Возможны ли измерения в теории относительности? Конечно, нет!

Анатолий Николаевич Овчинников, 2023

До сих пор в наших умах бытует мнение, что в теории относительности, как "весьма солидной научной теории", возможны измерения. Но это не так. Эта книга опровергает миф о возможности измерений в теории относительности. Здесь показано, что объективные, однозначные, непротиворечивые измерения в физико-математических науках возможны лишь при наличии абсолютных единиц измерения и абсолютно неподвижной системы координат. В противном случае измерение, как экспериментальный факт, теряет всякий смысл. Показано, что именно такая потеря смысла измерения и происходит в теории относительности.

Оглавление

7. Измерение и математика

Ну а что же математик? Он, кроме всего прочего, пишет формулы. Но у него также есть, те же аксиомы. У математика всякая величина, входящая в формулу, обязана обладать свойством измеряемости, а потому каждой такой величине соответствует абсолютная единица. Более того, у математика все величины (и буквенные) всегда «безразмерны», а у всех математиков единица одна и та же (объективна). Именно поэтому все формулы математика объективны. Они одни и те же для всех математиков и геометров. К этому факту мы настолько привыкли, что считаем его само собой разумеющимся. Однако достаточно в формуле появиться всего лишь одной величине, не обладающей свойством измеряемости, как тут же формула потеряет математический смысл, и превратится в набор букв. Это, например, будет означать, что в любой формуле, любой из знаков, <, >, =, может быть заменен на любой другой, из этой же тройки. В самом деле. Если нечто не измеряемо, то мы не можем сказать, чему равно это нечто. А значит, мы не можем записать и равенство, в котором указано, чему равно это нечто. Поэтому мы можем записать лишь формулы, в которых знаки <, >, =, совершенно равноправны. И таково свойство любой формулы. Математика это не устраивает. Мы видим, что в вопросе измерений, математик находится в подчинении геометра, и никоим образом не противоречит ему. Вот почему все расчеты по формулам математика, совпадают с построениями геометра (с точностью до ошибки эксперимента).

А теперь зададим себе вопрос, кому принадлежит, выделенное только что курсивом утверждение о том, что мы можем записать, а что не можем? Материалисту-математику, или идеалисту-математику? Для ответа на этот вопрос надо сначала узнать, откуда взялись знаки <, =, >. И вот некий математик следит за процедурой измерения. Наблюдая за ней математик всякий раз отмечает, что измерительный инструмент или прибор всегда дают один из трех ответов. Или измеряемая величина заведомо меньше эталонной, или измеряемая величина заведомо больше эталонной, или прибор не может отличить эталонную величину от измеряемой. Почему не может? Да потому, что «слишком уж они одинаковы», а у всякого прибора или инструмента точность измерений не идеальна, а реальна. И так происходит со всеми измерительными инструментами или приборами. Осмыслив измерительный опыт, математик говорит: «Мне нужны три знака, которые я обозначу так: <, =, >. Эти знаки я буду вставлять в свои формулы, и они разобьют формулу на две части, левую и правую. Эти знаки и будут показывать результат измерения левой и правой частей». Таким образом, у этого математика знаки меньше, равно, больше появились в результате осмысления экспериментального факта — измерения. А потому этот математик — материалист. Именно ему и принадлежит, выделенное выше курсивом утверждение. То же самое я могу изложить и в другом, равносильном рассуждении. Математик-материалист говорит: «Я ставлю между левой и правой частью своего выражения тот знак, который бы показал прибор, если бы им была измерена левая и правая часть выражения. А для этого обе части моего выражения должны обладать свойством измеряемости. Если хотя бы одна из этих частей не обладает свойством измеряемости, то измерительный прибор не покажет мне никакого знака. А значит и я не смогу поставить никакого знака. В лучшем случае, я смогу лишь поставить все три знака <, =, >, и соединить их вместе логическим, неисключающим или». А что же математик-идеалист думает о знаках <, =, >? Их появление он не связывает с фактом измерения. Он полагает, что эти знаки уже имелись в готовом виде, где-то в «пространстве идей»». Он лишь отыскал их в этом «пространстве идей», благодаря своему мощному уму, и включил их в математическую формулу. Такой математик уже готов к восприятию релятивизма, как к чему-то само собой разумеющемуся. Так, например, Д. Гильберт — математик-идеалист. Он с увлечением помогал Эйнштейну преобразовывать к удобному виду уравнения общей теории относительности. Разве могла ему придти в голову мысль, что величины, входящие в его формулы, обязательно должны обладать свойством измеряемости? Конечно, нет! Знак равенства в любом уравнении не говорит идеалисту ничего о том, что этот знак требует какой-то измеряемости (как и знаки меньше, больше). Об этом он говорит только математику-материалисту. На деле же, величины, входящие в «уравнения» Эйнштейна, не обладают свойством измеряемости, и знак равенства в этих «уравнениях» только внешне похож на настоящий, математический знак равенства. Мы видим, что идеализм в математике играет такую же негативную роль в познании законов природы, как и в геометрии и физике. В дальнейшем (впрочем, как и до этого) я буду вести свои рассуждения только с точки зрения материалистов: геометров, математиков, физиков. О различном подходе к науке материалистов и идеалистов (геометров и математиков) я довольно подробно писал в 5-й главе книги [5], а также здесь [6].

Вернемся ещё раз к аксиомам неизменности фигур. Обычно ни геометр, ни математик не говорят про указанные выше аксиомы абсолютности единицы и системы координат. Почему? Да потому, что они считают их само собой разумеющимися (скрытые аксиомы). Но если геометра или математика «допросить с пристрастием», то они подтвердят эти аксиомы. Эти аксиомы и гарантируют свойство измеряемости любых величин, входящих в их рассуждения и формулы. И я имею в виду математика и геометра — материалистов, то есть таких субъектов, которые начинают свою науку с рассмотрения экспериментальных фактов, а не от «чистой мысли». Для материалиста (геометра и математика) экспериментальными фактами являются действительно выполненные в пространстве обоснованные построения любой геометрической фигуры, и результаты действительно выполненного измерения элементов этой фигуры. Если нет ни построений, ни измерений, то нет и экспериментальных фактов, и отталкиваться придется не от них, а от «чистой мысли о чем-то». А эта «мысль о чем-то» может оказаться ложной. Но именно так и поступают геометры и математики идеалисты, когда, например, создают неевклидовы геометрии. В этих геометриях нет действительно выполненных построений и измерений, и идеалисты (геометры и математики) отталкиваются только от мысли о том, что они якобы существуют, чего на самом деле не так. Замечу, что выделенные выше жирным курсивом рассуждения, математик и геометр обязаны провести только один раз. Почему? Потому, что во всех дальнейших рассуждениях они должны будут всегда помнить об этих, ранее проведенных рассуждениях. Эти-то рассуждения и будут у геометра и математика «скрытыми» аксиомами. К сожалению, про эти «скрытые» аксиомы в процессе длительных рассуждений и обучения, многие часто забывают. И среди таких забывчивых субъектов у нас имеются не только релятивисты (физики), но и некоторые геометры и математики. Приведу пример. Релятивисты, разработчики общей теории относительности, часто говорят о том, что пространство искривлено. Но, ни геометр, ни математик не только не возражают против этого утверждения, а даже наоборот, помогают релятивистам оформлять идею искривления пространства в математической форме. Как это понимать? И что на деле означает идея искривления пространства? Эта идея на деле означает, что теперь единица измерения длины становится не абсолютной, а относительной! В самом деле, теперь единица не является отрезком евклидовой прямой, а является кусочком кривой (например, частью дуги окружности). И кривизна такой «единицы» не определена. Эта кривизна может быть какой угодно. Ни в природе, ни в науке нет критериев, которые бы давали ответ на вопрос: «Почему кривизна единицы должна равняться, например, 0,1, а не 0,4»? Но это ещё не все! Чтобы измерить кривизну единицы, потребуется измерить её радиус кривизны. А радиус кривизны есть отрезок евклидовой прямой. И для его измерения потребуется евклидова, «прямая» единица. Таким образом, введение «кривой» единицы приведет к порочному кругу в процедуре измерений. Измерения с помощью такой, «кривой» единицы потеряют всякий смысл. Кроме того у математика числа станут «кривыми»! В самом деле. Теперь каждому числу у математика будет соответствовать не отрезок евклидовой прямой, а цепочка кусочков некоторой кривой. Мы сможем восстановить возможность проводить измерения, восстановив абсолютность единицы длины, для чего нужно вернуться в евклидово (неискривленное) пространство. Абсолютность эталона длины и угла гарантируется только в евклидовом (не искривленном) пространстве

Конец ознакомительного фрагмента.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я