]. Впоследствии было обнаружено немало столь же тесных симбиозов: зеленые растения и бактерии-азотфиксаторы, деревья и грибы, морские сидячие животные и водоросли[65], копытные и разлагающие целлюлозу бактерии, лимонные муравьи и дерево-муравейник дуройя… Но в полной мере эволюционный потенциал феномена симбиоза обозначился только во второй половине 1960-х годов (снова заметим: во время завершения формирования СТЭ и ее максимальной популярности), когда американская исследовательница Линн Маргулис выдвинула идею симбиотического происхождения внутриклеточных органелл (митохондрий и хлоропластов) и в конечном счете — эукариотной клетки как таковой[66]. Позднее, когда прямые сравнения митохондриальных и бактериальных геномов полностью подтвердили гипотезу Маргулис, стало ясно, что сим-биогенез — не редкий курьез, а один из самых важных и плодотворных путей эволюции.

Как же отреагировала на это доминирующая эволюционная теория — СТЭ? А никак. Феномен симбиогенеза и до сих пор не проанализирован с ее позиций, в учебниках по теории эволюции он либо не упоминается вовсе, либо чисто механически включается в список “модусов эволюции”. И не удивительно: в аппарате СТЭ просто нет понятий, позволяющих хотя бы поставить вопрос о механизмах объединения двух совершенно неродственных видов в один. Не говоря уж об осмыслении места этого феномена в общей эволюционной картине.

Можно назвать и другие неявные особенности СТЭ, специфически ограничивающие ее поле зрения — например, понимание вида как чисто генетического феномена, этакой генетической колоды карт, непрерывно тасуемых в ходе скрещиваний и создающих множество разнообразных раскладов, но полностью изолированных от других таких колод. С этой точки зрения целостность вида и его отграниченность от других видов обеспечивается только возможностью (точнее, как раз невозможностью) скрещивания. О другой точке зрения на понятие “вид” мы поговорим в главе 14. Пока же подведем некоторые итоги.

Меньше всего я хотел, чтобы все сказанное в этой главе было воспринято как некая претензия к СТЭ или, хуже того, призыв к отказу от нее. Я всего лишь хотел представить господствующую сегодня эволюционную концепцию такой, какая она есть: как с ее несомненными успехами, так и с ее упрощениями, допущениями, методологическими некорректностями. И показать, что без вторых не было бы и первых. О некоторых возможных путях преодоления ограничений “теоретической оптики” СТЭ мы поговорим подробнее в третьей части книги.

В этой же части нам остается поговорить еще об одном эволюционном феномене, представление о котором ввел в науку еще сам Дарвин и который в последнее время стал предметом довольно интенсивных исследований и жарких дискуссий. Во-первых, без него картина эволюции будет неполной, во-вторых, в истории его изучения ярко и драматично отразились как способность современной науки давать новую жизнь старым идеям, так и поражающая ее временами избирательная слепота к тем идеям и фактам, которые находятся за пределами модного дискурса — даже если они нисколько не противоречат общепринятым представлениям.

Глава 3

Конкурсы красоты как двигатель эволюции

Среди трудностей, с которыми столкнулся Дарвин, работая над теорией эволюции посредством естественного отбора, была и такая: если эволюция всегда идет в сторону создания и развития полезных для организма признаков и черт, то откуда берутся признаки явно бесполезные, более того — заметно осложняющие жизнь своему обладателю и при этом поглощающие немало дефицитных ресурсов? Как, например, могли возникнуть гипертрофированные “украшения”, характерные для многих видов животных, — такие, как роскошный хвост самца павлина[67], рога оленей или глазные стебельки самцов стебельчатоглазых мух Cyrtodiopsis dalmanni (размах которых превышает длину тела самого насекомого)? Вопрос этот был настолько важен и мучителен для Дарвина, что, как признавался он сам в письме к видному американскому ботанику Эйсе Грею, “всякий раз, когда я смотрю на павлиний хвост, мне становится дурно от одного его вида”.

Решение этой проблемы Дарвин нашел и обнародовал только спустя 12 лет после выхода “Происхождения видов”. Обратив внимание на то, что такие “украшения” почти всегда характерны только для одного пола (обычно для самцов)[68], он предположил, что они делают своих обладателей более привлекательными для другого пола. В результате “украшенные” самцы оставляют больше потомства, чем “неукрашенные”, и это преимущество перекрывает все риски, неудобства и затраты, связанные с “украшениями”. Вопрос о том, почему павы предпочитают самых хвостатых павлинов, а оленихи — самых рогатых оленей, Дарвин не рассматривал: откуда нам знать, что считают красивым те или иные создания и почему?

Эта идея Дарвина вызвала резкие возражения со стороны его “дублера” и соратника — Альфреда Уоллеса, увидевшего в ней ненужное “умножение сущностей” и ограничение всемогущества естественного отбора. Он допускал, что борьба за самок может привести к развитию тех признаков у самцов, которые помогают им в непосредственных схватках с соперниками (например, тех же рогов у оленей), но категорически отрицал, что на формирование облика самцов могут влиять эстетические предпочтения самок. И уж тем более — что эти предпочтения могут оказаться сильнее требований приспособленности. По мнению Уоллеса, если бы признаки, нравящиеся самкам, действительно были вредными для своих обладателей, самки с подобными вкусами сами стали бы объектом естественного отбора, который неизбежно очистил бы вид от них. Значит, признаки, которые мы считаем “излишеством и украшательством”, на самом деле чем-то полезны — а если так, то для их формирования вполне достаточно отбора естественного и нет надобности придумывать какой-то еще.

Спор двух первооткрывателей естественного отбора продолжался до конца жизни Дарвина и остался незавершенным. В дальнейшем половой отбор оказался надолго отодвинут куда-то на периферию эволюционной биологии. В первой половине ХХ века в научной печати изредка появлялись публикации на эту тему: одни ученые вслед за Уоллесом вовсе отрицали существование полового отбора, другие его защищали. И совсем уж редко дело доходило до экспериментов. Так в 1926 году была опубликована работа, из которой следовало, что сексуальная привлекательность самцов волнистых попугайчиков очень сильно зависит от пышности их “воротника” и особенно — от числа темных пятен на нем. Состригая или подклеивая темные перья, автор исследования по своему желанию превращал замухрышек во вполне видных кавалеров, а секс-идола — в жалкое пугало.

Пожалуй, самым заметным достижением этого периода стала теоретическая работа выдающегося английского математика и генетика, одного из основоположников СТЭ Рональда Фишера, предложившего в 1930 году возможный механизм действия полового отбора. Фишер рассуждал так. Допустим, в популяции имеется некоторое разнообразие самцов по определенному признаку — например, по той же длине хвоста. У одних самцов хвосты покороче, у других — подлиннее, но у всех — в пределах характерной для данного вида нормы. Ни короткие, ни длинные хвосты не дают своим обладателям сколько-нибудь заметных преимуществ ни объективно, ни в глазах противоположного пола — выбирая будущего супруга, самки не интересуются длиной его хвоста.

Допустим теперь, что в популяции произошла мутация, действие которой выражается в том, что самкам, в геноме которых она оказалась, длиннохвостые самцы нравятся больше, чем короткохвостые. Мутация сама по себе никак не влияет на приспособленность несущих ее самок (а у самцов она и вовсе никак не проявляется), то есть она нейтральна и в силу чисто случайных колебаний частоты (подробнее мы расскажем об этом процессе в главе 7) может получить некоторое распространение в популяции — особенно если та невелика. Не обязательно даже, чтобы эта мутация попала в геномы всех самок — достаточно, чтобы ею обладала заметная часть их. Тогда все эти самки выберут себе в партнеры самцов с хвостом подлиннее. Если вид полигамен, то длиннохвостые самцы могут скреститься со всеми теми самками, которые выбрали бы их по каким-то другим критериям, плюс со всеми любительницами длинных хвостов. То есть общая доля самок, выбравших именно длиннохвостых самцов, окажется выше случайной, и следовательно, признак, до того бывший нейтральным, получит неожиданное селективное преимущество.

Но на этом дело не кончится. Мы предполагаем, что длина хвоста — признак хотя бы отчасти наследственный, и сыновья длиннохвостых самцов в среднем будут иметь более длинные хвосты, чем их сверстники, родившиеся от других отцов. С другой стороны, влечение к длинным хвостам — признак исходно нейтральный, частота его за одно поколение, скорее всего, изменится мало, и в следующем поколении самок любительницы длинных хвостов опять будут составлять заметную долю. Таким образом, сыновья самок, выбравших себе длиннохвостых супругов, окажутся более популярными у самок следующего поколения — а это означает, что и предпочтение длинных хвостов окажется селективно выгодным признаком. Тем самым запускается положительная обратная связь: чем выгоднее для самца иметь длинный хвост — тем выгоднее для самки предпочитать именно таких самцов, и наоборот. Признаки, не дающие своим обладателям никаких объективных преимуществ, с каждым поколением делают друг друга все более выгодными, а отбор на них ведет к тому, что хвосты самцов становятся все длиннее и длиннее (ведь в каждом поколении успех сопутствует самым длиннохвостым) — до тех пор, пока неудобства и опасности, связанные со слишком длинным хвостом, не уравновесят приносимые им преимущества в размножении.

Эта модель, демонстрирующая, как совершенно бесполезный признак может в силу случайных обстоятельств быть подхвачен отбором и развит им до гротескной степени, получила название фишеровского убегания (Fisherian runaway). Она приобрела довольно широкую известность в литературе по эволюции, вошла в учебники, но долгое время оставалась (да в значительной мере и сейчас остается) чисто теоретической схемой — даже огромный авторитет сэра Рональда не смог заинтересовать научное сообщество идеей полового отбора.

По-настоящему о половом отборе вспомнили в 1960-х годах. Однако вскоре властителем дум в исследованиях эволюционных аспектов поведения животных стал подход, получивший название “социобиология”. Подробный разбор его отличительных особенностей не входит в задачу данной книги (тем более что автор этих строк уже кратко рассказал о социобиологии в книге “Введение в поведение”). Для темы этой главы важно то, что одним из постулатов нового направления было представление о безусловной адаптивности любых более-менее регулярных форм поведения. В результате в представлениях о половом отборе возобладал своего рода компромисс между взглядами Дарвина и Уоллеса: да, сексуально-эстетические предпочтения самок могут быть непосредственной причиной развития “украшений” у самцов, однако сами эти предпочтения в большой мере определяются генетически и, следовательно, находятся под контролем естественного отбора. А он-де не допустит, чтобы самкам нравилось то, что вредно скажется на выживании их потомства — пусть даже только мужской его части.

Таким образом половой отбор превращался просто в опосредованную форму отбора естественного. Надо было только придумать, каким образом признаки, явно неадаптивные для их обладателей, могут быть адаптивными для вида в целом. За этим дело не стало: за последние сорок с лишним лет вниманию публики было предложено немало теорий, убедительно объясняющих, почему то, что снижает приспособленность, на самом деле ее повышает. Остроумию авторов некоторых гипотез мог бы позавидовать и Генрих из пьесы Евгения Шварца “Дракон” — автор обзора с характерным заголовком “Почему два, в сущности, больше, чем три?”.

Проще всего, конечно, было бы приписать гипертрофированному “украшению” какую-нибудь утилитарную функцию — и это регулярно делается. До сих пор в серьезных источниках можно прочитать, что олени-де используют свои рога для защиты от хищников — хотя, во-первых, никто такого не видел[69], а во-вторых, непонятно, почему эволюция наделила оружием для защиты только самцов (относительно малоценных для выживания популяции) и отказала в нем самкам, чья жизнь куда ценнее.

То же самое можно сказать о знаменитом зубе полярного дельфина нарвала. У самок этого вида верхние зубы вообще отсутствуют, а у самцов вырастает только один (левый) — но зато какой! Спирально закрученный вокруг собственной оси, исключительно прочный и невероятно длинный (примерно в половину длины тела самого животного — а в былые времена самые крупные самцы-нарвалы достигали в длину шести метров!), он торчит прямо вперед[70]. Уж каких только функций ему не приписывали: инструмент для пробивания льда, специализированный орган осязания и/или температурной чувствительности, охотничье оружие[71]… Но ни одна из подобных версий так и не предложила сколько-нибудь членораздельного ответа на вопрос, почему же столь полезный орган нужен только самцам. Кроме того, трудно подобрать какую-нибудь утилитарную функцию для таких “украшений”, как хвост павлина или глазные стебельки мух-циртодиопсисов. Поэтому в качестве общего объяснения феномена “украшений” обычно выдвигаются более изощренные теории.

Одна из самых популярных среди них — принцип гандикапа, выдвинутый в 1975 году израильским орнитологом Амоцем Захави. Захави предположил, что выбор самок имеет глубокий смысл: если уж самец с таким хвостом (рогами, глазными стебельками и т. д.) ухитрился дожить до брачного возраста — значит, какие-то не менее важные, но скрытые, не воспринимаемые непосредственно достоинства (например, устойчивость к холоду, болезням; эффективность утилизации пищи или еще что-нибудь в таком роде) у него, скорее всего, намного выше среднего. А значит, и дети от такого отца будут наилучшими. Получается, что гипертрофированные структуры — это фора, которую их обладатели дают другим самцам в борьбе за существование. И именно по этой форе самки опознают в них сильных игроков и стремятся заполучить их в мужья. Отсюда и название — “принцип гандикапа”, то есть форы.

Несколько иначе расставляют акценты американские зоологи Джеймс Браун и Астрид Кодрич-Браун, выдвинувшие теорию честной рекламы (truth in advertising theory). Основное ее отличие от принципа гандикапа состоит в том, что если Захави рассматривает “украшения” как помеху для выживания, то Брауны полагают, что они если и не способствуют выживанию сами, то тесно связаны с признаками, способствующими выживанию. Например, рога у оленей требуют больших вложений кальция, фосфатов, энергии, к тому же олени каждый год сбрасывают их, а потом отращивают заново. Потянуть такие расходы может только очень здоровый, упитанный, свободный от паразитов самец. Поэтому-де олениха, выбирая красавца с роскошными развесистыми рогами, не ошибется: это не блеф, не пускание пыли в глаза, а надежный показатель отличного состояния организма — обеспеченного, по всей вероятности, соответствующими генами. Под таким пониманием полового отбора, пожалуй, подписался бы и Уоллес — высказывавший в свое время мысль, что яркость окраски самцов птиц может выступать косвенным показателем их силы и здоровья.

К началу 1990-х годов на роль механизма, увязывающего развитость “украшений” с реальными достоинствами самца, выдвинулась регуляторная система, основным агентом которой служит тестостерон — мужской половой гормон, вырабатываемый семенниками и влияющий как на развитие вторичных половых признаков (причем любых — будь то рога у оленя, гребешок у петуха или борода у человека), так и на сексуальную активность и вообще специфически “самцовые” формы поведения[72]. Это легло в основу еще двух гипотез, по сути представляющих собой видоизменение и конкретизацию принципа гандикапа. Одна из них — гипотеза иммунного гандикапа — исходит из данных о том, что уровень тестостерона отрицательно коррелирует с иммунным статусом — проще говоря, чем “самцовее” самец, тем слабее у него иммунная защита. С учетом этого могучие рога на голове самца-оленя можно рассматривать как сигнал “с моими-то генами я и без иммунитета неуязвим для паразитов и инфекций!” — что должно делать его ценным брачным партнером. Соответственно отбор должен поддерживать вкусы тех самок, которым нравятся большерогие самцы. Другая гипотеза — гипотеза вызова — основана на том, что уровень тестостерона у самцов повышается при увеличении конкуренции с другими самцами. Поэтому-де, выбирая самцов с высоким уровнем тестостерона, самки выбирают наиболее конкурентоспособных.

Нетрудно заметить, что все эти теории и гипотезы при всем различии в деталях и акцентах так или иначе сводятся к тому, что степень развития “украшений” косвенно свидетельствует о хорошем состоянии здоровья и скрытых достоинствах самца, а значит, самке выгодно выбирать именно его в качестве отца своих будущих детей. Иными словами, половой отбор сводится к естественному. Именно такой “мягкоуоллесианский” взгляд на половой отбор преобладает сегодня в исследованиях, посвященных этому феномену.

Господство его, впрочем, не безраздельно: ряд ученых полагает, что “адаптационистская” трактовка справедлива, по крайней мере, не всегда (и в каждом конкретном случае ее уместность нужно доказывать отдельно), а в других случаях половой отбор развивается по старой доброй схеме фишеровского убегания (модель которого была существенно развита и уточнена в 1981–1982 гг. Расселом Ланде и Марком Киркпатриком), подхватывая и развивая совершенно нейтральный, случайно выбранный признак. Наконец, есть и такие, кто считает, что никакого полового отбора не существует вовсе, что это — теоретическая фикция, придуманная дарвинистами для защиты от неудобного вопроса о происхождении явно неадаптивных признаков. Между этими лагерями идут нешуточные полемические баталии, порой не ограничивающиеся чисто логическими и фактическими аргументами. “Считать процесс Фишера — Ланде объяснением полового отбора… методологически безнравственно”, — категорически заявил известный британский этолог, ученик Ричарда Докинза (и разумеется, сторонник “уол-лесовского” подхода) Алан Графен. (И его, в общем-то, можно понять: согласно любой версии модели фишеровского убегания, выбор признака, который будет поддержан половым отбором, случаен. А апелляция к случайности всегда выглядит как отказ от поиска причин, то есть как капитуляция науки.) В свою очередь не менее уважаемый американский орнитолог и один из самых радикальных “фишерианцев” Ричард Прам расценивает точку зрения “адаптационистов” как иррациональную и “почти религиозную” и обвиняет ее сторонников в том, что их взгляды нефальсифицируемы (то есть в принципе не могут быть опровергнуты никакими фактами) — что с точки зрения современной философии науки равносильно обвинению в ненаучности[73]. “Когда им это не удается [увязать предпочитаемые самкой признаки с адаптивностью — Б. Ж.], они делают вывод: «О, мы все равно правы. Мы просто недостаточно старались, чтобы показать, как это может выполняться». А когда они обнаруживают, что это и правда выполняется, они говорят: «Ага-а-а, наша теория подтверждена», — возмущается Прам. — В результате то, что мы видим в литературе… состоит только из примеров, которые укладываются в адаптационную теорию”.

Последнее, впрочем, уже не совсем верно: буквально в последние годы одна за другой выходят публикации, не подтверждающие адаптационистские теории, — порой к удивлению и разочарованию самих авторов. Так, например, весной 2017 года вышла работа сотрудников Антверпенского университета (Бельгия), пытавшихся проверить предполагаемую роль тестостерона на канарейках. Концентрация гормона действительно обнаружила положительную (хотя и не очень высокую) корреляцию со сложностью индивидуальной песни самца, но при этом не коррелировала ни с иммунным статусом, ни с родительским поведением. Правда, участвовавшим в этих опытах птицам не было дано выбирать что-либо — самцы и самки были в случайном порядке соединены исследователями в супружеские пары. Что, впрочем, не помешало одному отечественному ученому увидеть в этих результатах опровержение идеи полового отбора как таковой…

Честно говоря, когда наблюдаешь эти баталии “адаптационистов” с “фишерианцами”, на память невольно приходят споры материалистов XVIII века со сторонниками “естественного откровения”. Последние видели в целесообразности живых форм явное проявление замысла Высшего Разума, первые же полагали, что эта целесообразность могла возникнуть чисто случайно, как результат игры природных сил. Те и другие были уверены, что третьего не дано: либо разумный замысел — либо чистый случай.

Сегодня мы знаем, что ошибочна сама эта дилемма: естественный отбор прекрасно обходится без первого и не сводится ко второму. Но философы и натурфилософы XVIII века этого знать не могли — до появления теории Дарвина оставались еще долгие десятилетия, естествознание еще не выработало саму систему понятий, пользуясь которой Дарвин смог прийти к своей гениальной догадке. А вот споры эволюционных биологов века XXI выглядят ремейком придуманного замечательным советским медиевистом Вадимом Рабиновичем диспута двух великих схоластов о том, есть ли глаза у крота. Как известно, герои этого апокрифа целый день обменивались изощреннейшими логическими аргументами, но когда оказавшийся случайным свидетелем их спора садовник предложил просто поймать крота и посмотреть, есть ли у него глаза, они оба наотрез отказались это делать. Примерно так же ведут себя все стороны дискуссии о половом отборе, старательно не замечая еще одного возможного решения проблемы, предложенного еще в середине прошлого века.

На рубеже 1930-х — 1940-х годов замечательный голландский ученый Николас Тинберген занимался экспериментальной проверкой идей своего старшего друга Конрада Лоренца о том, как устроено врожденное поведение животных. В частности, Тинбергена интересовало, какие именно признаки превращают тот или иной объект в релизер — ключевой стимул, запускающий то или иное (брачное, агрессивное, родительское и т. д.) поведение. Тинберген и его сотрудники много экспериментировали с макетами, воспроизводящими те или иные естественные (для определенного вида животных) стимулы: самку бабочки-бархатницы, самца рыбки колюшки в брачном наряде, голову взрослой чайки, чаячье яйцо и т. д. Здравый смысл подсказывал, что чем больше макет похож на оригинал, тем сильнее будет реакция на него. Однако ученые с удивлением обнаружили, что почти для любого врожденного стимула можно создать такой макет, который вызовет у животного более сильную реакцию по сравнению не только с макетом, точно воспроизводящим настоящий стимул, но даже с ним самим. Отличия этих макетов (Тинберген назвал их сверхнормальными или сверхоптимальными стимулами; сейчас их обычно называют просто сверхстимулами) от их природных прототипов в разных случаях были разными, но обычно укладывались в простое правило “побольше и поярче”. Чайки, забыв о собственной кладке, пытались насиживать искусственное яйцо (очень похожее по раскраске на чаячье, но только размером едва ли не с саму птицу); самцы колюшки атаковали блесну, нижняя половина которой была окрашена в ярко-красный колер оттенка “вырви глаз”, яростнее, чем живых соперников, и т. д.

Концепция сверхстимулов заняла важное место в теоретических представлениях этологии (науки о поведении животных, основанной Лоренцем и Тинбергеном) — она отражает очень важный принцип работы нервной системы, проявляющийся, по-видимому, не только в инстинктивном поведении, но во многих формах поведения, начиная с простого восприятия. Но нас сейчас интересует роль этого явления не в поведении в целом, а именно в брачном поведении и даже более конкретно — в выборе партнера для спаривания.

Стоит взглянуть с этой точки зрения на проблему полового отбора — и все встает на свои места. Любой особи в брачный сезон надо быстро и издалека определять пол любого встречного соплеменника — поскольку от этого зависит, вести ли себя с ним как с соперником или как с возможным брачным партнером. Особенно актуальна эта задача у полигамных видов, где у самцов нет времени на долгие и сложные церемонии ухаживания — пока он будет крутить роман с одной самкой, остальных расхватают другие самцы[74]. Поэтому у таких видов часто возникают хорошо заметные, видимые издалека отличия самцов от самок. Какой именно признак станет сигналом “мужественности” или “женственности” — в значительной мере дело случая. (Хотя выбор все-таки не совсем произволен: скажем, яркая окраска и вообще признаки, делающие их носителя в целом более заметным, обычно характерны для самцов. Самка не может позволить себе слишком броской внешности: это навлекло бы дополнительную опасность не только на нее саму, но и на ее потомство, к которому она будет надолго привязана. Исключения тут обычно подтверждают правило: если у какого-то вида — например, у куликов-плавунчиков — самки окрашены ярче самцов, то можно не сомневаться, что у этих птиц основную заботу о потомстве несут не матери, а отцы.) Однако после того, как выбор сделан и каждый пол обзавелся собственными гендерными атрибутами, в дело вступает механизм сверхстимула: самки неизбежно начинают предпочитать тех самцов, у которых эти атрибуты больше и ярче[75]. Так возникает половой отбор, который неуклонно будет сдвигать “самцовые” признаки в сторону сверхстимула: хвост будет становиться все пышнее, рога — все развесистее, глазные стебельки — все длиннее. И так до тех пор, пока приносимый таким “украшением” выигрыш в размножении не будет уравновешен связанными с ним дополнительными рисками — либо пока “украшение” не достигнет предельных для сверхстимула параметров. Обратного хода этот механизм не имеет: даже когда развитие признака упрется в адаптивный предел, самки все равно будут выбирать самых “украшенных” самцов и не обращать внимания на тех, у кого “украшения” развиты слабее[76].

К адаптивности все это не имеет никакого отношения — это просто неизбежный побочный эффект механизмов восприятия. Степень развития “украшений” никак не связана с “объективной” приспособленностью их обладателя. Но и произвольным или случайным такое направление эволюции сигнальных признаков тоже не назовешь — оно всегда идет в сторону усиления заметности, яркости, если угодно — выразительности отличительных признаков самца. Это существенно, поскольку одно из возражений против модели фишеровского убегания состоит в том, что реальная эволюция-де никогда не идет в сторону редукции сигнальных структур — скажем, укорочения хвоста, уменьшения рогов и т. д.[77] В то время как из фишеровской модели следует, что такое направление полового отбора столь же вероятно, как и отбор на усиление признака. Но привлечение концепции сверхстимула снимает и это возражение: меньшая по размеру или менее заметная телесная структура не может играть роль сверхстимула по отношению к исходной норме.

Лишается силы и возражение Уоллеса: если, мол, идеал мужской красоты у самок не будет совпадать с максимумом приспособленности, естественный отбор скорректирует их вкусы. Влечение самок к обладателям гипертрофированных “украшений” — не произвольный каприз, а проявление общего принципа организации поведения. Чтобы нейтрализовать его, пришлось бы, вероятно, изменить самые фундаментальные механизмы работы нервной системы. А это вряд ли возможно (по крайней мере, для естественного отбора — ведь для него нужно, чтобы не только конечный результат, но и каждый шаг к нему был бы чем-то выгоден) и уж точно эволюционно труднее, чем использовать имеющиеся механизмы, мирясь с тем, что они сплошь и рядом заставляют животных тратить ресурсы на формирование ненужных и обременительных “украшений”.

Сказанное, разумеется, не означает, что механизмы фишеровского убегания или “честной рекламы” не могут играть совсем никакой роли в половом отборе. В конце концов, самкам могут нравиться не только развесистые “украшения”, но и вполне функциональные, полезные своему обладателю признаки. (Правда, в таких случаях бывает очень трудно определить, каков вклад именно полового отбора в развитие данного признака — ведь и “обычный” естественный отбор действует в ту же сторону.) Но, на мой взгляд, история представлений о половом отборе и современное состояние этого вопроса представляют интерес не только с точки зрения биологической эволюции, но и с точки зрения изучения самой науки как социального феномена. Вообще говоря, в истории науки не так уж редки случаи, когда однажды сделанные (и даже получившие признание) открытия в дальнейшем оказывались забыты и переоткрыты вновь спустя много десятилетий или когда достижения одной области науки по необъяснимым причинам долгое время оставались неизвестными в другой, где они могли бы оказаться весьма полезны. Но даже на этом фоне игнорирование открытий этологии исследователями полового отбора выглядит поразительным: ведь большинство работающих в этой области ученых — не кабинетные теоретики, а полевые исследователи поведения животных (или долгое время были таковыми). Все они, безусловно, знакомы с классической этологией, а некоторые даже имели возможность лично учиться у ее основателей. И все это не помогло им вспомнить о ней, оказавшись перед ложной дилеммой “адаптивность или случайность”.

* * *

Итак, мы ознакомились с современными представлениями об эволюции живых организмов — по крайней мере, с теми эволюционными процессами, которые видны при рассмотрении особей, популяций и вида в целом. Разумеется, знакомство получилось довольно беглым: рассказ хотя бы обо всех направлениях современных исследований в этой области (не говоря уж о конкретных работах) занял бы как минимум весь объем этой книги. Вероятно, такую книгу следовало бы написать, но автор данной книги не чувствует в себе достаточно сил и познаний для столь всеобъемлющего труда. Кроме того, такая книга, даже и написанная в научно-популярном жанре, неизбежно потребовала бы от читателя более основательных познаний в биологии, чем (как я надеюсь) требует эта. Тем, кто хочет узнать о современных эволюционных концепциях и основных направлениях эволюционных исследований более глубоко и детально, я могу порекомендовать книгу Александра Маркова и Елены Наймарк “Эволюция. Классические идеи в свете новых открытий”. Она тоже не исчерпывает всего разнообразия направлений современных эволюционных исследований, но по крайней мере дает представление и об этом разнообразии, и о сложности и изощренности тех вопросов, которые стоят сегодня перед исследователями.

Задача же, которую я ставил перед собой в этой книге, — в другом: рассказать о том, как соотносится теория эволюции на основе естественного отбора с другими областями науки о живом, с другими естественными науками и наконец — с культурой в целом. Как отвечает современный дарвинизм на вызовы нашего времени, возникшие уже после не только выхода “Происхождения видов”, но и формирования основных положений СТЭ? Последние десятилетия были временем необычайных открытий в самых разных областях биологии и других наук. Кроме того, вопросы эволюции волнуют не только специалистов: к ним обращаются философы и физики, вокруг них кипят нешуточные мировоззренческие баталии. Как согласуется теория естественного отбора с новыми фактами, как выглядит она в свете новых концепций?

Рассмотрение этих вопросов, которым будут посвящены III и IV части книги, даст нам заодно хорошую возможность поговорить о тех аспектах эволюционной теории, что остались за пределами первой части. Но прежде мы рассмотрим другой вопрос: а каковы альтернативы дарвинизму? Каких результатов достигли к нашему времени другие эволюционные концепции? Может быть, нынешнее господство СТЭ — не более чем результат инерции мышления ученых? И проблемы биологической эволюции гораздо глубже и успешнее решаются в недарвиновских теориях, несправедливо отодвинутых на периферию научного мира?

Оглавление

Из серии: Библиотека фонда «Эволюция»

* * *

Приведённый ознакомительный фрагмент книги Дарвинизм в XXI веке предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

6

В 2008 году петербургский математик Сергей Вакуленко доказал теорему, утверждающую, что иным (аналоговым) образом наследственная информация и не может быть записана. Если опустить математические подробности, смысл доказательства — в том, что у аналоговой записи нет порога интенсивности внешнего воздействия: любое сколь угодно слабое воздействие на такую запись (тепловое движение молекул, колебания любого физического поля и т. д.) неизбежно будет как-то ее изменять. С таким потоком “мутаций” не может справиться никакой естественный отбор: запись быстро разрушится или, по крайней мере, утратит всякую идентичность. Биологи давно догадывались, что для наследственной информации альтернативы дискретной записи нет. Но теперь это уже не догадка, а доказанное утверждение. Нельзя также не заметить, что соображения, лежащие в основе “теоремы Вакуленко”, совершенно аналогичны тем, по которым в 1900 году Макс Планк ввел в физику понятие кванта.

7

Последнее справедливо не для всех живых существ. Например, все прокариоты (не имеющие клеточного ядра и других внутриклеточных мембранных структур организмы, к которым относятся бактерии и археи) содержат одинарный набор генов. Ряд других организмов (многие грибы, простейшие и т. д.) имеют сложный жизненный цикл, значительную часть которого проводят в гаплоидном состоянии, т. е. с одинарным набором генов; у мхов гаплоидная фаза занимает почти весь жизненный цикл. Кроме того, этому правилу не подчиняются гены, находящиеся в половых хромосомах (так, у млекопитающих, в том числе и у нас, гены, расположенные в Х-хромосоме, у самок присутствуют в двух экземплярах, а у самцов — в одном). Известны и другие исключения из этого правила.

8

Можно сказать, что сами эти слова претерпели мутацию — ведь латинское слово mutatio означает всего лишь “изменение”.

9

Именно это дает возможность применять рентгеновские лучи в медицине для исследования внутренних органов и тканей. Но по этой же причине во многих случаях приходится вводить в исследуемую структуру рентгеноконтрастное вещество (например, сульфат бария), без которого она просто невидима.

10

Тем не менее альфа — и бета-частицы могут поражать и внутренние ткани человека — при вдыхании или проглатывании радионуклидов, испускающих эти частицы при распаде. Однако даже в таком случае они вряд ли смогут повредить половые клетки.

11

Как проникающая способность излучения, так и его разрушительное действие определяются интенсивностью его взаимодействия с веществом ткани. Чем сильнее это взаимодействие (зависящее прежде всего от энергии частиц, а также от наличия у них заряда и от некоторых других свойств), тем выше повреждающее действие каждой частицы — но тем ниже проникающая способность данного вида излучения.

12

Такой надежностью обладает система копирования ДНК у эукариот (организмов, обладающих клеточным ядром и другими сложными внутриклеточными структурами) благодаря комплексам репарации — своеобразным ферментам-корректорам, контролирующим соответствие копии оригиналу. У бактерий системы копирования и репарации не столь совершенны, поэтому частота ошибок у них выше примерно в 100 раз, а в стрессовых условиях увеличивается еще больше (см. подробнее главу 10).

13

Строго говоря, и радиация, и химические мутагены тоже действуют почти исключительно на активно делящиеся клетки, поскольку вызвать включение “не того” нуклеотида при копировании намного легче, чем заменить или изменить нуклеотид в туго скрученной, защищенной белковыми молекулами ДНК неделящейся клетки. Но нам важно, что мутации могут происходить и спонтанно, без влияния каких-либо повреждающих агентов — и подавляющее большинство природных мутаций имеет именно такую природу.

14

Причем у мужских и женских половых клеток число этих делений сильно различается: ведь сперматозоиды порождаются сперматогенным эпителием в течение всей жизни мужчины, в то время как все яйцеклетки закладываются в организме женщины еще во внутриутробном периоде. Помимо всего прочего это объясняет, почему вероятность некоторых генетических (или сильно зависящих от генов) заболеваний у детей зависит от возраста отца — но не от возраста матери.

15

Подробнее о мутациях человека можно прочитать в прекрасной книге Армана Мари Леруа “Мутанты” (см. список литературы).

16

Как известно, каждая аминокислота в белке кодируется триплетом — последовательностью из трех нуклеотидов в соответствующем участке ДНК. Однако аминокислот всего 20, а возможных триплетов — 4×4×4=64 (в действительности — 61, так как три триплета используются как знаки остановки синтеза). Таким образом, каждой аминокислоте соответствуют несколько триплетов, и если в результате мутации один триплет превратится в другой, но кодирующий ту же аминокислоту, это никак не скажется на кодируемом белке. (Например, если в триплете ЦЦЦ, кодирующем аминокислоту глицин, последний цитозин заменить на любой другой нуклеотид, получившийся триплет все равно будет кодировать глицин.) Такие мутации называются синонимичными.

17

Это главная причина того, что мутации чаще всего рецессивны, т. е. проявляются только у тех организмов, у которых оба экземпляра гена представлены мутантным вариантом. Однако известны и доминантные мутации, проявляющиеся даже тогда, когда мутантным оказывается только один ген из двух имеющихся.

18

Из этого правила известны и исключения. Так, например, в 2017 году молекулярные биологи Чикагского университета обнаружили, что у слонов одна из дополнительных копий гена lif, участвующего в предотвращении злокачественного перерождения клеток, побывала псевдогеном, но затем “воскресла” — вновь превратилась в работающий ген.

19

Снип — от английской аббревиатуры SNP — single nucleotide polymorphism, то есть “однонуклеотидный полиморфизм”.

20

При этом организм воспроизводит в многократно усиленном виде не только мутационный процесс, но и действие отбора: те клетки, чьи мутантные антитела связываются с антигеном лучше, чем исходные, начинают размножаться еще интенсивнее, те же, у кого мутация ухудшила эти способности антител, замедляют или даже прекращают размножение.

21

Как мы увидим в главе “И все-таки они наследуются. Но…”, иногда бактериям-мутантам все же удается выйти из такого положения — но не из дарвиновской модели эволюции.

22

Исключением можно считать процесс сплайсинга (см. “Атомы наследственности”). Но его результаты не фиксируются в геноме — продуктом сплайсинга является мРНК, выходящая затем в цитоплазму и живущая там очень недолго.

23

В 1920-х годах нечто подобное обсуждалось в научной литературе всерьез. В ту пору еще ничего не знали о роли нуклеиновых кислот в передаче наследственной информации и о генетическом коде, но уже было известно, что наследственные свойства организмов определяются генами, находящимися в клеточном ядре. Однако некоторые ученые полагали, что признаки, характерные для всего вида (а тем более — для рода, семейства, отряда и т. д.), определяются каким-то иным образом, что их носители локализованы в цитоплазме и что на этих же носителях записана программа будущей макроэволюции данной группы организмов. Таким образом, они полагали, что если субвидовая и видовая эволюция обеспечивается дарвиновскими механизмами, то эволюционные преобразования более высокого уровня — процесс в основном автогенетический, разворачивание внутренней программы.

24

Заметим, что именно это и происходит со сложными многоклеточными организмами, в геноме которых записана программа их индивидуального развития.

25

Так назвал естественный отбор знаменитый американский писатель-фантаст и популяризатор науки Айзек Азимов. В этом названии содержится намек на сходство действия отбора с работой “демона Максвелла” — воображаемого существа из мысленного эксперимента британского физика Джеймса Клерка Максвелла, которое способно вносить упорядоченность в хаотическую систему без затраты энергии.

26

При этом, однако, Дарвин специально оговаривает, что, хотя говорить, “что растение на окраине пустыни ведет борьбу за жизнь против засухи”, допустимо, “правильнее было бы сказать, что оно зависит от влажности”. А против приложения этого понятия к взаимоотношениям паразита и хозяина он прямо возражает: “Омела зависит от яблони и еще нескольких деревьев, но было бы натяжкой говорить о ее борьбе с ними… Правильнее будет сказать, что несколько сеянок омелы, густо растущих на одной и той же ветви, ведут борьбу друг с другом”. Ниже я постараюсь показать, что именно такое понимание “борьбы за существование” наиболее плодотворно.

27

Уакари — южноамериканская обезьяна семейства саковых.

28

Желающие узнать об этом подробнее могут обратиться, например, к книгам Ричарда Докинза “Эгоистичный ген” и “Расширенный фенотип”.

29

Пользуясь случаем, можно заметить: подобные недоразумения — обычный результат смешения субъективных желаний и намерений того или иного организма и объективной эволюционной выгоды для того вида, к которому он принадлежит. Казалось бы, наивное отождествление желаний особи с направлением эволюции вида (“становление птиц началось с того, что однажды одна небольшая ящерка захотела летать и принялась упражняться в прыжках…”) ушло из науки вместе с додарвиновскими эволюционными концепциями. А вот поди ж ты — жив курилка! И не только в умах неспециалистов, но и во вполне серьезной научной литературе. В частности, на таком смешении основан “принцип гандикапа” Амоца Захави (о котором мы будем говорить в главе 3) и целый ряд других теоретических построений социобиологической школы.

30

Разумеется, это утверждение совершенно симметрично: если волки — фактор внутривидовой конкуренции для зайцев, то в той же мере зайцы — фактор внутривидовой конкуренции для волков, обеспечивающие преимущество тем особям, которые охотятся эффективнее других.

31

Об этих коалициях, бесконечных сражениях между ними и роли того и другого в эволюции мы будем подробно говорить в главе 17.

32

Так переводятся на русский язык латинские видовые названия этих инфузорий — Paramecium aureum и P. caudatum.

33

Можно даже предположить, что это изменит направление дальнейшей эволюции рыжей белки: если до сих пор она оставалась видом-универсалом, сочетавшим питание семенами хвойных и плодами некоторых лиственных деревьев (орешника, дуба, бука и т. д.), то в дальнейшем она будет все более специализироваться на поедании хвойных семян.

34

Именно этот ученый ввел в науку сам термин “ген”, а также понятия “генотип” и “фенотип”.

35

На самом деле эти опыты доказали одно важное (хотя и кажущееся сегодня тривиальным) положение: хотя отбор действует лишь на внешние признаки, его эффективность целиком определяется тем, насколько они детерминированы генами. С признаками, разнообразие которых не имеет генетической составляющей, отбор ничего сделать не может.

36

Сказанное, разумеется, не означает, что данные, полученные в лабораторных эволюционных экспериментах, заведомо некорректны и ничего не стоят. Но даже для того, чтобы правильно оценить их значение, нужно иметь возможность сопоставить их с реальными эволюционными процессами в природе.

37

Первая работа такого рода была выполнена еще в 1957 году, но непрерывные исследования начались в 1970-х.

38

Первые достоверные отличия были отмечены уже через 2,5 года, что примерно соответствует четырем поколениям гуппи.

39

На самом деле в работе, о которой идет речь, были обнаружены и некоторые неожиданные факты, не соответствовавшие исходным предположениям. Однако это касалось более частных теоретических вопросов, которые мы здесь обсуждать не будем.

40

У некоторых каракатиц (которые, как известно, способны быстро менять цвет своих покровов) отмечено интересное поведение мелких самцов. Не имея никаких шансов в схватках за самку с более крупными соперниками, такой самец, тем не менее, рискует вклиниваться между самкой и ухаживающим за ней крупным самцом — и нередко добивается своего. При этом сторона тела, обращенная к самке, пылает красным (цвет самца в состоянии полового возбуждения), а та сторона, которую видит могучий соперник, окрашена в нежно-голубые тона (умиротворяющий сигнал, означающий признание своего поражения в поединке и блокирующий агрессию победителя). Такому коварству позавидовал бы и лукавый овцевод Джексон Птица из рассказа О. Генри “Пимиентские блинчики”!

41

Свой расцвет такие концепции переживали в последние десятилетия XIX века, и многие полагают, что они так и остались в том времени. Однако и в 1920 году кумир тогдашних интеллектуалов Бернард Шоу резко критиковал Дарвина за игнорирование воли, стремления, стараний самих организмов как главного двигателя эволюции. Тогда же, в 20-е годы прошлого века, была чрезвычайно популярна концепция “творческой эволюции” французского философа Анри Бергсона, в основе которой, по мысли ее автора, лежал “жизненный порыв” (élan vital). Сегодня такой взгляд вызывает у специалистов лишь снисходительные улыбки — что не мешает некоторым из них при построении социобиологических моделей регулярно путать объективные эволюционные выгоды с субъективными намерениями, знаниями и предположениями индивидуумов. Впрочем, индивидуально выработанные и распространившиеся затем путем обучения и подражания формы поведения могут задавать новые направления отбора — и тем самым в какой-то мере действительно определять направление дальнейшей эволюции.

42

При этом, правда, результаты эксперимента не позволяют судить, произошло ли это изменение под действием отбора или оно стало результатом индивидуального обучения. Впрочем, в данном случае это не принципиально: анолисы могли обучиться искать спасения на деревьях, но вряд ли обучились укорачивать себе лапы — это уже безусловно эволюционное изменение.

43

Заметим, что и это привело не к опровержению теории Ньютона, а лишь к ограничению области ее применения. Она по-прежнему рассматривается как образец естественнонаучной теории.

44

Воздействовать на такие признаки отбору даже в каком-то смысле легче: суммарное разнообразие нескольких независимых генов почти всегда больше разнообразия единственного гена. Однако разобраться в механизмах отбора в этом случае гораздо сложнее, поэтому простые моногенные модели у исследователей намного популярнее.

45

Таксоном в биологической систематике называют систематическую группу любого ранга, т. е. группу организмов, занимающую определенное место в системе живых существ, входящую в состав более широкой общности (таксона более высокого ранга) и состоящую из более узко определенных групп (подтаксонов). Основные ранги таксонов — вид, род, семейство, отряд (порядок), класс, тип (отдел) и царство. Каждый таксон представляет собой объединение таксонов более низкого ранга: род состоит из видов, семейство — из родов и т. д.

46

ТЗ — техническое задание. Так в инженерии называется перечень требований, коим должно удовлетворять устройство, которое пока еще не создано, но нужда в котором уже есть. Составление ТЗ — самый первый этап конструирования.

47

Сказанное, разумеется, не означает, что мутации в генах, управляющих морфогенезом, не могут стать материалом для эволюции. Напротив, никакое изменение размеров и пропорций тела, не говоря уж о появлении новых органов и структур, невозможно без изменений в таких генах. Но при этом материалом для отбора служат мутации, лишь немного изменяющие активность производимого геном белка, а также мутации в регуляторных (некодирующих) участках ДНК, столь же плавно меняющие активность самого гена.

48

Справедливости ради следует сказать, что эту идею высказывали и поддерживали в основном лингвисты, в то время только начинавшие свое знакомство с биологией. Позднее, по мере углубления знаний о генетике и эволюции, некоторые из них — в частности, профессор Бикертон — отказались от этой гипотезы.

49

На первый взгляд, исключение составляют некоторое полностью водные хвостатые амфибии — такие как протей. Однако, как мы увидим в дальнейшем (см. главу 12), эти существа представляют собой просто личинок, отказавшихся от взрослой стадии жизненного цикла. Так что и в этом случае речь не может идти о восстановлении жабр, поскольку личинки амфибий никогда их не утрачивали. Тем не менее восстановление утраченных структур все же возможно, если их утрата вызвана единственной мутацией в гене-регуляторе высокого порядка, а времени после утраты прошло мало, и в других генах, участвовавших в формировании приспособления, разрушительные мутации еще не накопились. Тогда одной обратной мутации бывает достаточно, чтобы восстановить утраченное. Так, известны насекомые (некоторые палочники, жуки-листоеды — например, амброзиевый листоед Zygogramma suturalis, утратившие было крылья, но затем вновь обретшие их. Поэтому положение о необратимости эволюции имеет статус принципа, а не закона.

50

Конкретные причины такой невозможности могут быть разные. Если в случае с псевдогенами это связано с необходимостью нескольких согласованных мутаций, то многие морфологические и физиологические изменения не имеют “обратного хода” потому, что со временем “обросли” следующим поколением адаптаций, утрата которых (в случае возврата к предковому состоянию) обойдется слишком дорого.

51

В англоязычной литературе такой отбор называется “отрицательным”, а отбор, приводящий к изменению признака (движущий), — “положительным”.

52

О том, что это такое и как соотносится с дарвиновской эволюцией, мы подробно поговорим в главе 7.

53

Возможно, распространенные поверья о “расчетах современных ученых”, якобы показывающих недостаточность наблюдаемой частоты мутаций для объяснения эволюции (см. “Вступление”), представляют собой отголосок этого противоречия.

54

Джулиан Хаксли — родной внук знаменитого Томаса Хаксли (в традиционной русской транскрипции — Гексли), прозванного “бульдогом Дарвина” за постоянную готовность защищать эволюционную теорию. Внук оказался достойным своего деда: о вкладе Дж. Хаксли в разные области биологии можно написать целую книгу.

55

Эти представления иногда также называют “неодарвинизмом”, “современным дарвинизмом”, “синтетизмом” и т. д.

56

Слово “статистические” здесь означает, что популяции различаются не наличием каких-то аллелей или признаков, которые имеются в одной популяции и отсутствуют в другой, а только частотами того или иного аллеля или признака. Например, среди тех же волков особи с черной окраской встречаются как в Евразии, так и в Америке, но в евразийских популяциях это большая редкость, а в американских так окрашен каждый шестой или седьмой волк.

57

Разумеется, так происходит далеко не всегда — известны случаи, когда формы, считавшиеся хорошо обособленными видами, при исчезновении разделявшей их физической преграды полностью сливались друг с другом. Так, например, произошло с рыжим волком Canis rufus, еще недавно обитавшим на юго-востоке США. Массовая вырубка лесов, отделявших ареал рыжего волка от ареала его ближайшего родича — койота C. latrans, позволила этому последнему распространиться далеко на восток. Разделившиеся было формы вновь начали скрещиваться, и относительно малочисленный рыжий волк вскоре был полностью поглощен койотом.

58

Большой погремок (Rhinanthus angustifolius, во времена Цингера именовался Alectorolophus major) — полупаразитическое растение семейства заразиховых, растет как на лугах, так и в посевах культурных злаков, где является сорняком.

59

Если не считать работы самого Шапошникова: в итоговой статье 1978 года он интерпретировал результаты своих опытов как экспериментальное подтверждение эффекта “квантовой эволюции” — резких эволюционных переходов при смене адаптивной зоны, постулированных в 1944 году американским палеонтологом Дж. Симпсоном. Это не объясняло, однако, почему возникающая в такой эволюции форма оказывается столь сходной с уже существующим видом.

60

Помимо самого факта воспроизведения уже существующего вида в работах Шапошникова поражала скорость этого процесса: изменения занимали всего несколько десятков поколений, а самые принципиальные происходили всего за 7–10 поколений. Между тем именно тли отличаются изрядной эволюционной стабильностью: ряд ископаемых форм, известных из плиоцена и даже миоцена (то есть живших более пяти миллионов лет назад), морфологически неотличим от современных видов. Получается, что реальная и потенциальная скорости эволюции у одной и той же группы могут различаться на пять-шесть порядков.

61

Параллелизм — сходство дальнейшей эволюции родственных, но уже отделившихся друг от друга групп; конвергенция — вторичное приобретение сходства группами, первоначально сильно отличавшимися друг от друга. Можно сказать, что параллелизм — это сохранение сходства в ходе дальнейших изменений, а конвергенция — это приобретение сходства.

62

О том, насколько справедливо и полно такое представление, мы поговорим в главе 15.

63

И это не всегда остается лишь ритуальными словами. Например, одно из самых красивых достижений СТЭ — анализ феномена так называемого “сбалансированного генетического полиморфизма”, парадоксальной ситуации, когда вредная и даже приводящая к смерти мутация может не только сохраняться в популяции неограниченно долго, но и получать довольно широкое распространение. Классический пример этого явления — мутация, вызывающая у людей серповидно-клеточную анемию. Ребенок, у которого обе копии гена несут эту мутацию, обречен умереть в первые годы жизни — его кровь не справляется с переносом кислорода. Но гетерозиготы по этой мутации (то есть те, у кого одна копия гена мутантная, а другая — нормальная) имеют огромное преимущество: в их эритроцитах не может жить возбудитель малярии. В результате в некоторых местностях большинство коренных жителей оказываются носителями этой мутации — смертоносной и спасительной одновременно.

64

Согласно современным исследованиям, во многих (если не в большинстве) лишайников присутствуют два разных вида грибов. Один из них образует мицелий (многоклеточную грибную ткань), служащий основой “тела” лишайника — таллома. Другой гриб подобен дрожжам: его клетки не соединяются друг с другом, но при этом они необходимы для взаимодействия “талломного” гриба и водоросли. Эти результаты, помимо всего прочего, означают, что простая и наглядная модель возникновения лишайника (захват грибным мицелием водорослевых клеток) вряд ли соответствует действительности или, по крайней мере, справедлива далеко не для всех видов лишайников. Видимо, этот симбиоз формировался каким-то более сложным путем.

65

Только один пример того, как участие в симбиозе может изменить направление эволюции: предки самого большого в мире двустворчатого моллюска — гигантской тридакны — когда-то имели довольно развитые глаза, но полностью утратили их при переходе к фактически сидячему образу жизни. Однако позднее тридакна вновь обзавелась примитивными простыми глазками, которые она использует для наилучшего “экспонирования” на свету частей своего тела, заселенных симбионтами — одноклеточными водорослями.

66

Идею симбиотического происхождения хлоропластов выдвигали еще Фаминцын и его коллега Константин Мережковский; наиболее глубоко ее разработал известный советский ботаник Борис Козо-Полянский. Однако к 1960-м годам эти гипотезы были прочно забыты, и Маргулис ничего не знала о своих русских предшественниках. К чести исследовательницы, узнав о них, она не только официально признала их приоритет, но и организовала издание английского перевода книги Козо-Полянского.

67

Строго говоря, огромный веер из ярких перьев, распускаемый самцом-павлином, — это не хвост, а надхвостье, другая часть птичьего оперения. Если взглянуть на павлина с распущенным “хвостом” сзади, то можно увидеть настоящий хвост — неяркий и не очень длинный, состоящий из жестких прямых перьев. Но простоты ради мы и дальше будем называть главное украшение павлина хвостом.

68

Из этого правила есть, однако, и исключения. Например, у цикад-горбаток (семейство Membracidae) особи обоих полов несут на спинной стороне первого грудного сегмента “шлемы” — разнообразные выросты чрезвычайно причудливых форм. Размер этих выростов часто сопоставим с размером тела самого насекомого. Функция этих выростов до сих пор не выяснена, а эволюционный механизм их появления остается предметом гипотез.

69

В отличие от оленей многие крупные полорогие (в частности, зубры) действительно применяют рога для самозащиты и защиты детенышей. Однако у тех видов, которые используют рога таким образом, как правило, рогаты и самцы, и самки, причем круглый год — регулярной смены рогов (как у оленей) у них не происходит. Да и сами рога у них куда меньше по размеру, зато эффективнее в качестве оружия.

70

В Средние века изредка попадавший на европейские рынки бивень нарвала считался “рогом единорога” и очень высоко ценился. Он запечатлен средневековыми и более поздними художниками на изображениях мифических единорогов. Это нашло отражение и в латинском названии нарвала — Monodon monoceros (второе слово в переводе с греческого и означает “единорог”). Кстати, в старой русской зоологической литературе нарвала нередко называли единорогом.

71

Как раз в те дни, когда писалась эта глава, в интернете был опубликован видеоролик, в котором нарвал действительно использовал свой бивень для добычи рыбы. Комментируя это видео, специалист по морским млекопитающим Ольга Филатова напомнила, что рыбоядные китообразные вообще склонны использовать на охоте различные вспомогательные средства — например, собственные хвосты. Она не без язвительности заметила, что если считать такие наблюдения достаточным доказательством того, что основное назначение бивня — охота, то с таким же успехом можно утверждать, что козлиные рога предназначены для чесания задницы. И приложила ролик, в котором козел использует свои рога именно таким образом.

72

При этом, правда, выяснилось, что высокий уровень этого гормона подавляет родительское поведение, так что самка, выбирая самого “тестостеронового” самца, обрекает себя на роль матери-одиночки. Но для нашей темы это не имеет особого значения: как уже говорилось, признаки-“украшения” характерны для полигамных видов, в которых успешные самцы вряд ли могли бы внести существенный вклад в выращивание своего многочисленного потомства, даже если бы им этого очень хотелось.

73

О том, почему это так, мы будем подробнее говорить в главах 13 и 16.

74

Как мы уже знаем, у видов моногамных самцы обычно внешне мало отличаются от самок. Зато для этих видов часто характерны долгие и сложные церемонии, предшествующие образованию пары.

75

Что касается самцов, то у полигамных видов они обычно ничего не выбирают, а пытаются спариться с любой оказавшейся в поле зрения самкой. Главное для них — определить, что это именно самка, а не, допустим, самец-подросток, еще не обзаведшийся явными признаками своего пола.

76

Нетрудно видеть, что в этой модели нет нужды приписывать самкам какие-то специальные гены, побуждающие их выбирать именно таких самцов. Если какой-то признак стал маркером зрелого самца, то самцов, у которых этот признак выражен сильнее, будут предпочитать все самки с нормальным брачным поведением.

77

В эксперименте такая ситуация все же возможна. Так, в 1994 году британские исследователи Уилкинсон и Рейлло показали, что если в лабораторной популяции уже знакомых нам стебельчатоглазых мух вести отбор самцов на уменьшение “размаха глаз”, то через некоторое число поколений в этой линии изменятся и предпочтения самок: они начнут выбирать “короткоглазых” самцов. Возможно, эта инверсия предпочтений — результат именно фишеровского убегания, выступающего в данном случае в чистом виде. В природе, однако, такие ситуации не обнаружены.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я