Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных

Алексей Михнин, 2023

Машинное обучение становится ключевым фактором успеха в повседневной жизни, бизнесе и науке. Эта книга – комплексное руководство по анализу табличных данных с помощью машинного обучения. Она полезна для бизнеса, руководителей проектов и всех, кто интересуется данной темой. Книга рассматривает классические алгоритмы, ансамблирование, AutoML и нейронные сети. Охватывает предобработку данных, отбор признаков, разработку и валидацию моделей, внедрение и мониторинг решений, а также этику и законодательные требования. Практические примеры и пошаговые инструкции помогут разобраться в процессе разработки проектов машинного обучения. Книга подходит для людей с разным уровнем опыта, от новичков до опытных специалистов, предлагая материалы различного уровня сложности.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Роли и обязанности участников проекта машинного обучения

Время выполнения проекта машинного обучения сильно зависит от его сложности, объема данных, доступности ресурсов и других факторов. В среднем, проекты могут длиться от нескольких недель до нескольких месяцев или даже лет. Ниже представлены основные роли и обязанности участников проекта:

Заказчик/Спонсор проекта:

Определяет бизнес-цели, обеспечивает финансирование и ресурсы для проекта. Заказчик также участвует в оценке результатов и принимает решения о дальнейшем развитии проекта.

Руководитель проекта/Scrum Master:

Отвечает за общую координацию работы команды, управление ресурсами, планирование, контроль сроков и бюджета, а также решение организационных вопросов.

Дата-инженер:

Отвечает за сбор, обработку и хранение данных, подготовку данных для анализа и использования в моделях машинного обучения.

Дата-аналитик:

Анализирует данные, определяет закономерности, выявляет взаимосвязи и формулирует предложения для создания моделей машинного обучения.

Машинного обучения инженер/исследователь:

Разрабатывает, обучает и тестирует модели машинного обучения, а также работает над их оптимизацией и улучшением. Отвечает за выбор подходящих алгоритмов и методов обработки данных.

Машинного обучения инженер-разработчик/DevOps:

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я