Дорогой читатель!Вашему вниманию предлагается уникальная книга!Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту.Эта книга написана экспертами-практиками, которые вместе работали над Программой Центра искусственного интеллекта, а также программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» в МГТУ им. Н. Э. Баумана в 2021—2022 годах.
Приведённый ознакомительный фрагмент книги Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глоссариум по искусственному интеллекту
«А»
А/B-тестирование, также известное как сплит-тестирование (A/B Testing) — это процесс экспериментирования, при котором две или более версии переменной (веб-страницы, элемента страницы и т.д.) одновременно демонстрируются разным сегментам посетителей веб-сайта, чтобы определить, какая версия оказывает максимальное влияние и повышает бизнес-показатели2.
Абдуктивное логическое программирование (Abductive logic programming, ALP) — это высокоуровневая структура представления знаний, которая может использоваться для решения проблем декларативно — на основе абдуктивного рассуждения. Она расширяет нормальное логическое программирование, позволяя некоторым предикатам быть неполно определенными, объявленными как абдуктивные предикаты3.
Абдукция (Abductive reasoning) — (от латинского ab — «c, от», ducere — «водить») — это форма логического вывода, которая начинается с наблюдения или набора наблюдений, а затем пытается найти самое простое и наиболее вероятное объяснение. Этот процесс, в отличие от дедуктивного рассуждения, дает правдоподобный вывод, но не подтверждает его основаниями для вывода4.
Абстрактный тип данных (Abstract data type) — это математическая модель для типов данных, где тип данных определяется поведением (семантикой) с точки зрения пользователя, а именно в терминах возможных значений, возможных операций над данными этого типа и поведения этих операций. Формально АТД может быть определён как множество объектов, определяемое списком компонентов (операций, применимых к этим объектам, и их свойств)5.
Абстракция (Abstraction) — это использование только тех характеристик объекта, которые с достаточной точностью представляют его в данной системе. Основная идея состоит в том, чтобы представить объект минимальным набором полей и методов и при этом с достаточной точностью для решаемой задачи6.
Автоассоциативная память (Auto Associative Memory) — это однослойная нейронная сеть, в которой входной обучающий вектор и выходные целевые векторы совпадают. Веса определяются таким образом, чтобы сеть хранила набор шаблонов. Как показано на следующем рисунке, архитектура сети автоассоциативной памяти имеет «n» количество входных обучающих векторов и аналогичное «n» количество выходных целевых векторов7.
Автокодер (Автоэнкодер) (Autoencoder, AE) — это нейронная сеть, которая копирует входные данные на выход. По архитектуре похож на персептрон. Автоэнкодеры сжимают входные данные для представления их в latent-space (скрытое пространство), а затем восстанавливают из этого представления output (выходные данные). Цель — получить на выходном слое отклик, наиболее близкий к входному. Отличительная особенность автоэнкодеров — количество нейронов на входе и на выходе совпадает8.
Автоматизация (Automation) — это технология, с помощью которой процесс или процедура выполняется с минимальным участием человека9.
Автоматизированная обработка персональных данных (Automated processing of personal data) — это обработка персональных данных с помощью средств вычислительной техники10.
Автоматизированная система (Automated system) — это организационно-техническая система, которая гарантирует выработку решений, основанных на автоматизации информационных процессов во всевозможных отраслях деятельности11.
Автоматизированная система управления (Automated control system) — это комплекс программных и программно-аппаратных средств, предназначенных для контроля за технологическим и (или) производственным оборудованием (исполнительными устройствами) и производимыми ими процессами, а также для управления такими оборудованием и процессами12.
Автоматизированное мышление (Automated reasoning) — это область информатики, которая занимается применением рассуждений в форме логики к вычислительным системам. Если задан набор предположений и цель, автоматизированная система рассуждений должна быть способна автоматически делать логические выводы для достижения этой цели13.
Автономное транспортное средство (Autonomous vehicle) — это вид транспорта, основанный на автономной системе управления. Управление автономным транспортным средством полностью автоматизировано и осуществляется без водителя при помощи оптических датчиков, радиолокации и компьютерных алгоритмов14.
Автономность (Autonomous) — это способность машины выполнять свою задачу без вмешательства и контроля человека15.
Автономные вычисления (Autonomic computing) — это способность системы к адаптивному самоуправлению собственными ресурсами для высокоуровневых вычислительных функций без ввода данных пользователем16.
Автономный автомобиль (Autonomous car) — это транспортное средство, способное воспринимать окружающую среду и работать без участия человека. Пассажир-человек не обязан брать на себя управление транспортным средством в любое время, и пассажиру-человеку вообще не требуется присутствовать в транспортном средстве. Автономный автомобиль может проехать везде, где ездит традиционный автомобиль, и делать все то же, что и опытный водитель-человек17.
Автономный вывод (Offline inference) — это генерация группы прогнозов, сохранение этих прогнозов, а затем извлечение этих прогнозов по запросу18.
Автономный искусственный интеллект (Autonomous artificial intelligence) — это биологически инспирированная система, которая пытается воспроизвести устройство мозга, принципы его действия со всеми вытекающими отсюда свойствами19,20.
Автономный робот (Autonomous robot) — это робот, который спроектирован и сконструирован так, чтобы самостоятельно взаимодействовать с окружающей средой и работать в течение длительных периодов времени без вмешательства человека. Автономные роботы часто обладают сложными функциями, которые могут помочь им воспринимать физическое окружение и автоматизировать действия и процессы, которые раньше выполнялись руками человека21.
Авторегрессионная модель (Autoregressive Model) — это модель временного ряда, в которой наблюдения за предыдущими временными шагами используются в качестве входных данных для уравнения регрессии для прогнозирования значения на следующем временном шаге. В статистике и обработке сигналов авторегрессионная модель представляет собой тип случайного процесса. Он используется для описания некоторых изменяющихся во времени процессов в природе, экономике и т.д.22.
Агент (Agent) в обучении с подкреплением — это испытуемая система, которая обучается и взаимодействует с некоторой средой. Агент воздействует на среду, а среда воздействует на агента23.
Агрегат (Aggregate) — это сумма, созданная из более мелких единиц. Например, население области — это совокупность населения городов, сельских районов и т.д., входящих в состав области. Суммировать данные из меньших единиц в большую единицу24.
Агрегатор (Aggregator) — это тип программного обеспечения, которое объединяет различные типы веб-контента и предоставляет его в виде легкодоступного списка. Агрегаторы каналов собирают такие данные, как онлайн-статьи из газет или цифровых изданий, публикации в блогах, видео, подкасты и т. д. Агрегатор каналов также известен как агрегатор новостей, программа для чтения каналов, агрегатор контента или программа для чтения RSS25.
Агломеративная кластеризация (Agglomerative clustering) — это один из алгоритмов кластеризации, в котором процесс группировки похожих экземпляров начинается с создания нескольких групп, где каждая группа содержит один объект на начальном этапе, затем он находит две наиболее похожие группы, объединяет их, повторяет процесс до тех пор, пока не получит единую группу наиболее похожих экземпляров26.
Адаптивная система (Adaptive system) — это система, которая автоматически изменяет данные алгоритма своего функционирования и (иногда) свою структуру для поддержания или достижения оптимального состояния при изменении внешних условий27.
Адаптивная система нейро-нечеткого вывода (Adaptive neuro fuzzy inference system) (ANFIS) (также адаптивная система нечеткого вывода на основе сети) — это разновидность искусственной нейронной сети, основанная на системе нечеткого вывода Такаги-Сугено. Методика была разработана в начале 1990-х годов. Поскольку она объединяет как нейронные сети, так и принципы нечеткой логики, то может использовать одновременно все имеющиеся преимущества в одной структуре. Его система вывода соответствует набору нечетких правил ЕСЛИ-ТО, которые имеют возможность обучения для аппроксимации нелинейных функций. Следовательно, ANFIS считается универсальной оценочной функцией. Для более эффективного и оптимального использования ANFIS можно использовать наилучшие параметры, полученные с помощью генетического алгоритма28.
Адаптивный алгоритм (Adaptive algorithm) — это алгоритм, который пытается выдать лучшие результаты путём постоянной подстройки под входные данные. Такие алгоритмы применяются при сжатии без потерь. Классическим вариантом можно считать Алгоритм Хаффмана29,30.
Адаптивный градиентный алгоритм (Adaptive Gradient Algorithm) (AdaGrad) — это cложный алгоритм градиентного спуска, который перемасштабирует градиент отдельно на каждом параметре, эффективно присваивая каждому параметру независимый коэффициент обучения31.
Аддитивные технологии (Additive technologies) — это технологии послойного создания трехмерных объектов на основе их цифровых моделей («двойников»), позволяющие изготавливать изделия сложных геометрических форм и профилей32.
Айзек Азимов (Isaac Asimov) (1920—1992) — автор научной фантастики, сформулировал три закона робототехники, которые продолжают оказывать влияние на исследователей в области робототехники и искусственного интеллекта (ИИ)33.
Три закона робототехники Айзека Азимова (Three Laws of Robotics by Isaac Asimov) — Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред. Робот должен подчиняться приказам, отданным ему людьми, за исключением случаев, когда такие приказы противоречат Первому закону. Робот должен защищать свое существование до тех пор, пока такая защита не противоречит Первому или Второму закону34.
Активное обучение/Стратегия активного обучения (Active Learning/ Active Learning Strategy) — это особый способ полууправляемого машинного обучения, в котором обучающий агент может в интерактивном режиме запрашивать оракула (обычно человека-аннотатора) для получения меток в новых точках данных. Подход к такому обучению основывается на самостоятельном выборе алгоритма некоторых данных из массы тех, на которых он учится. Активное обучение особенно ценно, когда помеченных примеров мало или их получение слишком затратно. Вместо слепого поиска разнообразных помеченных примеров алгоритм активного обучения выборочно ищет конкретный набор примеров, необходимых для обучения35,36,37.
Алгоритм (Algorithm) — это точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Мусы аль-Хорезми, который еще в 9 веке (ок. 820 г. н.э.) предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Также, алгоритм — это набор правил или инструкций, данных ИИ, нейронной сети или другим машинам, чтобы помочь им учиться самостоятельно; классификация, кластеризация, рекомендация и регрессия — четыре самых популярных типа38.
Алгоритм BLEU (BLEU) — это алгоритм оценки качества текста, который был автоматически переведен с одного естественного языка на другой. Качество считается соответствием между переводом машины и человека: «чем ближе машинный перевод к профессиональному человеческому переводу, тем лучше» — это основная идея BLEU39.
Алгоритм Q-обучения (Q-learning) — это алгоритм обучения, основанный на ценностях. Алгоритмы на основе значений обновляют функцию значений на основе уравнения (в частности, уравнения Беллмана). В то время как другой тип, основанный на политике, оценивает функцию ценности с помощью жадной политики, полученной из последнего улучшения политики. Табличное Q-обучение (при обучении с подкреплением) представляет собой реализацию Q-обучения с использованием таблицы для хранения Q-функций для каждой комбинации состояния и действия. «Q» в Q-learning означает качество. Качество здесь показывает, насколько полезно данное действие для получения вознаграждения в будущем40.
Алгоритм дерева соединений (также алгоритм Хьюгина) (Junction tree algorithm) — это метод, используемый в машинном обучении для извлечения маргинализации в общих графах. Граф называется деревом, потому что он разветвляется на разные разделы данных; узлы переменных являются ветвями41,42.
Алгоритм любого времени (Anytime algorithm) — это алгоритм, который может дать частичный ответ, качество которого зависит от объема вычислений, которые он смог выполнить. Ответ, генерируемый алгоритмами anytime, является приближенным к правильному. Большинство алгоритмов выполняются до конца: они дают единственный ответ после выполнения некоторого фиксированного объема вычислений. Однако в некоторых случаях пользователь может захотеть завершить алгоритм до его завершения. Эта особенность алгоритмов anytime моделируется такой теоретической конструкцией, как предельная машина Тьюринга (Бургин, 1992; 2005)43.
Алгоритм обучения (Learning Algorithm) — это фрагменты кода, которые помогают исследовать, анализировать и находить смысл в сложных наборах данных. Каждый алгоритм представляет собой конечный набор однозначных пошаговых инструкций, которым машина может следовать для достижения определенной цели. В модели машинного обучения цель состоит в том, чтобы установить или обнаружить шаблоны, которые люди могут использовать для прогнозирования или классификации информации. Они используют параметры, основанные на обучающих данных — подмножестве данных, которое представляет больший набор. По мере расширения обучающих данных для более реалистичного представления мира, алгоритм вычисляет более точные результаты44.
Алгоритм оптимизации Адам (Adam optimization algorithm) — это расширение стохастического градиентного спуска, который в последнее время получил широкое распространение для приложений глубокого обучения в области компьютерного зрения и обработки естественного языка45.
Алгоритм оптимизации роя светлячков (Glowworm swarm optimization algorithm) — это метаэвристический алгоритм без производных, имитирующий поведение свечения светлячков, который может эффективно фиксировать все максимальные мультимодальные функции46.
Алгоритм Персептрона (Perceptron algorithm) — это линейный алгоритм машинного обучения для задач бинарной классификации. Его можно считать одним из первых и одним из самых простых типов искусственных нейронных сетей. Это определенно не «глубокое» обучение, но это важный строительный блок. Как и логистическая регрессия, он может быстро изучить линейное разделение в пространстве признаков для задач классификации двух классов, хотя, в отличие от логистической регрессии, он обучается с использованием алгоритма оптимизации стохастического градиентного спуска и не предсказывает калиброванные вероятности47.
Алгоритм поиска (Search algorithm) — это любой алгоритм, который решает задачу поиска, а именно извлекает информацию, хранящуюся в некоторой структуре данных или вычисленную в пространстве поиска проблемной области, либо с дискретными, либо с непрерывными значениями48.
Алгоритм пчелиной колонии (алгоритм оптимизации подражанием пчелиной колонии, artificial bee colony optimization, ABC) (Bees algorithm) — это один из полиномиальных эвристических алгоритмов для решения оптимизационных задач в области информатики и исследования операций. Относится к категории стохастических биоинспирированных алгоритмов, базируется на имитации поведения колонии медоносных пчел при сборе нектара в природе49.
Алгоритмическая оценка (Algorithmic Assessment) — это техническая оценка, которая помогает выявлять и устранять потенциальные риски и непредвиденные последствия использования систем искусственного интеллекта, чтобы вызвать доверие и создать поддерживающие системы вокруг принятия решений ИИ50.
Алгоритмическая предвзятость (Biased algorithm) — это систематические и повторяющиеся ошибки в компьютерной системе, которые приводят к несправедливым результатам, например, привилегия одной произвольной группы пользователей над другими51,52.
Алгоритмы машинного обучения (Machine learning algorithms) — это фрагменты кода, которые помогают пользователям исследовать и анализировать сложные наборы данных и находить в них смысл или закономерность. Каждый алгоритм — это конечный набор однозначных пошаговых инструкций, которые компьютер может выполнять для достижения определенной цели. В модели машинного обучения цель заключается в том, чтобы установить или обнаружить закономерности, с помощью которых пользователи могут создавать прогнозы либо классифицировать информацию. В алгоритмах машинного обучения используются параметры, основанные на учебных данных (подмножество данных, представляющее более широкий набор). При расширении учебных данных для более реалистичного представления мира с помощью алгоритма вычисляются более точные результаты. В различных алгоритмах применяются разные способы анализа данных. Они часто группируются по методам машинного обучения, в рамках которых используются: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением. В наиболее популярных алгоритмах для прогнозирования целевых категорий, поиска необычных точек данных, прогнозирования значений и обнаружения сходства используются регрессия и классификация53.
Анализ алгоритмов (Analysis of algorithms) — это область на границе компьютерных наук и математики. Цель его состоит в том, чтобы получить точное представление об асимптотических характеристиках алгоритмов и структур данных в усредненном виде. Объединяющей темой является использование вероятностных, комбинаторных и аналитических методов. Объектами изучения являются случайные ветвящиеся процессы, графы, перестановки, деревья и строки54.
Анализ временных рядов (Time series analysis) — это раздел машинного обучения и статистики, который анализирует временные данные. Многие типы задач машинного обучения требуют анализа временных рядов, включая классификацию, кластеризацию, прогнозирование и обнаружение аномалий. Например, вы можете использовать анализ временных рядов, чтобы спрогнозировать будущие продажи зимних пальто по месяцам на основе исторических данных о продажах55,56.
Анализ данных (Data analysis) — это область математики и информатики, занимающаяся построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных (в широком смысле) данных; процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решений. Анализ данных имеет множество аспектов и подходов, охватывает разные методы в различных областях науки и деятельности57.
Анализ настроений (Sentiment analysis) — это использование статистических алгоритмов или алгоритмов машинного обучения для определения общего отношения группы — положительного или отрицательного — к услуге, продукту, организации или теме. Например, используя понимание естественного языка, алгоритм может выполнять анализ настроений по текстовой обратной связи по университетскому курсу, чтобы определить степень, в которой студентам в целом понравился или не понравился учебный курс58.
Анализ основных компонентов (PCA) (Principal component analysis (PCA)) — это построение новых функций, которые являются основными компонентами набора данных. Главные компоненты представляют собой случайные величины максимальной дисперсии, построенные из линейных комбинаций входных признаков. Эквивалентно, они являются проекциями на оси главных компонентов, которые представляют собой линии, минимизирующие среднеквадратичное расстояние до каждой точки в наборе данных. Чтобы обеспечить уникальность, все оси главных компонентов должны быть ортогональны. PCA — это метод максимального правдоподобия для линейной регрессии при наличии гауссовского шума как на входе, так и на выходе. В некоторых случаях PCA соответствует преобразованию Фурье, например DCT, используемому при сжатии изображений JPEG59.
Аналитика принятия решений (Decision intelligence) — это практическая дисциплина, используемая для улучшения процесса принятия решений путем четкого понимания и программной разработки того, как принимаются решения, и как итоговые результаты оцениваются, управляются и улучшаются с помощью обратной связи60.
Аналитика данных (Data analytics) — это наука об анализе необработанных данных, чтобы делать выводы об этой информации. Многие методы и процессы анализа данных были автоматизированы в механические процессы и алгоритмы, которые работают с необработанными данными для потребления человеком61.
Аннотация (Annotation) — это специальный модификатор, используемый в объявлении класса, метода, параметра, переменной, конструктора и пакета, а также инструмент, выбранный стандартом JSR-175 для описания метаданных62.
Аннотация объекта (Entity annotation) — это процесс маркировки неструктурированных предложений такой информацией, чтобы машина могла их прочитать. Это может включать, например, маркировку всех людей, организаций и местоположений в документе63.
Анонимизация (Anonymization) — это процесс удаления данных (из документов, баз данных и т.д.) с целью сокрытия источника информации, действующего лица и т. д. Например: анонимизация выписки из стационара процесс удаления данных с целью предотвращения идентификации личности пациента64.
Ансамбль (Ensemble) — это слияние прогнозов нескольких моделей. Можно создать ансамбль с помощью одного или нескольких из следующих способов: различные инициализации; различные гиперпараметры; другая общая структура. Глубокие и широкие модели представляют собой своеобразный ансамбль65.
Антивирусное программное обеспечение (Antivirus software) — это программа или набор программ, предназначенных для предотвращения, поиска, обнаружения и удаления программных вирусов и других вредоносных программ, таких как черви, трояны, рекламное ПО и т.д.66.
АПИ-как-услуга (API-AS-a-service) — это подход, который сочетает в себе экономию API и аренду программного обеспечения и предоставляет интерфейсы прикладного программирования как услугу67.
АПИ набора данных (Dataset API) — это высокоуровневый API TensorFlow для чтения данных и преобразования их в форму, требуемую алгоритмом машинного обучения. Объект tf. data. Dataset представляет собой последовательность элементов, в которой каждый элемент содержит один или несколько тензоров. Объект tf.data.Iterator обеспечивает доступ к элементам набора данных68.
Аппаратное обеспечение (Hardware) — это система взаимосвязанных технических устройств, предназначенных для ввода (вывода), обработки и хранения данных69.
Аппаратное обеспечение ИИ (AI hardware, AI-enabled hardware, AI hardware platform) — это аппаратное обеспечение ИИ, аппаратные средства ИИ, аппаратная часть инфраструктуры или системы искусственного интеллекта, ИИ-инфраструктуры.
Аппаратное ускорение (Hardware acceleration) — это применение аппаратного обеспечения для выполнения некоторых функций быстрее по сравнению с выполнением программ процессором общего назначения70.
Аппаратно-программный комплекс (Hardware-software complex) — это набор технических и программных средств, работающих совместно для выполнения одной или нескольких сходных задач71.
Аппаратный акселератор (Hardware accelerator) — это устройство, выполняющее некоторый ограниченный набор функций для повышения производительности всей системы или отдельной её подсистемы. Например, purpose-built hardware accelerator — специализированный аппаратный ускоритель72.
Аппаратный Сервер (аппаратное обеспечение) (Hardware Server) — это выделенный или специализированный компьютер для выполнения сервисного программного обеспечения (в том числе серверов тех или иных задач) без непосредственного участия человека. Одновременное использование как высокопроизводительных процессоров, так и FPGA позволяет обрабатывать сложные гибридные приложения73.
Априорное (Prior) — это распределение вероятностей, которое будет представлять ранее существовавшие убеждения о конкретной величине до того, как будут рассмотрены новые данные74.
Артефакт (Artifact) — это один из многих видов материальных побочных продуктов, производимых в процессе разработки программного обеспечения. Некоторые артефакты (например, варианты использования, диаграммы классов и другие модели унифицированного языка моделирования (UML), требования и проектные документы) помогают описать функции, архитектуру и дизайн программного обеспечения. Другие артефакты связаны с самим процессом разработки, например, планы проектов, бизнес-кейсы и оценки рисков75.
Архивное хранилище (Archival Storage) — это источник данных, которые не нужны для повседневных операций организации, но к которым может потребоваться доступ время от времени. Используя архивное хранилище, организации могут использовать вторичные источники, сохраняя при этом защиту данных. Использование источников архивного хранения снижает необходимые затраты на первичное хранение и позволяет организации поддерживать данные, которые могут потребоваться для соблюдения нормативных или других требований76.
Архивный пакет информации (AIC) (Archival Information Collection (AIC)) — это информация, содержание которой представляет собой агрегацию других пакетов архивной информации. Функция цифрового сохранения сохраняет способность регенерировать провалы (пакеты информации) по мере необходимости с течением времени77.
Архитектура агента (Agent architecture) — это план программных агентов и интеллектуальных систем управления, изображающий расположение компонентов. Архитектуры, реализованные интеллектуальными агентами, называются когнитивными архитектурами78.
Архитектура вычислительной машины (Architecture of a computer) — это концептуальная структура вычислительной машины, определяющая проведение обработки информации и включающая методы преобразования информации в данные и принципы взаимодействия технических средств и программного обеспечения79.
Архитектура вычислительной системы (Architecture of a computing system) — это конфигурация, состав и принципы взаимодействия (включая обмен данными) элементов вычислительной системы80.
Архитектура механизма обработки матриц (MPE) (Matrix Processing Engine Architecture) — это многомерный массив обработки физических матриц цифровых устройств с умножением (MAC), который вычисляет серию матричных операций сверточной нейронной сети81,82.
Архитектура системы (Architecture of a system) — это принципиальная организация системы, воплощенная в её элементах, их взаимоотношениях друг с другом и со средой, а также принципы, направляющие её проектирование и эволюцию83.
Архитектура фон Неймана (Von Neumann architecture) — это широко известный принцип совместного хранения команд и данных в памяти компьютера. Вычислительные машины такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти84.
Архитектурная группа описаний (Architectural description group, Architectural view) — это представление системы в целом с точки зрения связанного набора интересов85,86.
Архитектурный фреймворк (Architectural frameworks) — это высокоуровневые описания организации как системы; они охватывают структуру его основных компонентов на разных уровнях, взаимосвязи между этими компонентами и принципы, определяющие их эволюцию87.
Асимптотическая вычислительная сложность (Asymptotic computational complexity) — это использование асимптотического анализа для оценки вычислительной сложности алгоритмов и вычислительных задач, обычно связанных с использованием большой нотации O. Асимптотическая сложность является ключом к сравнению алгоритмов. Асимптотическая сложность раскрывает более глубокие математические истины об алгоритмах, которые не зависят от аппаратного обеспечения88.
Асинхронные межкристальные протоколы (Asynchronous inter-chip protocols) — это протоколы для обмена данных в низкоскоростных устройствах; для управления обменом данными используются не кадры, а отдельные символы89.
Ассоциация (Association) — это еще один тип метода обучения без учителя, который использует разные правила для поиска взаимосвязей между переменными в заданном наборе данных. Эти методы часто используются для анализа потребительской корзины и механизмов рекомендаций, подобно рекомендациям «Клиенты, которые купили этот товар, также купили»90.
Ассоциация по развитию искусственного интеллекта (Association for the Advancement of Artificial Intelligence) — это международное научное сообщество, занимающееся продвижением исследований и ответственным использованием искусственного интеллекта. AAAI также стремится повысить общественное понимание искусственного интеллекта (ИИ), улучшить обучение и подготовку специалистов, занимающихся ИИ, и предоставить рекомендации для планировщиков исследований и спонсоров относительно важности и потенциала текущих разработок ИИ и будущих направлений9192.
Атрибутивное исчисление (Attributional calculus) — это типизированная логическая система, сочетающая элементы логики высказываний, исчисления предикатов и многозначной логики с целью естественной индукции. Под естественной индукцией понимается форма индуктивного обучения, которая генерирует гипотезы в формах, ориентированных на человека, то есть в формах, которые кажутся людям естественными, их легко понять и соотнести с человеческим знанием. Для достижения этой цели AИ включает нетрадиционные логические операции и формы, которые могут сделать логические выражения более простыми и более тесно связанными с эквивалентными описаниями на естественном языке93.
Аффективные вычисления (также искусственный эмоциональный интеллект или эмоциональный ИИ) (Affective computing) — это вычисления, в которых системы и устройства могут распознавать, интерпретировать, обрабатывать и имитировать человеческие аффекты. Это междисциплинарная область, охватывающая информатику, психологию и когнитивную науку94.
«Б»
База данных (Database) — это упорядоченный набор структурированной информации или данных, которые обычно хранятся в электронном виде в компьютерной системе. База данных обычно управляется системой управления базами данных (СУБД). Данные вместе с СУБД, а также приложения, которые с ними связаны, называются системой баз данных, или, для краткости, просто базой данных95.
База Данных ImageNet (ImageNet) — это большая визуальная база данных, предназначенная для использования в исследованиях программного обеспечения для распознавания визуальных объектов. Более 14 миллионов изображений были вручную аннотированы в рамках проекта, чтобы указать, какие объекты изображены, и, по крайней мере, в одном миллионе изображений также предусмотрены ограничивающие рамки. ImageNet содержит более 20 000 категорий, среди которых типичная категория, такая как «воздушный шар» или «клубника», состоит из нескольких сотен изображений. База данных аннотаций URL-адресов сторонних изображений находится в свободном доступе непосредственно из ImageNet, хотя фактические изображения не принадлежат ImageNet. С 2010 года в рамках проекта ImageNet проводится ежегодный конкурс программного обеспечения ImageNet Large Scale Visual Recognition Challenge (ILSVRC), в котором программы соревнуются за правильную классификацию и обнаружение объектов и сцен. В задаче используется «усеченный» список из тысячи неперекрывающихся классов96.
База данных MNIST (MNIST) — это база данных образцов рукописного написания цифр от 0 до 9, содержит 60 000 образцов наборов данных для обучения и тестовый набор из 10 000 образцов. Цифры были нормализованы по размеру и расположены в центре изображения фиксированного размера. Каждое изображение хранится в виде массива целых чисел 28x28, где каждое целое число представляет собой значение в оттенках серого от 0 до 255 включительно. MNIST — это канонический набор данных для машинного обучения, часто используемый для тестирования новых подходов к машинному обучению. Это часть большой базы данных рукописных форм и символов, опубликованной Национальным институтом стандартов и технологий США (NIST)97.
Базовый уровень (Baseline) — это модель, используемая в качестве контрольной точки для сравнения того, насколько хорошо работает другая модель (как правило, более сложная). Например, модель логистической регрессии может служить базовым уровнем для глубокой модели. Для конкретной проблемы базовый уровень помогает разработчикам моделей количественно определить минимальную ожидаемую производительность, которую новая модель должна обеспечить, чтобы быть полезной98.
Байесовская оптимизация (Bayesian optimization) — это метод вероятностной регрессионной модели для оптимизации ресурсоемких целевых функций путем оптимизации суррогата с помощью байесовского метода обучения. Поскольку байесовская оптимизация сама по себе очень дорогая, ее обычно используют для оптимизации дорогостоящих задач с небольшим количеством параметров, таких как выбор гиперпараметров99.
Байесовская сеть (или Байесова сеть, Байесовская сеть доверия) (Bayesian Network) — это графическая вероятностная модель, представляющая собой множество переменных и их вероятностных зависимостей. Например, байесовская сеть может быть использована для вычисления вероятности того, чем болен пациент по наличию или отсутствию ряда симптомов, основываясь на данных о зависимости между симптомами и болезнями100.
Байесовский классификатор в машинном обучении (Bayesian classifier in machine learning) — это семейство простых вероятностных классификаторов, основанных на использовании теоремы Байеса и «наивном» предположении о независимости признаков классифицируемых объектов. Анализ на основе байесовской классификации активно изучался и использовался начиная с 1950-х годов в области классификации документов, где в качестве признаков использовались частоты слов. Алгоритм является масштабируемым по числу признаков, а по точности сопоставим с другими популярными методами, такими как машины опорных векторов. Как и любой классификатор, байесовский присваивает метки классов наблюдениям, представленным векторами признаков. При этом предполагается, что каждый признак независимо влияет на вероятность принадлежности наблюдения к классу. Например, объект можно считать яблоком, если он имеет округлую форму, красный цвет и диаметр около 10 см. Наивный байесовский классификатор «считает», что каждый из этих признаков независимо влияет на вероятность того, что этот объект является яблоком, независимо от любых возможных корреляций между характеристиками цвета, формы и размера. Простой байесовский классификатор строится на основе обучения с учителем. Несмотря на мало реалистичное предположение о независимости признаков, простые байесовские классификаторы хорошо зарекомендовали себя при решении многих практических задач. Дополнительным преимуществом метода является небольшое число примеров, необходимых для обучения101.
Байесовское программирование (Bayesian programming) — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной102,103.
Башня (Tower) — это компонент глубокой нейронной сети, которая сама по себе является глубокой нейронной сетью без выходного слоя. Как правило, каждая башня считывает данные из независимого источника. Башни независимы до тех пор, пока их выходные данные не будут объединены в последнем слое104.
Байт (Byte) — это восемь битов. Байт — это просто кусок из 8 единиц и нулей. Например: 01000001 — это байт. Компьютер часто работает с группами битов, а не с отдельными битами, и наименьшая группа битов, с которой обычно работает компьютер, — это байт. Байт равен одному столбцу в файле, записанном в символьном формате105.
Безопасность критической информационной инфраструктуры (Security of a critical information infrastructure) — это состояние защищенности критической информационной инфраструктуры, обеспечивающее ее устойчивое функционирование при проведении в отношении ее компьютерных атак106.
Безопасность приложений (Application security) — это процесс повышения безопасности приложений путем поиска, исправления и повышения безопасности приложений. Многое из этого происходит на этапе разработки, но включает инструменты и методы для защиты приложений после их развертывания. Это становится все более важным, поскольку хакеры все чаще атакуют приложения107.
Бенчмарк (Benchmark) (также benchmark program, benchmarking program, benchmark test) — это тестовая программа или пакет для оценки (измерения и/или сравнения) различных аспектов производительности процессора, отдельных устройств, компьютера, системы или конкретного приложения, программного обеспечения; эталон, который позволяет сравнивать продукты разных производителей друг с другом или с некоторым стандартом. Например, онлайн-бенчмарк — онлайн-бенчмарк; стандартный бенчмарк — стандартный бенчмарк; сравнение времени бенчмарка — сравнение времени выполнения бенчмарка108.
Бенчмаркинг (Benchmarking) — это набор методик, которые позволяют изучить опыт конкурентов и внедрить лучшие практики в своей компании109.
Беспроводная сеть (Wireless network) — это компьютерная сеть, в которой используются беспроводные соединения для передачи данных между сетевыми узлами. Беспроводная сеть — это метод, с помощью которого дома, телекоммуникационные сети и бизнес-установки избегают дорогостоящего процесса ввода кабелей в здание или в качестве соединения между различными местоположениями оборудования. Административные телекоммуникационные сети обычно реализуются и администрируются с использованием радиосвязи. Эта реализация происходит на физическом уровне (слое) сетевой структуры модели OSI110.
Беспроводная широкополосная связь (WiBB Wireless broadband) — это телекоммуникационная технология, которая обеспечивает высокоскоростной беспроводной доступ в Интернет или доступ к компьютерным сетям на большой территории. Этот термин включает как фиксированную, так и мобильную широкополосную связь111.
БЕТА версия (BETA) — это термин, который относится к этапу разработки онлайн-сервиса, на котором сервис объединяется с точки зрения функциональности, но требуется подлинный пользовательский опыт, прежде чем сервис можно будет завершить ориентированным на пользователя способом. При разработке онлайн-сервиса цель бета-фазы состоит в том, чтобы распознать как проблемы программирования, так и процедуры, повышающие удобство использования. Бета-фаза особенно часто используется в связи с онлайн-сервисами и, может быть, либо бесплатной (открытая бета-версия), либо ограниченной для определенной целевой группы (закрытая бета-версия)112.
Библиотека Keras (The Keras Library) — это библиотека Python, используемая для глубокого обучения и создания искусственных нейронных сетей. Выпущенный в 2015 году, Keras предназначен для быстрого экспериментирования с глубокими нейронными сетями. Keras предлагает несколько инструментов, которые упрощают работу с изображениями и текстовыми данными. Помимо стандартных нейронных сетей, Keras также поддерживает сверточные и рекуррентные нейронные сети. В качестве бэкэнда Keras обычно использует TensorFlow, Microsoft Cognitive toolkit или Theano. Он удобен для пользователя и требует минимального кода для выполнения функций и команд. Keras имеет модульную структуру и имеет несколько методов предварительной обработки данных. Keras также предлагает методы. evaluate () и predict_classes () для тестирования и оценки моделей. Github и Slack организуют форумы сообщества для Keras113.
Библиотека Matplotlib (Matplotlib) — это комплексная, популярная библиотека Python с открытым исходным кодом для создания визуализаций «качества публикации». Визуализации могут быть статическими, анимированными или интерактивными. Он был эмулирован из MATLAB и, таким образом, содержит глобальные стили, очень похожие на MATLAB, включая иерархию объектов114.
Библиотека Numpy (Numpy) — это библиотека Python, представленная в 2006 году для поддержки многомерных массивов и матриц. Библиотека также позволяет программистам выполнять высокоуровневые математические вычисления с массивами и матрицами. Можно сказать, что это объединение своих предшественников — The Numeric и Numarray. NumPy является неотъемлемой частью Python и по существу предоставляет программе математические функции типа MATLAB. По сравнению с обычными списками Python, он занимает меньше памяти, удобен в использовании и имеет более быструю обработку. При интеграции с другими библиотеками, такими как SciPy и / или Matplotlib, его можно эффективно использовать для целей анализа данных и анализа данных115.
Библиотека PyTorch & Torch (PyTorch (Torch Library) — это библиотека машинного обучения, которая в основном используется для приложений обработки естественного языка и компьютерного зрения. Разработанная исследовательской лабораторией искусственного интеллекта и выпущенная в сентябре 2016 года, это библиотека с открытым исходным кодом, основанная на библиотеке Torch для научных вычислений и машинного обучения. PyTorch предоставляет операции с объектом n-мерного массива, аналогичные NumPy, однако, кроме того, он предлагает более быстрые вычисления за счет интеграции с графическим процессором. PyTorch автоматически различает построение и обучение нейронных сетей. PyTorch — это внесла свой вклад в разработку нескольких программ глубокого обучения — Tesla Autopilot, Uber’s Pyro, PyTorch Lighten и т.д.116.
Библиотека Scikit-learn (Scikit-learn Library) — это простая в освоении библиотека Python с открытым исходным кодом для машинного обучения, построенная на NumPy, SciPy и matplotlib. Его можно использовать для классификации данных, регрессии, кластеризации, уменьшения размерности, выбора модели и предварительной обработки117.
Библиотека SciPy (SciPy Library) — это библиотека Python с открытым исходным кодом для выполнения научных и технических вычислений на Python. Она была разработана открытым сообществом разработчиков, которое также поддерживает его поддержку и спонсирует разработки. SciPy предлагает несколько пакетов алгоритмов и функций, которые поддерживают научные вычисления: константы, кластер, fft, fftpack, интегрировать и т. д. SciPy по сути является частью стека NumPy и использует многомерные массивы в качестве структур данных, предоставляемых модулем NumPy. Первоначально выпущенный в 2001 году, она распространялась по лицензии BSD с репозиторием на GitHub118.
Библиотека Seaborn (Seaborn) — это библиотека визуализации данных Python для построения «привлекательных и информативных» статистических графиков. Seaborn основан на Matplotlib. Он включает в себя множество визуализаций на выбор, включая временные ряды и совместные графики.
Библиотека Theano (Theano) — это библиотека Python, используемая для компиляции, определения, оптимизации и оценки математических выражений, содержащих многомерные массивы. Она была разработана Монреальским институтом алгоритмов обучения (MILA) при Монреальском университете и выпущена в 2007 году. Это библиотека с открытым исходным кодом под лицензией BSD. Библиотека построена поверх NumPy и имеет аналогичный интерфейс. Наряду с процессором он позволяет использовать графический процессор для ускорения вычислений. Theano вносит значительный вклад в крупномасштабные научные вычисления и связанные с ними исследования и поддерживается специальной группой из 13 разработчиков119.
Биграмм (Bigram) — N-грамм, в которой N=2120.
Бинарное дерево (Binary tree) — это иерархическая структура данных, в которой каждый узел имеет значение (оно же является в данном случае и ключом) и ссылки на левого и правого потомка. Как правило, первый называется родительским узлом, а дети называются левым и правым наследниками. Двоичное дерево не является упорядоченным ориентированным деревом121.
Биннинг (машинное зрение) (Binning) — это процесс объединения заряда от соседних пикселей в CCD матрице во время считывания. Этот процесс выполняется до оцифровки в микросхеме ПЗС (Прибор с обратной Зарядной Связью — CCD матрица) с помощью специализированного управления последовательным и параллельным регистрами. Двумя основными преимуществами биннинга являются улучшенное отношение сигнал/ шум (SNR) и возможность увеличивать частоту кадров, хотя и за счет уменьшения пиксельного разрешения.
Биоконсерватизм (Bioconservatism) — это позиция нерешительности и скептицизма в отношении радикальных технологических достижений, особенно тех, которые направлены на изменение или улучшение условий жизни человека. Биоконсерватизм характеризуется верой в то, что технологические тенденции в современном обществе рискуют поставить под угрозу человеческое достоинство, а также противодействием движениям и технологиям, включая трансгуманизм, генетическую модификацию человека, «сильный» искусственный интеллект и технологическую сингулярность. Многие биоконсерваторы также выступают против использования таких технологий, как продление жизни и преимплантационный генетический скрининг122,123.
Биометрия (Biometrics) — это система распознавания людей по одному или более физическим или поведенческим чертам124,125.
Блок IFU (Instruction Fetch Unit, IFU) — это блок предвыборки команд, который выстраивает в единую очередь команды, считываемые из внутренней или внешней памяти системы по шине EIB в соответствии с адресом, выставляемым по шине IAB126.
Блок обработки изображений (Vision Processing Unit, VPU) — это новый класс специализированных микропроцессоров, являющихся разновидностью ИИ — ускорителей, предназначенных для аппаратного ускорения работы алгоритмов машинного зрения127.
Блокчейн (Blockchain) — это алгоритмы и протоколы децентрализованного хранения и обработки транзакций, структурированных в виде последовательности связанных блоков без возможности их последующего изменения128.
Большая языковая модель (Large language model) — это неофициальный термин, который обычно означает языковую модель с большим количеством параметров. Некоторые большие языковые модели содержат более 100 миллиардов параметров129.
Большие данные (Big data) — это термин для наборов цифровых данных. Большой размер данных и их сложность требует значительных вычислительных мощностей компьютеров и специальных программных инструментов для их анализа и представления. К большим данным относят массивы числовых данных, изображения, аудио и видео файлы130.
Бритва Оккама (Occam’s razor) — это принцип принятия решения, сформулированный в XIV веке и франциским монахом Уильямом Оккаму, который. можно сформулировать так: «из двух конкурирующих теорий предпочтение следует отдавать более простому объяснению объекта». Этот принцип также выражается как «Сущности не должны умножаться сверх необходимости». Применительно к машинному обучению, в частности к теории обучения, интуитивную идею Бритвы Оккамы можно сформулировать так — Самое простое решение чаще всего является правильным!131.
Булевая нейронная сеть (невесомая нейронная сеть) (Boolean neural network) — это многослойная нейронная сеть, состоящая из модуля самоорганизующейся нейронной сети для извлечения признаков, за которым следует модуль нейронной сети и модуль классификации нейронной сети, который прошел самостоятельную подготовку.
Бустинг (Boosting) — это мета-алгоритм ансамбля машинного обучения, предназначенный в первую очередь для уменьшения предвзятости и дисперсии в обучении с учителем, а также семейство алгоритмов машинного обучения, которые превращают слабых учеников в сильных132.
Буфер воспроизведения (Replay buffer) — это память, используемая для хранения данных в промежутке между использованием или воспроизведением133.
Быстрое кодирование (One-hot encoding) — это процесс, с помощью которого категориальные переменные преобразуются в подходящую алгоритмам Машинного обучения (ML) форму. Большая часть предварительной обработки данных — это кодирование в понятный компьютеру язык чисел. Отсюда и название «encode», что буквально означает «преобразовать в компьютерный код». Существует множество различных способов кодирования, таких как Ярлычное (Label Encoding) или Быстрое кодирование134.
Быстрые и экономичные деревья (Fast-and-frugal trees) — это тип дерева классификации. FFTS можно использовать в качестве инструментов принятия решений, которые действуют как лексикографические классификаторы и, при необходимости, связывают действие (решение) с каждым классом или категорией.
Бытовой искусственный интеллект (Consumer artificial intelligence) — это специализированные программы искусственного интеллекта, внедрённые в бытовые устройства и процессы135.
«В»
Валидационные данные (Holdout data) или «выделенные, удержанные» данные, являющиеся частью Датасета (Dataset), предназначенного для тестирования, проверки работоспособности машинного обучения. Тестовые данные относятся к части предварительно размеченных данных, которые хранятся вне наборов данных, используемых для обучения и проверки контролируемых моделей машинного обучения. Их также можно назвать эталонными данными. Первым шагом в обучении с учителем является тестирование различных моделей на тестовых данных и оценка моделей на предмет прогнозируемой производительности. После того, как модель проверена и настроена с помощью набора проверочных данных, она тестируется с набором данных, чтобы выполнить окончательную оценку ее точности, чувствительности, специфичности и согласованности при прогнозировании правильных результатов136,137.
Вариативность данных (Data variability) этот термин описывает, насколько далеко точки данных расположены друг от друга и от центра распределения. Наряду с мерами центральной тенденции меры изменчивости дают вам описательную статистику, которая обобщает ваши данные138.
Ввод данных (Data entry) — это процесс преобразования устных или письменных ответов в электронную форму139.
Вес (Weight) в обзорных исследованиях — это число, связанное со случаем или единицей анализа; вес используется как мера относительного вклада переменных этого случая при оценке всей совокупности. При использовании вероятностной выборки часто существует вероятность того, что некоторые элементы генеральной совокупности будут недостаточно или чрезмерно представлены в выборке. Чтобы обеспечить более точные оценки всей совокупности, каждому случаю присваиваются «веса», которые используются для корректировки общих результатов, чтобы они более точно соответствовали общей совокупности140.
Векторный процессор или массивный процессор (Vector processor or array processor) — это центральный процессор (ЦП), который реализует набор инструкций, где его инструкции предназначены для эффективной и действенной работы с большими одномерными массивами данных, называемыми векторами. Это отличается от скалярных процессоров, чьи инструкции работают только с отдельными элементами данных, и от некоторых из тех же скалярных процессоров, имеющих дополнительные арифметические блоки с одной инструкцией, несколькими данными (SIMD) или SWAR. Векторные процессоры могут значительно повысить производительность при определенных рабочих нагрузках, особенно при численном моделировании и подобных задачах. Методы векторной обработки также работают в оборудовании игровых приставок и графических ускорителях141.
Вероятностное программирование (Probabilistic programming) — это парадигма программирования, в которой задаются вероятностные модели, а вывод для этих моделей выполняется автоматически. Он представляет собой попытку объединить вероятностное моделирование и традиционное программирование общего назначения, чтобы упростить первое и сделать его более широко применимым. Его можно использовать для создания систем, помогающих принимать решения в условиях неопределенности. Языки программирования, используемые для вероятностного программирования, называются «вероятностными языками программирования» (PPL)142,143.
Взрыв интеллекта (Intelligence explosion) — это термин, придуманный для описания конечных результатов работы над общим искусственным интеллектом, который предполагает, что эта работа приведет к сингулярности в искусственном интеллекте, где «искусственный сверхинтеллект» превзойдет возможности человеческого познания. В интеллектуальном взрыве подразумевается, что самовоспроизводящиеся аспекты искусственного интеллекта каким-то образом возьмут на себя принятие решений людьми. В 1965 году И. Дж. Гуд впервые описал понятие «взрыв интеллекта» применительно к искусственному интеллекту (ИИ): пусть сверхразумная машина будет определена как машина, которая может намного превзойти все интеллектуальные действия любого человека, каким бы умным он ни был. Поскольку проектирование машин является одним из таких видов интеллектуальной деятельности, сверхразумная машина могла бы создавать еще более совершенные машины; тогда, несомненно, произошел бы «взрыв интеллекта», и разум человека остался бы далеко позади. Таким образом, первая сверхразумная машина — это последнее изобретение, которое когда-либо понадобится человеку, при условии, что машина достаточно послушна, чтобы подсказать нам, как держать ее под контролем. Спустя десятилетия в сообществе ИИ утвердилась концепция «взрыва интеллекта», что приведет к внезапному росту «сверхразума» и случайному концу человечества. Известные бизнес-лидеры считают это серьезным риском, большим, чем ядерная война или изменение климата144,145.
Видеоаналитика (Video analytics) — это технология, использующая методы компьютерного зрения для автоматизированного использования различных данных, на основании анализа отслеживающих изображений, поступающих с видеокамер в режиме реального времени или из архивных записей146,147.
Виртуализация (Virtualization) — это предоставление набора вычислительных ресурсов или их логическое объединение, абстрагированное от аппаратной реализации, и обеспечивающее при этом логическую изоляцию друг от друга вычислительных процессов, выполняемых на одном физическом ресурсе148.
Виртуальный помощник (Virtual assistant) — это программный агент, который может выполнять задачи для пользователя на основе информации, введенной пользователем149.
Виртуальная реальность (VR) (Virtual reality, VR) — это смоделированный опыт, который может быть похож на реальный мир или полностью отличаться от него. Приложения виртуальной реальности включают развлечения (например, видеоигры), образование (например, медицинскую или военную подготовку) и бизнес (например, виртуальные встречи). Другие различные типы технологий в стиле VR включают дополненную реальность и смешанную реальность, иногда называемую расширенной реальностью или XR. Также, под Виртуальной реальностью понимают искусственную среду, созданную с помощью программного обеспечения и представленную пользователю таким образом, что пользователь принимает ее как реальную среду. На компьютере виртуальная реальность в основном воспринимается двумя из пяти органов чувств: зрением и слухом. Простейшая форма виртуальной реальности — это трехмерное изображение, которое можно просматривать в интерактивном режиме на персональном компьютере, обычно манипулируя клавишами или мышью, чтобы содержимое изображения перемещалось в каком-либо направлении или увеличивалось или уменьшалось. Более изощренные усилия включают такие подходы, как круглые экраны, настоящие комнаты, дополненные носимыми компьютерами, и тактильные устройства, которые позволяют вам чувствовать отображаемые изображения. Виртуальную реальность можно разделить на: Моделирование реальной среды для обучения и воспитания. Разработка воображаемой среды для игры или интерактивной истории. Язык моделирования виртуальной реальности (VRML) позволяет создателю задавать изображения и правила их отображения и взаимодействия с помощью текстовых операторов языка150,151.
Внутренняя мотивация (Intrinsic motivation) — в изучении искусственного интеллекта — это мотивация к действию, при том, что информационное содержание, опыт, полученный в результате действия, является мотивирующим фактором. Информационное содержание в этом контексте измеряется в смысле теории информации как количественная оценка неопределенности. Типичной внутренней мотивацией является поиск необычных (удивительных) ситуаций, в отличие от типичной внешней мотивации, такой как поиск пищи. Искусственные агенты с внутренней мотивацией демонстрируют поведение, похожее на исследование и любопытство. Психологи считают, что внутренняя мотивация у людей — это стремление выполнять деятельность для внутреннего удовлетворения — просто для развлечения или вызова152.
Внутригрупповая предвзятость (In-group bias) — это предвзятость, при которой люди склонны отдавать предпочтение людям, которые существуют в тех же группах, что и они. Эти группы могут быть сформированы по признаку пола, расы, этнической принадлежности или любимой спортивной команды. Если кто-то входит в нашу «внутреннюю группу», мы с большей вероятностью будем ему доверять. Проблема предвзятости ИИ — одна из самых острых в современном мире, и решения ей пока нет. Системы распознавания лиц плохо работают на лицах афроамериканцев, а ИИ для приема на работу предпочитает нанимать мужчин, нежели женщин153.
Возврат (Return) — это сумма всех вознаграждений, которые агент ожидает получить при следовании политике от начала до конца эпизода. Агент учитывает отсроченный характер ожидаемых вознаграждений, дисконтируя вознаграждения в соответствии с переходами состояний, необходимыми для получения вознаграждения154.
Вознаграждение (Reward) в обучении с подкреплением — это числовой результат выполнения действия в состоянии, определяемом окружающей средой155.
Воплощённая когнитивная наука (Embodied cognitive science) — это междисциплинарная область исследований, целью которых является объяснение механизмов, лежащих в основе разумного поведения. Она включает в себя три основных методики: моделирование психологических и биологических систем, которая рассматривает разум и тело как единое целое; формирование основного набора общих принципов разумного поведения; экспериментальное использование роботов в контролируемых условиях156.
Восприятие речи (Speech perception) — это процесс, посредством которого звуки языка слышатся, интерпретируются и понимаются. Изучение восприятия речи тесно связано с областями фонологии и фонетики в лингвистике и когнитивной психологии и восприятием в психологии. Исследования в области восприятия речи направлены на то, чтобы понять, как люди-слушатели распознают звуки речи и используют эту информацию для понимания разговорной речи. Исследования восприятия речи находят применение в создании компьютерных систем, способных распознавать речь, в улучшении распознавания речи для слушателей с нарушениями слуха и языка, а также в обучении иностранному языку157.
Врата забвения (Forget gate) — это часть ячейки долговременно-кратковременной памяти, которая регулирует поток информации, проходящий через ячейку. Врата забвения поддерживают контекст, решая, какую информацию следует отбросить из ячейки158.
Вращательная инвариантность (Rotational invariance) в задаче классификации изображений — это способность алгоритма успешно классифицировать изображения даже при изменении ориентации изображения. Например, алгоритм все еще может идентифицировать теннисную ракетку, направлена ли она вверх, вбок или вниз159.
Временная сложность (Time complexity) — это вычислительная сложность, описывающая время, необходимое для выполнения алгоритма. Временная сложность обычно оценивается путем подсчета количества элементарных операций, выполняемых алгоритмом, при условии, что выполнение каждой элементарной операции занимает фиксированное количество времени. Таким образом, время и количество элементарных операций, выполняемых алгоритмом, различаются не более чем на постоянный множитель160.
Временной ряд (Time Series) — это последовательность точек данных, записанных в определенное время и проиндексированных в соответствии с порядком их появления161.
Временные данные (Temporal data) — это зафиксированные данные, показывающие состояние во времени162.
Временные ряды (Time series) — это наблюдения за переменной, сделанные во времени. Многие экономические исследования, такие как Международная финансовая статистика МВФ, представляют собой файлы данных временных рядов. Своего рода временные ряды также могут быть построены на основе перекрестного исследования, если одни и те же вопросы задаются более одного раза в течение времени163.
Вспомогательный интеллект (Assistive intelligence) — это системы на основе ИИ, которые помогают принимать решения или выполнять действия.
Встраивание (внедрение слов) (Embedding (Word Embedding)) — это один экземпляр некоторой математической структуры, содержащийся в другом экземпляре, например, группа, являющаяся подгруппой164.
Встраивание пространства (Embedding space) — это D-мерное векторное пространство, в которое сопоставляются признаки из векторного пространства более высокой размерности. В идеале пространство вложения содержит структуру, дающую значимые математические результаты; например, в идеальном пространстве вложений сложение и вычитание вложений могут решать задачи аналогии слов. Скалярный продукт двух вложений является мерой их сходства165.
Встраивание слов (Word embedding (Vector representation of words)) — это термин (в обработке естественного языка — natural language processing), используемый для представления слов для анализа текста, обычно в форме вектора с действительным знаком, который кодирует значение слова таким образом, что слова, которые находятся ближе в векторном пространстве, становятся ближе по смыслу. Вложения слов можно получить с помощью набора методов языкового моделирования и изучения признаков, в которых слова или фразы из словаря сопоставляются с векторами действительных чисел166.
Входной слой (Input layer) — это первый слой в нейронной сети, который принимает входящие сигналы и передает их на последующие уровни167.
Вторичный анализ (Secondary analysis) — это процесс пересмотра существующих данных для решения новых вопросов или использования ранее не использовавшихся методов168.
Выбор действия (Action selection) — это процесс, включающий алгоритм, как разработанная интеллектуальная система будет реагировать на данную проблему. Обычно это область, изучаемая в психологии, робототехнике и искусственном интеллекте. Выбор действий является синонимом принятия решений и поведенческого выбора. Собранные данные исследуются и разбиваются для того, чтобы можно было адаптировать их к искусственным системам, таким как робототехника, видеоигры и программирование искусственного интеллекта169.
Выбор переменных (Feature selection) — это выбор признаков, также известный как выбор переменных, выбор атрибутов или выбор подмножества переменных, представляет собой процесс выбора подмножества соответствующих признаков (переменных, предикторов) для использования в построении модели170.
Выборка (Sampling) — это использование при анализе информации не всего объема данных, а только их части, которая отбирается по определенным правилам (выборка может быть случайной, стратифицированной, кластерной и квотной).
Выборка кандидатов (Candidate sampling) — это оптимизация времени обучения, при которой вероятность рассчитывается для всех положительных меток, но только для случайной выборки отрицательных меток. Например, если нам нужно определить, является ли входное изображение биглем или ищейкой, нам не нужно указывать вероятности для каждого примера, не связанного с собакой171.
Выбросы (Outliers) — это точки данных, которые значительно отличаются от других, присутствующих в данном наборе данных. Наиболее распространенные причины выбросов в наборе данных: Ошибки ввода данных. Ошибка измерения. Ошибки эксперимента. Преднамеренные ошибки. Ошибки обработки данных. Ошибки выборки. Естественный выброс172.
Вывод (Inference) в искусственном интеллекте и машинном обучении — это составление прогнозов путем применения обученной модели к немаркированным примерам173.
Выделение признаков (Feature extraction) — это разновидность абстрагирования, процесс снижения размерности, в котором исходный набор исходных переменных сокращается до более управляемых групп признаков для дальнейшей обработки, оставаясь при этом достаточным набором для точного и полного описания исходного набора данных. Выделение признаков используется в машинном обучении, распознавании образов и при обработке изображений. Выделение признаков начинает с исходного набора данных, выводит вторичные значения (признаки), для которых предполагается, что они должны быть информативными и не должны быть избыточными, что способствует последующему процессу обучения машины и обобщению шагов, а в некоторых случаях ведёт и к лучшей человеческой интерпретацией данных174.
Выполнение графа (Graph execution) — это среда программирования TensorFlow, в которой программа сначала строит граф, а затем выполняет весь или часть этого графа. Выполнение графа — это режим выполнения по умолчанию в TensorFlow 1.x175.
Выполнимость (Satisfiability). В математической логике выполнимость и достоверность — это элементарные понятия семантики. Формула выполнима, если можно найти интерпретацию (модель), которая делает формулу истинной. Формула действительна, если все интерпретации делают ее истинной. Противоположностями этих понятий являются невыполнимость и недействительность, то есть формула невыполнима, если ни одна из интерпретаций не делает формулу истинной, и недействительна, если какая-либо такая интерпретация делает формулу ложной176.
Выпрямленный линейный блок (Rectified Linear Unit) — это блок, использующий функцию выпрямителя в качестве функции активации177.
Выпуклая оптимизация (Convex optimization) — это процесс использования математических методов, таких как градиентный спуск, для нахождения минимума выпуклой функции. Многие исследования в области машинного обучения были сосредоточены на формулировании различных задач выпуклой оптимизации и более эффективном решении этих проблем178.
Выпуклая функция (Convex function) — это функция, в которой область над графиком функции представляет собой выпуклое множество. Прототип выпуклой функции имеет форму буквы U. Строго выпуклая функция имеет ровно одну точку локального минимума. Классические U-образные функции являются строго выпуклыми функциями. Однако некоторые выпуклые функции (например, прямые) не имеют U-образной формы. Многие распространенные функции потерь, являются выпуклыми функциями: L2 loss; Log Loss; L1 regularization; L2 regularization. Многие варианты градиентного спуска гарантированно находят точку, близкую к минимуму строго выпуклой функции. Точно так же многие варианты стохастического градиентного спуска имеют высокую вероятность (хотя и не гарантию) нахождения точки, близкой к минимуму строго выпуклой функции. Сумма двух выпуклых функций (например, L2 loss + L1 regularization) является выпуклой функцией. Глубокие модели никогда не бывают выпуклыми функциями. Примечательно, что алгоритмы, разработанные для выпуклой оптимизации, в любом случае имеют тенденцию находить достаточно хорошие решения в глубоких сетях, даже если эти решения не гарантируют глобальный минимум179,180.
Выпуклое множество (Convex set) — это подмножество евклидова пространства, при этом, линия, проведенная между любыми двумя точками в подмножестве, остается полностью внутри подмножества181.
Выходной слой (Output layer) — это последний слой нейронов в искусственной нейронной сети, который производит заданные выходные данные для программы182.
Вычисление (Computation) — это любой тип арифметического или неарифметического вычисления, которое следует четко определенной модели (например, алгоритму)183.
Вычисления GPU (GPU computing) — это использование графического процессора в качестве сопроцессора для ускорения центральных процессоров для научных и инженерных вычислений общего назначения. Графический процессор ускоряет приложения, работающие на ЦП, разгружая некоторые ресурсоемкие и трудоемкие части кода. Остальная часть приложения по-прежнему работает на процессоре. С точки зрения пользователя, приложение работает быстрее, потомучто оно использует вычислительную мощность графического процессора с массовым параллелизмом для повышения производительности. Это явление известно как «гетерогенные» или «гибридные» вычисления.
Вычислительная задача (Computational problem) — это одна из трех типов математических задач, решение которых необходимо получить численно. Вычислительная задача называется хорошо обусловленной, если малым погрешностям входных данных соответствуют малые погрешности решения и плохо обусловленной, если малым погрешностям входных данных могут соответствовать сильные изменения в решении184.
Вычислительная кибернетика (Computational cybernetics) — это интеграция кибернетики и методов вычислительного интеллекта185.
Вычислительная математика (Computational mathematics) — это раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров. Вычислительная математика обладает широким кругом прикладных применений для проведения научных и инженерных расчётов. На её основе в последнее десятилетие образовались такие новые области естественных наук, как вычислительная химия, вычислительная биология и так далее186.
Вычислительная нейробиология (Computational neuroscience) — это междисциплинарная наука, целью которой является объяснение в терминах вычислительного процесса того, как биологические системы, составляющие нервную систему, продуцируют поведение. Она связывает нейробиологию, когнитивистику и психологию с электротехникой, информатикой, вычислительной техникой, математикой и физикой187,188.
Вычислительная система (Computing system) — это предназначенные для решения задач и обработки данных (в том числе вычислений) программно-аппаратный комплекс или несколько взаимосвязанных комплексов, образующих единую инфраструктуру189.
Вычислительная статистика (Computational statistics) — это применение принципов информатики и разработки программного обеспечения для решения научных задач. Она включает в себя использование вычислительного оборудования, сетей, алгоритмов, программирования, баз данных и других предметно-ориентированных знаний для разработки симуляций физических явлений для запуска на компьютерах. Вычислительная статистика пересекает дисциплины и может даже включать гуманитарные науки190,191.
Вычислительная теория чисел, также известная как алгоритмическая теория чисел (Computational number theory) — это изучение вычислительных методов для исследования и решения проблем в теории чисел и арифметической геометрии, включая алгоритмы проверки простоты и численной факторизации, поиска решений диофантовых уравнений и явных методов в арифметической геометрии. Теория вычислительных чисел имеет приложения к криптографии, включая RSA, криптографию на эллиптических кривых и постквантовую криптографию, и используется для исследования гипотезы и открытой проблемы теории чисел, включая гипотезу Римана, гипотезу Берча и Суиннертона-Дайера, гипотезу ABC, гипотезу модульности, гипотезу Сато-Тейта и явные аспекты программы Ленглендса192,193.
Вычислительная химия (Computational chemistry) — это раздел химии, в котором математические методы используются для расчёта молекулярных свойств, моделирования поведения молекул, планирования синтеза, поиска в базах данных и обработки комбинаторных библиотек194,195,196.
Вычислительная эффективность агента или обученной модели (Computational efficiency of an agent or a trained model) — это количество вычислительных ресурсов, необходимых агенту для решения задачи на стадии инференса197.
Вычислительная эффективность интеллектуальной системы (Computational efficiency of an intelligent system) — это количество вычислительных ресурсов, необходимых для обучения интеллектуальной системы с определенным уровнем производительности на том или ином объеме задач198.
Вычислительные блоки (Computing units) — это блоки, которые работают как фильтр, который преобразовывает пакеты по определенным правилам. Набор команд вычислителя может быть ограничен, что гарантирует простую внутреннюю структуру и достаточно большую скорость работы199.
Вычислительные модули (Computing modules) — это подключаемые специализированные вычислители, предназначенные для решения узконаправленных задач, таких, как ускорение работы алгоритмов искусственных нейронных сетей, компьютерное зрение, распознавание по голосу, машинное обучение и другие методы искусственного интеллекта, построены на базе нейронного процессора — специализированного класса микропроцессоров и сопроцессоров (процессор, память, передача данных).
Вычислительный интеллект (Computational intelligence) — это ответвление искусственного интеллекта. Как альтернатива классическому искусственному интеллекту, основанному на строгом логическом выводе, он опирается на эвристические алгоритмы, используемые, например, в нечёткой логике, искусственных нейронных сетях и эволюционном моделировании.
Вычислительный юмор (Computational humor) — это раздел компьютерной лингвистики и искусственного интеллекта, использующий компьютеры для исследования юмора200.
Выявление аномалий (также обнаружение выбросов) (Anomaly detection) — это опознавание во время интеллектуального анализа данных редких данных, событий или наблюдений, которые вызывают подозрения ввиду существенного отличия от большей части данных. Обычно аномальные данные характеризуют некоторый вид проблемы, такой как мошенничество в банке, структурный дефект, медицинские проблемы или ошибки в тексте. Аномалии также упоминаются как выбросы, необычности, шум, отклонения или исключения201,202.
«Г»
Генеративно-состязательная сеть (Generative Adversarial Network) — это алгоритм машинного обучения без учителя, построенный на комбинации из двух нейронных сетей, одна из которых (сеть G) генерирует образцы, а другая (сеть D) старается отличить правильные («подлинные») образцы от неправильных. Так как сети G и D имеют противоположные цели — создать образцы и отбраковать образцы — между ними возникает антагонистическая игра. Генеративно-состязательную сеть описал Ян Гудфеллоу из компании Google в 2014 году. Использование этой техники позволяет, в частности, генерировать фотографии, которые человеческим глазом воспринимаются как натуральные изображения. Например, известна попытка синтезировать фотографии кошек, которые вводят в заблуждение эксперта, считающего их естественными фото. Кроме того, GAN может использоваться для улучшения качества нечётких или частично испорченных фотографий203.
Генеративные модели (Generative model) — это семейство архитектур ИИ, целью которых является создание образцов данных с нуля. Они достигают этого, фиксируя распределение данных того типа вещей, которые мы хотим генерировать. На практике модель может создать (сгенерировать) новые примеры из обучающего набора данных. Например, генеративная модель может создавать стихи после обучения на наборе данных сборника Пушкина204.
Генеративный ИИ (Generative AI) — это метод ИИ, который изучает представление артефактов из данных и использует его для создания совершенно новых, полностью оригинальных артефактов, сохраняющих сходство с исходными данными205.
Генератор (Generator) — это подсистема в генеративно-состязательной сети, которая создает новые примеры206.
Генерация естественного языка (Natural language generation, NLG) — это подмножество обработки естественного языка. В то время как понимание естественного языка сосредоточено на понимании компьютерного чтения, генерация естественного языка позволяет компьютерам писать. NLG — это процесс создания текстового ответа на человеческом языке на основе некоторых входных данных. Этот текст также можно преобразовать в речевой формат с помощью служб преобразования текста в речь. NLG также включает в себя возможности суммирования текста, которые генерируют сводки из входящих документов, сохраняя при этом целостность информации207.
Генерация кандидатов (Candidate generation) — это первый этап рекомендации. По запросу система генерирует набор релевантных кандидатов208.
Генерация речи (Speech generation) — это задача создания речи из какой-либо другой модальности, такой как текст, движения губ и т. д. Также под синтезом речи понимается компьютерное моделирование человеческой речи. Оно используется для преобразования письменной информации в слуховую там, где это более удобно, особенно для мобильных приложений, таких как голосовая электронная почта и единая система обмена сообщениями. Синтез речи также используется для помощи слабовидящим, так что, например, содержимое экрана дисплея может быть автоматически прочитано вслух слепому пользователю. Синтез речи является аналогом речи или распознавания голоса.
Генетический алгоритм (Genetic Algorithm) — это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе. Генетический алгоритм требует генетического представления решения и функции пригодности для оценки решения209.
Генетический оператор (Genetic operator) — это оператор, используемый в генетических алгоритмах для направления алгоритма к решению данной проблемы. Существует три основных типа операторов (мутация, скрещивание и отбор), которые должны работать в сочетании друг с другом, чтобы алгоритм был успешным210.
Геномные данные (Genomic data) — этот термин относится к данным генома и ДНК организма. Они используются в биоинформатике для сбора, хранения и обработки геномов живых существ. Геномные данные обычно требуют большого объема памяти и специального программного обеспечения для анализа211.
Гетероассоциативная память (Hetero Associative memory) — это память, похожа на сеть автоассоциативной памяти, это также однослойная нейронная сеть. Однако в этой сети входной обучающий вектор и выходные целевые векторы не совпадают. Веса определяются таким образом, чтобы сеть хранила набор шаблонов. Гетероассоциативная сеть носит статический характер, следовательно, в ней не будет нелинейных операций и операций с запаздыванием. Архитектура, как показано на следующем рисунке, архитектура сети гетероассоциативной памяти имеет «n» количество входных обучающих векторов и «m» количество выходных целевых векторов212.
Гибридизация человека и машины (Human-machine hybridization) — это технология, позволяющая соединить человеческое тело и технологическую систему. Текущий подход к разработке интеллектуальных систем (например, на основе технологий искусственного интеллекта) в основном ориентирован на данные. Он имеет ряд ограничений: принципиально невозможно собрать данные для моделирования сложных объектов и процессов; обучение нейронных сетей требует огромных вычислительных и энергетических ресурсов; и решения не объяснимы. Современные системы ИИ (основанные на узком ИИ) вряд ли можно считать интеллектом. Это скорее следующий уровень автоматизации человеческого труда. Перспективной концепцией, лишенной вышеуказанных ограничений, является концепция гибридного интеллекта, объединяющая сильные стороны узкого ИИ и возможности человека. Гибридные интеллектуальные системы обладают следующими ключевыми особенностями: Когнитивная интероперабельность — позволяет искусственным и естественным интеллектуальным агентам легко общаться для совместного решения проблемы; Взаимная эволюция (коэволюция) — позволяет гибридной системе развиваться, накапливать знания и формировать общую онтологию предметной области. Ядром гибридизации человеко-машинного интеллекта является функциональная совместимость биологических и технических систем на разных уровнях от физических сигналов до когнитивных моделей213.
Гибридные модели (Hybrid models) — это комбинации моделей на основе данных с «классическими» моделями, а также комплексирование различных методов искусственного интеллекта214.
Гибридный суперкомпьютер (Hybrid supercomputer) — это вычислительная система, объединяющая ЦП традиционной архитектуры (например, x86) и ускорители, например, на вычислительных графических процессорах215.
Гиперпараметр (настройка гиперпараметра) (Hyperparameter) — в машинном обучении — это параметры алгоритмов, значения которых устанавливаются перед запуском процесса обучения. Гиперпараметры используются для управления процессом обучения216.
Гипер-эвристика (Hyper-heuristic) — это эвристический метод решения задачи, который стремится автоматизировать, часто путем включения методов машинного обучения, процесс выбора, объединения, генерации или адаптации нескольких более простых эвристик (или компонентов таких эвристик) для эффективного решения задач вычислительного поиска. Одной из мотиваций для изучения гипер-эвристики является создание систем, которые могут обрабатывать классы проблем, а не решать только одну проблему217.
Глубина (Depth) — это количество слоев (включая любые встраивающие слои) в нейронной сети, которые изучают веса. Например, нейронная сеть с 5 скрытыми слоями и 1 выходным слоем имеет глубину 6218.
Глубокая модель (Deep model) — это тип нейронной сети, содержащий несколько скрытых слоев219.
Глубокая нейронная сеть (ГНС) (Deep neural network) многослойная сеть, содержащая между входным и выходным слоями несколько (много) скрытых слоёв нейронов, что позволяет моделировать сложные нелинейные отношения. ГНС сейчас всё чаще используются для решения таких задач искусственного интеллекта, как распознавание речи, обработка текстов на естественном языке, компьютерное зрение и т.п., в том числе в робототехнике220.
Глубоко разделяемая сверточная нейронная сеть (Depthwise separable convolutional neural network) — это архитектура сверточной нейронной сети, основанная на Inception (раздел с данными на GitHub), но в которой модули Inception заменены свертками, отделяемыми по глубине. Также известен как Xception221.
Глубокое обучение (Deep Learning) — это разновидность машинного обучения на основе искусственных нейронных сетей, а также глубокое (глубинное) структурированное или иерархическое машинное обучение, набор алгоритмов и методов машинного обучения (machine learning) на основе различных видов представления данных. Обучение может быть контролируемым, полу контролируемым (semi-supervised) или неконтролируемым. Использование в глубоком обучении рекуррентных нейронных сетей (recurrent neural networks), позволяет эффективно решать задачи в областях компьютерного зрения, распознавания речи, обработки текстов на естественном языке, машинного перевода, биоинформатики и др.222.
Государство-как-Платформа (State-as-Platform) — это концепция трансформации государственного управления с использованием возможностей, которые нам дают новые технологии. Целевой функцией реализации идеи «Государство-как-Платформа» является благополучие граждан и содействие экономическому росту, основанному на внедрении технологий. В фокусе развертывания Платформы находится гражданин в условиях новой цифровой реальности. Государство должно создать условия, которые помогут человеку раскрыть свои способности, и сформировать комфортную и безопасную среду для его жизни и реализации потенциала, а также для создания и внедрения инновационных технологий223,224.
Градиент (Gradient) — это вектор, своим направлением указывающий направление наибольшего возрастания некоторой скалярной величины (значение которой меняется от одной точки пространства к другой, образуя скалярное поле), а по величине (модулю) равный скорости роста этой величины в этом направлении225.
Градиентная обрезка (Gradient clipping) — это метод, позволяющий справиться с проблемой взрывающихся градиентов путем искусственного ограничения (отсечения) максимального значения градиентов при использовании градиентного спуска для обучения модели226.
Градиентный спуск (Gradient descent) — это метод минимизации потерь путем вычисления градиентов потерь по отношению к параметрам модели на основе обучающих данных. Градиентный спуск итеративно корректирует параметры, постепенно находя наилучшую комбинацию весов и смещения для минимизации потерь227.
Граница решения (Decision boundary) — это разделитель между классами, изученными моделью в задачах классификации двоичного класса или нескольких классов228.
Граница решения или поверхность решения (в статистико-классификационной задаче с двумя классами) (Decision boundary) — это гиперповерхность, разделяющая нижележащее векторное пространство на два множества, по одному для каждого класса. Классификатор классифицирует все точки на одной стороне границы принятия решения как принадлежащие одному классу, а все точки на другой стороне как принадлежащие другому классу.
Граф (Graph) — это таблица, составленная из данных (тензоров) и математических операций. TensorFlow — это библиотека для численных расчетов, в которой данные проходят через граф. Данные в TensorFlow представлены n-мерными массивами — тензорами229.
Граф (абстрактный тип данных) (Graph) — в информатике граф — это абстрактный тип данных, который предназначен для реализации концепций неориентированного графа и ориентированного графа из математики; в частности, область теории графов230.
Граф (с точки зрения компьютерных наук и дискретной математики) (Graph) — это абстрактный способ представления типов отношений, например дорог, соединяющих города, и других видов сетей. Графы состоят из рёбер и вершин. Вершина — это точка на графе, а ребро — это то, что соединяет две точки на графе231.
Графический кластер (Graphics Processing Cluster, GPC) — это доминирующий высокоуровневый блок, включающий все ключевые графические составляющие232.
Графический процессор (Graphical Processing Unit) — это отдельный процессор, расположенный на видеокарте, который выполняет обработку 2D или 3D графики. Имея процессор на видеокарте, компьютерный процессор освобождается от лишней работы и может выполнять все другие важные задачи быстрее. Особенностью графического процессора (GPU), является то, что он максимально нацелен на увеличение скорости расчета именно графической информации (текстур и объектов). Благодаря своей архитектуре такие процессоры намного эффективнее обрабатывают графическую информацию, нежели типичный центральный процессор компьютера233.
Графический процессор-вычислитель (Computational Graphics Processing Unit) (ГП-вычислитель cGPU) — это многоядерный ГП, используемый в гибридных суперкомпьютерах для выполнения параллельных математических вычислений; например, один из первых образцов ГП этой категории содержит более 3 млрд транзисторов — 512 ядер CUDA и память ёмкостью до 6 Гбайт234.
Графовая база данных (Graph database) — это база, предназначенная для хранения взаимосвязей и навигации в них. Взаимосвязи в графовых базах данных являются объектами высшего порядка, в которых заключается основная ценность этих баз данных. В графовых базах данных используются узлы для хранения сущностей данных и ребра для хранения взаимосвязей между сущностями. Ребро всегда имеет начальный узел, конечный узел, тип и направление. Ребра могут описывать взаимосвязи типа «родитель-потомок», действия, права владения и т. п. Ограничения на количество и тип взаимосвязей, которые может иметь узел, отсутствуют. Графовые базы данных имеют ряд преимуществ в таких примерах использования, как социальные сети, сервисы рекомендаций и системы выявления мошенничества, когда требуется создавать взаимосвязи между данными и быстро их запрашивать235.
Графовые нейронные сети (Graph neural networks) — это класс методов глубокого обучения, предназначенных для выполнения выводов на основе данных, описанных графами. Графовые нейронные сети — это нейронные сети, которые можно напрямую применять к графам и которые обеспечивают простой способ выполнения задач прогнозирования на уровне узлов, ребер и графов. GNN могут делать то, что не смогли сделать сверточные нейронные сети (CNN). Также под Графовыми нейронными сетями понимают нейронные модели, которые фиксируют зависимость графов посредством передачи сообщений между узлами графов. В последние годы варианты GNN, такие как сверточная сеть графа (GCN), сеть внимания графа (GAT), рекуррентная сеть графа (GRN), продемонстрировали новаторские характеристики во многих задачах глубокого обучения236.
Графы знаний (Knowledge graphs) — это структуры данных, представляющие знания о реальном мире, включая сущности люди, компании, цифровые активы и т.д.) и их отношения, которые придерживаются модели данных графа — сети узлов (вершин) и соединения (ребер/дуг)237.
Гребенчатая регуляризация (Ridge regularization) — синоним «Регуляризации L2». Термин гребенчатая регуляризация чаще используется в контексте чистой статистики, тогда как регуляризация L2 чаще используется в машинном обучении238.
«Д»
Данные (Data) — это информация собранная и трансформированная для определенных целей, обычно анализа. Это может быть любой символ, текст, цифры, картинки, звук или видео.
Данные тестирования (Testing Data) — это подмножество доступных данных, выбранных специалистом по данным для этапа тестирования разработки модели.
Данные ограниченного использования (Restricted-use data) — это данные, которые содержат конфиденциальную информацию (обычно о людях), которая может позволить идентифицировать людей. Наличие конфиденциальной информации в депонированном цифровом контенте представляет собой проблему управления для долгосрочного хранения, чтобы гарантировать, что требования к архивному хранилищу для достижения распределенной избыточности учитывают, например, требования конфиденциальности239.
Дартмутский семинар (Dartmouth workshop) — Дартмутский летний исследовательский проект по искусственному интеллекту — так назывался летний семинар 1956 года, который многие считают основополагающим событием в области искусственного интеллекта240.
Датамайнинг (Datamining) — это процесс обнаружения и интерпретации значимых закономерностей и структур в исходных данных, которые могут быть использованы для решения сложных бизнес-вопросов и высокоинтеллектуального прогнозирования241.
Даунсэмплинг (downsampling) — это уменьшение количества информации в функции для более эффективного обучения модели. Например, перед обучением модели распознавания изображений, субдискретизация изображений с высоким разрешением до формата с более низким разрешением; Обучение на непропорционально низком проценте чрезмерно представленных примеров классов, чтобы улучшить модель обучения на недопредставленных классах242.
Движок искусственного интеллекта (Artificial intelligence engine) (также AI engine, AIE) — это движок искусственного интеллекта, аппаратно-программное решение для повышения скорости и эффективности работы средств системы искусственного интеллекта.
Двоичное число (Binary number) — это число, записанное в двоичной системе счисления, в которой используются только нули и единицы. Пример: Десятичное число 7 в двоичной системе счисления: 111243.
Двоичный формат (Binary format) — это любой формат файла, в котором информация закодирована в каком-либо формате, отличном от стандартной схемы кодирования символов. Файл, записанный в двоичном формате, содержит информацию, которая не отображается в виде символов. Программное обеспечение, способное понимать конкретный метод кодирования информации в двоичном формате, должно использоваться для интерпретации информации в файле в двоичном формате. Двоичные форматы часто используются для хранения большего количества информации в меньшем объеме, чем это возможно в файле символьного формата. Их также можно быстрее искать и анализировать с помощью соответствующего программного обеспечения. Файл, записанный в двоичном формате, может хранить число «7» как двоичное число (а не как символ) всего в 3 битах (т.е. 111), но чаще используется 4 бита (т.е. 0111). Однако двоичные форматы обычно не переносимы. Файлы программного обеспечения записываются в двоичном формате. Примеры файлов с числовыми данными, распространяемых в двоичном формате, включают двоичные версии IBM файлов Центра исследований цен на ценные бумаги и Национального банка торговых данных Министерства торговли США на компакт-диске. Международный валютный фонд распространяет международную финансовую статистику в смешанном формате и двоичном (упакованно-десятичном) формате. SAS и SPSS хранят свои системные файлы в двоичном формате244.
Двоичная, бинарная или дихотомическая классификация (Binary classification) — это задача классификации элементов заданного множества в две группы (определение, какой из групп принадлежит каждый элемент множества) на основе правила классификации245.
Двунаправленная языковая модель (Bidirectional language model) — это языковая модель, которая определяет вероятность того, что данный маркер присутствует в заданном месте в отрывке текста на основе предыдущего и последующего текста246.
Двунаправленность (Bidirectional) — это термин, используемый для описания системы оценки текста, которая одновременно исследует предшествующий и последующий разделы текста от целевого раздела247.
Двусмыссленная фраза (Crash blossom) — это предложение или фраза с двусмысленным значением. Crash blossom представляет серьезную проблему для понимания естественного языка. Например, заголовок «бить баклуши» является Crash blossom, потому что нейронная сеть с пониманием естественного языка может интерпретировать заголовок буквально или образно248.
Дедуктивный классификатор (Deductive classifier) — это тип механизма вывода искусственного интеллекта. Он принимает в качестве входных данных набор деклараций на языке кадра об области, такой как медицинские исследования или молекулярная биология. Классификатор определяет, являются ли различные описания логически непротиворечивыми, и если нет, то выделяет конкретные описания и несоответствия между ними249.
Дедукция (Deductive Reasoning) — это способ рассуждения и доказательства на основе перехода от более общих положений к частным, один из способов прогнозирования развития и изложения материала; эффективен, когда у исследователя уже накоплен определенный опыт и знания в изучаемой области250.
Действие (Action) (в обучении с подкреплением) — это механизм, с помощью которого агент переходит между состояниями среды. Агент выбирает действие с помощью политики251.
Декларативное программирование (Declarative programming) — это парадигма программирования, в которой задаётся спецификация решения задачи, то есть описывается ожидаемый результат, а не способ его получения. Противоположностью декларативного является императивное программирование, при котором на том или ином уровне детализации требуется описание последовательности шагов для решения задачи252,253.
Демографический паритет (Demographic parity) — это метрика справедливости, которая удовлетворяется, если результаты классификации модели не зависят от данного конфиденциального атрибута254.
Дерево поведения (Behavior tree) — это ориентированный ациклический граф, узлами которого являются возможные варианты поведения робота. «Ширина» дерева указывает на количество доступных действий, а «длина» его ветвей характеризует их сложность. Деревья поведения имеют некоторое сходство с иерархическими конечными автоматами с тем ключевым отличием, что основным строительным блоком поведения является задача, а не состояние. Простота понимания человеком делает деревья поведения менее подверженными ошибкам и очень популярными в сообществе разработчиков игр255.
Дерево проблем (решений) или логическое дерево (Issue tree) — это денотативное (отражающее ситуацию) представление процесса принятия решений, представленное в виде графической разбивки задачи, разделенное на отдельные компоненты по вертикали и горизонтали. Деревья решений в искусственном интеллекте используются для того, чтобы делать выводы на основе данных, доступных из решений, принятых в прошлом. Деревья решений — это статистические алгоритмические модели машинного обучения, которые интерпретируют и изучают ответы на различные проблемы и их возможные последствия. В результате деревья решений знают правила принятия решений в конкретных контекстах на основе доступных данных256.
Дерево решений (Decision Tree) — это метод представления решающих правил в иерархической структуре, состоящей из элементов двух типов — узлов (node) и листьев (leaf). В узлах находятся решающие правила и производится проверка соответствия примеров этому правилу по какому-либо атрибуту обучающего множества257,258,259.
Декомпрессия (Decompression) — это функция, которая используется для восстановления данных в несжатую форму после сжатия260.
Децентрализованное управление (Decentralized control) — это процесс, при котором существенное количество управляющих воздействий, относящихся к данному объекту, вырабатываются самим объектом на основе самоуправления261.
Децентрализованные приложения (Decentralized applications, dApps) — это цифровые приложения или программы, которые существуют и работают в блокчейне или одноранговой (P2P) сети компьютеров, а не на одном компьютере. DApps (также называемые «dapps») находятся вне компетенции и контроля одного органа. DApps, которые часто создаются на платформе Ethereum, можно разрабатывать для различных целей, включая игры, финансы и социальные сети262.
Дешифратор (декодер) (Decoder) — это комбинационное устройство с несколькими входами и выходами, у которого определенным комбинациям входных сигналов соответствует активное состояние одного из выходов. Дешифраторы преобразуют двоичный или двоично-десятичный код в унитарный код263.
Диагностика (Diagnosis) — это термин, связанный с разработкой алгоритмов и методов, способных определить правильность поведения системы. Если система работает неправильно, алгоритм должен быть в состоянии определить с максимально возможной точностью, какая часть системы дает сбой и с какой неисправностью она сталкивается. Расчет основан на наблюдениях, которые предоставляют информацию о текущем поведении264.
Диалоговые системы (Dialogue system) — это компьютерные системы, предназначенные для общения с человеком. Они имитируют поведение человека и обеспечивают естественный способ получения информации, что позволяет значительно упростить руководство пользователя и тем самым повысить удобство взаимодействия с такими системами. Диалоговую систему также называют разговорным искусственным интеллектом или просто ботом. Диалоговая система может в разной степени являться целеориентированной системой (англ. goal/task-oriented) или чат-ориентированной (англ. chat-oriented)265.
Дизайн-центр (Design Center) — это организационная единица (вся организация или ее подразделение), выполняющая полный спектр или часть работ по созданию продукции до этапа ее серийного производства, а также обладающая необходимыми для этого кадрами, оборудованием и технологиями266.
Диктовка (Dictation) — это речевой (голосовой) ввод текста.
Динамическая модель (Dynamic model) — это теоретическая конструкция (модель), описывающая изменение состояний объекта. Она может включать в себя описание этапов или фаз или диаграмму состояний подсистем. Часто имеет математическое выражение и используется главным образом в общественных науках (например, в социологии), имеющих дело с динамическими системами, однако современная парадигма науки способствует тому, что данная модель также имеет широкое распространение во всех без исключения науках, в том числе в естественных и технических. Динамическая модель обучается онлайн в постоянно обновляемой форме. То есть данные непрерывно поступают в модель267,268.
Динамическая эпистемическая логика (Dynamic epistemic logic, DEL) — это логическая структура, связанная с изменением знаний и информации. Как правило, DEL фокусируется на ситуациях с участием нескольких агентов и изучает, как меняются их знания при возникновении событий269.
Дискретная система (Discrete system) — это кибернетическая система, все элементы которой, а также связи между ними (т.е. обращающаяся в системе информация) имеют дискретный характер. Содержит в себе понятие дискретного сигнала. Т.е., это любая система в замкнутом контуре управления в которой используются дискретные сигналы270.
Дискретные признаки (Discrete feature) — это количественные признаки, принимающие отдельные, иногда только целочисленные значения. Например, число жителей города, заболевших гриппом за год271.
Дискриминатор (Discriminator) — это функциональная группа, выполняющая сравнение двух одноименных входных величин (мгновенных значений или амплитуд, частот, фаз, задержек электрических сигналов; дальностей, направлений, скоростей объектов и т.п.), выходной сигнал которой пропорционален разности значений этих величин. В контуре управления служит датчиком рассогласования своих входных величин, формирующим сигнал ошибки. Это система, которая определяет, являются ли примеры реальными или поддельными272.
Дискриминационная модель (Discriminative model) — это модель, предсказывающая метки на основе набора из одного или нескольких признаков. Более формально, дискриминационные модели определяют условную вероятность выхода с учетом характеристик и весов273.
Дикий код (Wild code) — это коды, которые не разрешены для конкретного вопроса. Например, если вопрос, в котором указывается пол респондента, имеет задокументированные коды «1» для женского пола и «2» для мужского пола и «9» для «отсутствующих данных», код «3» будет «диким». код, который иногда называют «недокументированным кодом»274.
Длинный Хвост (Long Tail) означает разнообразную, но малообъемную часть ассортимента продукции. Интернет сделал возможным получение прибыли от продажи продуктов с длинным хвостом. Концепция была представлена Крисом Андерсоном в 2004 году275.
Доверенный или надежный искусственный интеллект (Trustworthy Artificial Intelligence, TAI) — это прикладная система искусственного интеллекта, обеспечивающая выполнение возложенных на нее задач с учетом ряда дополнительных требований, учитывающих этические аспекты применения искусственного интеллекта, а также обеспечивающая доверие к результатам работы системы ИИ, которые включают в себя: Достоверность (надежность) и интерпретируемость выводов и предлагаемых решений, полученных с помощью системы и проверенных на верифицированных тестовых примерах. Безопасность как с точки зрения невозможности причинения вреда пользователям системы на протяжении всего жизненного цикла системы, так и с точки зрения защиты от взлома, несанкционированного доступа и других негативных внешних воздействий. Приватность и верифицируемость данных, с которыми работают алгоритмы искусственного интеллекта, включая разграничение доступа и другие связанные с этим вопросы276.
Документация (Documentation) как правило, — это любая информация о структуре, содержимом и макете файла данных. Иногда называется «технической документацией» или «кодовой книгой». Документацию можно рассматривать как специализированную форму метаданных277.
Документированная информация (Documented information) — это зафиксированная на материальном носителе путем документирования информация с реквизитами, позволяющими определить такую информацию, или в установленных законодательством Российской Федерации случаях ее материальный носитель278.
Дистанционное медицинское обслуживание (Remote Medical Care) — это телемедицинский сервис, позволяющий осуществлять постоянный мониторинг состояния пациента и проведение профилактических и контрольных осмотров вне медицинских учреждений. Эта форма ухода стала возможной благодаря использованию мобильных устройств, которые измеряют основные показатели жизнедеятельности. Результаты передаются в Центр дистанционного медицинского обслуживания, где они автоматически анализируются. При обнаружении каких-либо отклонений медицинский персонал связывается с пациентом и вызывает скорую помощь в случае возникновения экстренной ситуации279.
Долгая краткосрочная память (Long short-term memory, LSTM) — это разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Зеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными лагами с неопределённой продолжительностью и границами. Относительная невосприимчивость к длительности временных разрывов даёт LSTM преимущество по отношению к альтернативным рекуррентным нейронным сетям, скрытым марковским моделям и другим методам обучения для последовательностей в различных сферах применения. Также, — это тип ячейки рекуррентной нейронной сети, используемой для обработки последовательностей данных в таких приложениях, как распознавание рукописного ввода, машинный перевод и субтитры к изображениям. LSTM решают проблему исчезающего градиента, которая возникает при обучении RNN из-за длинных последовательностей данных, сохраняя историю во внутренней памяти на основе новых входных данных и контекста из предыдущих ячеек в RNN280.
Дополненная реальность (Augmented reality) — это среда, в реальном времени дополняющая физический мир, каким мы его видим, цифровыми данными с помощью различных устройств (планшетов, смартфонов и др.) и определенного программного обеспечения. Отличие дополненной реальности от виртуальной реальности (virtual reality) в том, что дополненная реальность лишь добавляет отдельные элементы в уже существующий мир281.
Дополненный или расширенный интеллект (Augmented Intelligence) — это система искусственного интеллекта, которая помогает человеку в улучшении процесса принятия решений. Основная задача такой системы не заменить человека в решении той или иной прикладной задачи, а оказать ему содействие и помощь, с таем, чтобы расширить возможности человека. Впервые термин «intelligence amplification» («усиление интеллекта») упоминается в книге Уильяма Росса Эшби «Введение в кибернетику» в 1956 году. Расширенный искусственный интеллект улучшает процесс принятия решений человеком как за счет обработки больших объемов данных, которые могут сбить с толку человека, принимающего решения, так и за счет устранения факторов, которые могут искажать или неправильно интерпретировать данные (например, предвзятость или усталость)282. Современные системы расширенного искусственного интеллекта основываются на машинном обучении, глубоком машинном обучении и анализе больших данных283.
Дополнительный или вспомогательный интеллект (Auxiliary intelligence) — это система искусственного интеллекта, которая помогают человеку принимать решения на основе дополнительной информации, получаемой из анализа взаимодействия человека с окружающим его миром. Вспомогательный или дополнительный искусственный интеллект может является полезным дополнением к системе Человеко-ориентированного искусственного интеллекта. Часто вспомогательным искусственным интеллектом называют систему, которая используется специалистами для помощи при решении специализированных задач. Например, врачи используют искусственный интеллект, как вспомогательную систему при диагностике раковых опухолей или врожденных пороков сердца. В машинном обучении существует схожий термин «вспомогательное обучение». Вспомогательное обучение — это подход, при котором в процессе машинного обучения модель определяет наличие объектов, которые не подпадают ни под одну из изученных ею категорий. Название «Вспомогательное обучение» было выбрано из-за введения вспомогательного класса и используется для изучения неизвестных объектов284.
Допустимая эвристика (Admissible heuristic) — это эвристическая функция считается допустимой, если она никогда не завышает стоимость достижения цели, т. е. стоимость, которую она оценивает для достижения цели, не превышает наименьшую возможную стоимость. от текущей точки пути285.
Достоверность распознавания (Recognition accuracy) — это точность (правильность, достоверность) распознавания. Язык разметки для синтеза речи286.
Достоверность данных (Data veracity) — это степень точности или правдивости набора данных. В контексте больших данных важно не только качество данных, но и то, насколько надежными являются источник, тип и обработка данных287.
Доступ к информации (Access to information) — это возможность получения информации и ее использования288.
Доступ к информации, составляющей коммерческую тайну (Access to information constituting a commercial secret) — это ознакомление определенных лиц с информацией, составляющей коммерческую тайну, с согласия ее обладателя или на ином законном основании при условии сохранения конфиденциальности этой информации289.
Драйвер (Driver) — это компьютерное программное обеспечение, с помощью которого другое программное обеспечение (операционная система) получает доступ к аппаратному обеспечению отдельного устройства290.
Древо решений (Decision tree) — это модель на основе дерева и ветвей, используемая для отображения решений и их возможных последствий, аналогична блок-схеме291.
Дрейф концепций (Concept drift) в предиктивной аналитике и машинном обучении — это статистические свойства целевой переменной, которую модель пытается предсказать, со временем меняются непредвиденным образом. Это вызывает проблемы, потому что прогнозы становятся менее точными с течением времени.
Дрон (Drone) — это беспилотный летательный аппарат292.
Дружественный искусственный интеллект (ДИИ) (Friendly artificial intelligence) — это искусственный интеллект (ИИ), который обладает скорее позитивным, чем негативным влиянием на человечество. ДИИ также относится к области исследований, целью которых является создание такого ИИ. Этот термин в первую очередь относится к тем ИИ-программам, которые обладают способностью значительно воздействовать на человечество, таким, например, чей интеллект сравним или превосходит человеческий293.
«Е»
Единица анализа (Unit of analysis) — это базовая наблюдаемая сущность, анализируемая в ходе исследования и для которой собираются данные в виде переменных. Хотя единицу анализа иногда называют случаем или «наблюдением», они не всегда являются синонимами. Например, в опросах общественного мнения единицей анализа обычно является один человек, и ответы одного человека на вопросы опроса составляют «кейс». Однако в переписи «случаем» может считаться домохозяйство, поскольку все данные по одному домохозяйству собираются с помощью одного инструмента обследования; «кейс» домохозяйства может содержать различные переменные для разных единиц анализа: физическая жилищная структура, семья в структуре, человек в семье294.
Емкость модели (машинного обучения) (Model capacity) — это неофициальный термин, это очень близко (если не синоним) к сложности модели. Это способ рассказать о том, насколько сложную модель или взаимосвязь может выразить модель. Можно было бы ожидать, что модель с большей емкостью сможет смоделировать больше взаимосвязей между большим количеством переменных, чем модель с меньшей емкостью. Проводя аналогию с разговорным определением емкости, вы можете думать о ней как о способности модели учиться на все большем количестве данных, пока она не будет полностью «заполнена» информацией. Существуют различные способы формализовать емкость и вычислить ее числовое значение. Одно из них измерение VC, размерность Вапника-Червоненкиса, — это математически строгая формулировка емкости. Самый распространенный способ оценить емкость модели — подсчитать количество параметров. Чем больше параметров, тем выше емкость в целом295.
Естественный язык (Natural language) — это человеческий язык, такой как английский, русский или стандартный мандарин, используемый в повседневном общении людей, в отличие от сконструированного языка, искусственного языка, машинного языка или языка формальной логики. Также называется обычным языком296.
«Ж»
Жадная политика (Greedy policy) — в обучении с подкреплением — это политика, которая всегда выбирает действие с наивысшей ожидаемой отдачей297.
«З»
Загрузка сознания (Mind uploading (Whole brain emulation)) — это трансгуманистическая концепция, согласно которой «содержание» человеческого мозга можно представить в виде двоичного кода и загрузить на компьютер. Загрузка разума, также известная как эмуляция всего мозга (whole brain emulation, WBE), представляет собой теоретический футуристический процесс сканирования физической структуры мозга, достаточно точного для создания имитации психического состояния (включая долговременную память и «я») и передачи или копирование на компьютер в цифровом виде. Затем компьютер будет запускать симуляцию обработки информации мозгом, чтобы он реагировал, по существу, так же как исходный мозг, и испытывал разумный сознательный разум298.
Задача «последовательность к последовательности» (Sequence-to-sequence task) — это задача, которая преобразует входную последовательность маркеров в выходную последовательность маркеров299.
Закон Мура (Moore’s Law) — это эмпирическое наблюдение, изначально сделанное Гордоном Муром, согласно которому количество транзисторов, размещаемых в кристалле интегральной схемы, удваивается каждые 24 месяца, а стоимость компьютеров уменьшается вдвое. Другой принцип закона Мура гласит, что рост количества микропроцессоров экспоненциальный300.
Закрытый словарь (Closed dictionary) в системах распознавания речи — это словарь с ограниченным количеством слов, на который настроена система распознавания и который не может пополняться пользователем301.
Запись Big O notation (Big O notation) — это математическая запись, описывающая предельное поведение функции, когда аргумент стремится к определенному значению или к бесконечности. Это член семейства обозначений, изобретенных Полом Бахманом, Эдмундом Ландау и другими, которые вместе называются обозначениями Бахмана-Ландау или асимптотическими обозначениями302.
Запись (Record) в зависимости от контекста «запись» этот термин может относиться к физической или логической записи303.
Защита данных (Data protection) — это процесс защиты данных, который включает в себя взаимосвязь между сбором и распространением данных и технологий, общественным восприятием и ожиданием конфиденциальности, а также политическими и правовыми основами, связанными с этими данными. Он направлен на достижение баланса между индивидуальными правами на неприкосновенность частной жизни, но при этом позволяет использовать данные в деловых целях304.
Здравомыслящий искусственный интеллект (Artificial Intelligence of the Commonsense knowledge) — это одно из направлений развития искусственного интеллекта, которое занимается моделированием способности человека анализировать различные жизненные ситуации и руководствоваться в своих действиях здравым смыслом305. Здравый смысл — это накопленная совокупность общепринятых знаний и взглядов, представлений, форм мышления — о движущих силах природы и общества, взаимоотношениях людей; помимо знаний включает ценности, убеждения, регуляторы практической деятельности, моральные и правовые нормы, элементы религиозного опыта, художественно-эстетические оценки действительности306.
Зима искусственного интеллекта (Winter of artificial intelligence, AI winter) — это период сокращения интереса к предметной области, сокращения финансирования исследований. Термин был придуман по аналогии с идеей ядерной зимы. Область искусственного интеллекта пережила несколько циклов ажиотажа, за которыми последовали разочарование и критика, за которыми последовало сильное охлаждение интереса, а потом последовало возобновление интереса спустя годы или десятилетия307,308.
Знания (Knowledge) — это проверенный практикой и удостоверенный логикой результат познания действительности, отраженный в сознании человека в виде представлений, понятий, рассуждений и теорий. Знания формируются в результате целенаправленного педагогического процесса, самообразования и жизненного опыта309.
Значение алгоритма (Rete algorithm) — это алгоритм сопоставления с образцом для реализации систем, основанных на правилах. Алгоритм был разработан для эффективного применения многих правил или шаблонов ко многим объектам или фактам в базе знаний. Он используется для определения того, какое из правил системы должно срабатывать на основе ее хранилища данных, ее фактов310.
«И»
Игровая площадка TensorFlow (TensorFlow Playground) — это инструмент, который поможет вам понять идею нейронных сетей без сложных математических вычислений. TensorFlow Playground, веб-приложение, написанное на JavaScript, которое позволяет вам играть с настоящей нейронной сетью, работающей в вашем браузере, и нажимать кнопки и настраивать параметры, чтобы увидеть, как это работает311.
Игровой ИИ (Game AI) — это форма ИИ, характерная для игр, которая использует алгоритм для замены случайности. Это вычислительное поведение, используемое в персонажах, не являющихся игроками, для генерации интеллекта, подобного человеческому, и основанных на реакции действий, предпринимаемых игроком312.
Иерархический файл (Hierarchical file) — этот файл содержит информацию, собранную по нескольким единицам анализа в разных типах записей. Например, физическая жилая структура может быть одной единицей, а отдельные люди в структуре — другой. Примером может служить Текущее обследование населения: годовой демографический файл, в котором есть единицы анализа домохозяйства, семьи и человека. Исследования, включающие данные для разных единиц анализа, часто связывают эти единицы друг с другом, так что, например, можно анализировать людей по мере того, как они группируются в структуру313.
Иерархическая кластеризация (Hierarchical clustering) — это алгоритм машинного обучения без контроля, который используется для группировки непомеченных точек данных, имеющих сходные характеристики. Алгоритмы иерархической кластеризации делятся на две категории. Агломерационные иерархические алгоритмы. В агломерационных иерархических алгоритмах каждая точка данных обрабатывается как один кластер, а затем последовательно объединяется или агломерирует (подход снизу вверх) пары кластеров. Иерархия кластеров представлена в виде дендрограммы или древовидной структуры. Разделительные иерархические алгоритмы. С другой стороны, в разделительных иерархических алгоритмах все точки данных обрабатываются как один большой кластер, а процесс кластеризации включает в себя разделение (нисходящий подход) одного большого кластера на различные маленькие кластеры314.
Избирательное линейное разрешение определенного предложения (также просто разрешение SLD) (Selective Linear Definite clause resolution) — это основное правило вывода, используемое в логическом программировании. Это уточнение решения, которое является и правильным, и полным опровержением оговорок Хорна315.
Извлечение знаний (Knowledge extraction) — это извлечение существующего содержимого из структурированных или неструктурированных баз данных. Создание знаний из структурированных (реляционные базы данных, XML) и неструктурированных (текст, документы, изображения) источников. Полученные знания должны быть в машиночитаемом и машино-интерпретируемом формате и должны представлять знания таким образом, чтобы облегчить вывод. Хотя он методически похож на извлечение информации (NLP) и ETL (хранилище данных), основным критерием является то, что результат извлечения выходит за рамки создания структурированной информации или преобразования в реляционную схему. Это требует либо повторного использования существующих формальных знаний (повторное использование идентификаторов или онтологий), либо генерации схемы на основе исходных данных316.
Извлечение сущностей (Entity extraction) — это общий термин, относящийся к процессу добавления структуры к данным для того, чтобы машина смогла их прочитать. Извлечение сущностей может выполняться человеком или с помощью модели машинного обучения317.
Изучение онтологий (Ontology learning) — — это подзадача извлечения информации. Ее целью является полуавтоматическое извлечение соответствующих понятий и отношений из заданного наборов данных для формирования онтологии. «Онтология» — философская наука о бытии, основных видах и свойствах бытия. Автоматическое создание онтологий — задача, затрагивающая многие дисциплины. Как правило, процесс начинается с извлечения терминов и понятий или именных словосочетаний из обычного текста с использованием метода извлечения терминологии. Обычно для этого используются лингвистические процессы (например, маркировка частей речи, фрагментация фраз)318.
Изучение признаков или обучение представлению (Feature learning) — это набор методов, которые позволяют системе автоматически обнаруживать представления, необходимые для обнаружения или классификации признаков из необработанных данных. Это заменяет ручную разработку функций и позволяет машине изучать функции и использовать их для выполнения конкретной задачи319.
ИИ бенчмарк (AI benchmark) — это эталонный тест ИИ, бенчмаркинг систем ИИ, для оценки возможностей, эффективности, производительности и для сравнения ИНС, моделей машинного обучения (МО), архитектур и алгоритмов при решении различных задач ИИ создаются и стандартизируется специальные эталонные тесты, бенчмарки. Например, Benchmarking Graph Neural Networks — бенчмаркинг (эталонное тестирование) графовых нейронных сетей (ГНС, GNN) — обычно включает инсталляцию конкретного бенчмарка, загрузку исходных датасетов, проведение тестирования ИНС, добавление нового датасета и повторение итераций.
ИИ вендор (AI vendor) — это поставщик средств (систем, решений) ИИ.
ИИ камера (AI camera) — это камера с искусственным интеллектом, ИИ-камера, цифровые фотокамеры нового поколения — позволяют анализировать снимки, распознавая лица, их выражение, контуры объектов, текстуры, градиенты, характер освещения, что учитывается при обработке снимков; некоторые ИИ-камеры способны самостоятельно, без участия человека, делать снимки в моменты, которые камере покажутся наиболее интересными, и др.
ИИ мультиопыт (Multi-experience AI) — это ИИ, который описывает взаимодействия, которые происходят в различных цифровых точках соприкосновения (например, в Интернете, мобильных приложениях, диалоговых приложениях, AR, VR, MR и подобных устройств), с использованием комбинации способов взаимодействия для поддержки непрерывного и последовательного опыта пользователя. Возможности включают отсутствие касания, управление голосом, взглядом и жестом.
ИИ рабочая станция (AI workstation) — это рабочая станция (РС) со средствами (на основе) ИИ; ИИ РС, специализированный настольный ПК для решения технических или научных задач, задач ИИ; обычно подключается к ЛВС с многопользовательскими ОС, предназначается преимущественно для индивидуальной работы одного специалиста.
ИИ реального времени (Realtime AI) — это система искусственного интеллекта реального времени, ИИ реального времени, системы и средства ИИ реального времени находят применение в робототехнике, в космической технике, в видеоиграх; они используются для имитации разумного поведения, свойственного человеку, при решении текущих задач с учётом окружающей обстановки, входных данных и других факторов. При этом важно, чтобы решение (реакция системы) выдавалось в ответ на управляющие воздействия за установленное время.
ИИ рынок чипов (AI chipset market) — это рынок чипсетов для систем с искусственным интеллектом (ИИ).
ИИ сервер (AI server) — это сервер со средствами (на основе) ИИ; сервер, обеспечивающий решение задач ИИ.
ИИ суперкомпьютер (AI supercomputer) — это суперкомпьютер для задач искусственного интеллекта, суперкомпьютер для ИИ, характеризуется ориентацией на работу с большими объёмами данных.
ИИ термин (AI term) — это термин из области ИИ (из терминологии, словаря ИИ), например, in AI terms — в терминах ИИ (на языке ИИ).
ИИ терминология (AI terminology) — это терминология искусственного интеллекта, терминология ИИ, совокупность специальных терминов, относящихся к области ИИ.
ИИ ускорение (AI acceleration) — это ускорение вычислений, связанных с ИИ, для этой цели применяют специализированные аппаратные ускорители ИИ320.
ИИ ускоритель (AI accelerator) — это специализированная микросхема, повышающая скорость и эффективность обучения и тестирования нейронных сетей. Однако, для полупроводниковых микросхем, включая большинство ускорителей ИИ, существует теоретический минимальный предел потребления энергии. Уменьшение потребления возможно только при переходе на оптические нейронные сети и оптические ускорители для них321.
ИИ чипсет (AI chipset) — это чипсет для систем с ИИ, например, AI chipset industry — индустрия чипсетов для систем с ИИ, AI chipset market — рынок чипсетов для систем с ИИ.
ИИ, основанный на физике (Physics-based AI, PIAI) — это ИИ, который объединяет физические и аналоговые принципы, регулирующие законы и знания предметной области в модели ИИ.
ИИ-аппарат (AI hardware) — это аппаратное обеспечение ИИ, аппаратные средства ИИ, аппаратная часть инфраструктуры системы искусственного интеллекта, ИИ-инфраструктуры.
ИИ-инженер (AI engineer) — это инженер по системам с ИИ.
ИИ-инжиниринг (AI engineering) — это перевод технологий ИИ с уровня НИОКР, экспериментов и прототипов на инженерно-технический уровень, с расширенным внедрением методов и средств ИИ в ИТ-системы для решения реальных производственных задач компании, организации. Одна из стратегических технологических тенденций (трендов), которые могут кардинальным образом повлиять на состояние экономики, производства, финансов, на состояние окружающей среды и вообще на качество жизни человека и человечества.
ИИ-оптимизированный (AI-optimized) — это оптимизированный для задач ИИ или оптимизированный c помощью средств ИИ, например, AI-optimized chip — чип, оптимизированный для задач ИИ.
ИИ-покупатель (AI shopper) — это нечеловеческий экономический субъект, который получает товары или услуги в обмен на оплату. Примеры включают виртуальных личных помощников, интеллектуальную технику, подключенные автомобили и заводское оборудование с поддержкой Интернета вещей. Эти ИИ действуют от имени клиента-человека или организации.
ИИ-совместимое медицинское устройство (AI-enabled healthcare device) — это устройство с использованием ИИ для системы здравоохранения (медицинской помощи)322.
ИИ-совместимое устройство (AI-enabled device) — это устройство, поддерживаемое системой с искусственным интеллектом (ИИ-системой), например, интеллектуальный робот.
ИИ-совместимый (AI-enabled) — это аппаратное или программное обеспечение с использованием ИИ, использующий ИИ, оснащённый ИИ, например, AI-enabled tools — инструментальные средства с ИИ.
Именованные графы (Named graph) — это ключевая концепциея семантической веб — архитектуры, в которой набор операторов структуры описания ресурсов (граф) идентифицируется с помощью URI (Унифицированный идентификатор ресурса — уникальная последовательность символов, идентифицирующая логический или физический ресурс, используемый веб-технологиями), что позволяет делать описания этого набора признаков, таких как контекст, информация о происхождении или другое323.
Имитация отжига (Simulated annealing, SA) — это вероятностный метод аппроксимации глобального оптимума заданной функции. В частности, это метаэвристика для аппроксимации глобальной оптимизации в большом пространстве поиска для задачи оптимизации324.
Импульс (Momentum) — это метод машинного обучения, реализующий импульсный алгоритм градиентного спуска, очень эффективной техники в котором шаг обучения зависит не только от градиента текущего шага для направления поиска, а также от градиента прошлых шагов, которые непосредственно предшествовали ему чтобы определить направление движения. Импульс включает в себя вычисление экспоненциально взвешенного скользящего среднего градиента с течением времени, аналогичного импульсу в физике. Импульс способствует обучению не застревать в локальных минимумах325.
Инвариантность размера (Size invariance) в задаче классификации изображений — это способность алгоритма успешно классифицировать изображения даже при изменении размера изображения. Например, алгоритм все равно может идентифицировать кошку независимо от размера изображения — будь то 2 Мб или 200 Кб пикселей. Обратите внимание, что даже самые лучшие алгоритмы классификации изображений по-прежнему имеют практические ограничения на неизменность размера. Например, алгоритм (или человек) вряд ли правильно классифицирует изображение кошки, занимающее всего 20 пикселей326.
Индивидуальная справедливость (Individual fairness) — это метрика справедливости, которая проверяет, одинаково ли классифицируются похожие лица. Например, Brobdingnagian Academy может захотеть удовлетворить индивидуальную справедливость, гарантируя, что два студента с одинаковыми оценками и результатами стандартизированных тестов с одинаковой вероятностью будут приняты. Обратите внимание, что индивидуальная справедливость полностью зависит от того, как вы определяете «сходство» (в данном случае оценки и баллы за тесты), и вы можете столкнуться с риском возникновения новых проблем со справедливостью, если ваша метрика схожести пропускает важную информацию (например, строгость учащегося, учебный план)327.
Индуктивная предвзятость алгоритма обучения (Inductive Bias) — это набор предположений, которые обучаемая система использует для прогнозирования результатов на основе вводных параметров, с которыми она ещё не сталкивалась328.
Индуктивное рассуждение (Inductive reasoning) — это метод рассуждения, который использует предпосылки для предоставления доказательств в поддержку вывода. В отличие от дедуктивного рассуждения, индуктивное рассуждение работает как нисходящая логика, которая дает заключение путем обобщения или экстраполяции от частных случаев к общим правилам329.
Индукция (Induction) (от латинского inductio — «наведение») — это метод получения логического вывода при помощи перехода от частного к общему, т.е. индукция является противоположностью дедукции. В этом методе работают не только законы логики, но и математические, психологические и фактические представления330.
Индустриальный Интернет (Industrial Internet) — это концепция построения информационных и коммуникационных инфраструктур на основе подключения к информационно-телекоммуникационной сети «Интернет» промышленных устройств, оборудования, датчиков, сенсоров, систем управления технологическими процессами, а также интеграции данных программно-аппаратных средств между собой без участия человека331.
Индустрия ИИ (AI industry) — например, commercial AI industry — это коммерческая индустрия ИИ, коммерческий сектор индустрии ИИ.
Инженерия знаний (Knowledge engineering) — это создание систем, основанных на знаниях, включая все научные, технические и социальные аспекты. Также, это область искусственного интеллекта (ИИ), которая создает правила, применяемые к данным, чтобы имитировать мыслительный процесс человека-эксперта. Он смотрит на структуру задачи или решения, чтобы определить, как делается вывод332.
Инкрементное обучение (Incremental learning) — это пошаговое обучение является методом машинного обучения, в котором входные данные непрерывно используются для расширения знаний существующей модели для дальнейшего обучения модели. Оно представляет собой динамический метод обучения, который можно применять, когда данные обучения постепенно становятся доступными с течением времени или, их размер выходит за пределы системной памяти. Задачей инкрементального обучения является адаптация модели обучения к новым данным, не забывая при этом уже имеющиеся знания333.
Инструмент White papers (White papers) — это маркетинговый инструмент, часть контентной стратегии компании, представляющий из себя мини-книгу о решении определённой проблемы334.
Инструмент машинного обучения Pandas (сокращение от «panel-data-s») (The Pandas Machine Learning Tool) — это инструмент, используемый для исследования, очистки, преобразования и визуализации данных, поэтому его можно использовать в моделях машинного обучения и обучении. Это библиотека Python с открытым исходным кодом, построенная на основе NumPy. Pandas может обрабатывать три типа структур данных: серии, DataFrame и панель335,336.
Инструменты Vital A.I. (Vital A.I.) — это инструменты для разработки программного обеспечения искусственного интеллекта и консультационные услуги. Vital Development Kit (VDK) устраняет самый большой источник затрат при разработке интеллектуальных приложений: человеческий труд по интеграции данных; управление потоком данных между людьми, устройствами, базами данных и потоками данных алгоритмической обработки337.
Интегральная фотоника (Integrated photonics) — это направление фотоники, занимающееся разработкой и внедрением фотонных интегральных схем или оптических интегральных схем, которые могут обрабатывать и передавать световые, или оптические, сигналы (данные) — подобно тому, как электронные ИС работают с электронными сигналами (данными).
Интеграция данных (Data Integration) — это совокупность технических и деловых процессов, репликация и виртуализация данных. Интеграция данных используется для объединения информации из разрозненных источников в виде понятного и ценного набора данных для целей интеллектуальной обработки и бизнес-аналитики. Комплексное решение для интеграции данных предоставляет достоверные данные из различных локальных и облачных источников для обеспечения конвейера достоверных данных, готового к работе с DataOps.
Интегрированный ГП (Integrated GPU) — это интегрированный графический процессор, интегрированный ГП, расположенный на одном кристалле или в одной микросхеме с ЦП, как, например, он реализован в процессоре M1 корпорации Apple338.
Интеллект (Intelligence) — это способность мозга решать интеллектуальные задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам339.
Интеллект принятия решений (Decision intelligence, DI) — это практическая дисциплина, используемая для улучшения процесса принятия решений путем четкого понимания и программной разработки того, как принимаются решения, и как итоговые результаты оцениваются, управляются и улучшаются с помощью обратной связи.
Интеллектуальная информационная система (Intelligent information system) — это взаимосвязанная совокупность программного обеспечения, основанная на технологиях машинного обучения и искусственного интеллекта, имеющая возможность хранения, обработки и выдачи информации, а также самостоятельной настройки своих параметров в зависимости от состояния внешней среды (исходных данных) и специфики решаемой задачи. Также под интеллектуальной информационной системой понимают автоматизированную информационную систему, основанную на знаниях, или комплексе программных, лингвистических и логико-математических средств для реализации основной задачи — осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке340,341.
Интеллектуальная система (Intelligent system) — это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока — базу знаний, решатель и интеллектуальный интерфейс342.
Интеллектуальное управление (Intelligent control) — это дисциплина, в которой алгоритмы управления разрабатываются путем имитации определенных характеристик биологических систем, подпитываются последними достижениями в области вычислительной техники, и становится технологией, которая может открыть возможности для значительных технологических достижений343.
Интеллектуальные агенты (Intelligent agents) — это программы, самостоятельно выполняющие задания, указанные пользователем или другими программами, в течение длительных промежутков времени, используются для помощи оператору или сбора информации344.
Интеллектуальные задачи (Intellectual tasks) — это задачи, отыскание алгоритма решения которых связано с тонкими и сложными рассуждениями, логическими обобщениями и выводами, требующие большой изобретательности и высокой квалификации345.
Интеллектуальные приложения (Intelligent Applications) — это программные комплексы или системы со встроенными или интегрированными технологиями искусственного интеллекта, такими как интеллектуальная автоматизация и аналитика на основе больших данных, интегрированные с подсистемой поддержки-принятия решений.
Интеллектуальный агент (Intelligent agent, IA) — это компьютерная программная система, способная действовать независимо для достижения определенных целей и реагировать на людей или события, происходящие вокруг нее. Он запрограммирован с использованием искусственного интеллекта (ИИ) и оснащен датчиками, которые позволяют ему наблюдать и адаптироваться к ситуациям. ИА используются в областях, требующих взаимодействия с людьми, потому что они способны демонстрировать основные социальные навыки. Сегодняшние примеры IA включают Siri и Alexa. Они могут понять запрос и действовать самостоятельно, чтобы найти запрашиваемую информацию346.
Интеллектуальный анализ данных (Data Mining) — это процесс анализа скрытых шаблонов данных в соответствии с различными перспективами для категоризации в полезную информацию, которая собирается и сводится воедино в общих областях, таких как хранилища данных, для эффективного анализа, и алгоритмы интеллектуального анализа данных, облегчающие принятие бизнес-решений и другие информационные требования, которые, в конечном счете, сокращают затраты и увеличивают доходы. Интеллектуальный анализ данных также известен как обнаружение данных и раскрытие познаний347.
Интеллектуальный персональный помощник (также виртуальный помощник или персональный цифровой помощник) (Intelligent personal assistant) — это программный агент, который может выполнять задачи или услуги для человека на основе команд или вопросов. Термин «чат-бот» иногда используется для обозначения виртуальных помощников, к которым обычно или конкретно обращаются через онлайн — чат. В некоторых случаях программы онлайн-чата предназначены исключительно для развлекательных целей. Некоторые виртуальные помощники могут интерпретировать человеческую речь и отвечать синтезированными голосами. Пользователи могут задавать вопросы своим помощникам, управлять устройствами домашней автоматизации и воспроизведением мультимедиа с помощью голоса, а также управлять другими основными задачами, такими как электронная почта, списки дел и календари, с помощью голосовых команд348.
Интерактивное машинное обучение (Interactive Machine Learning, IML) — это разработка и реализация алгоритмов и интеллектуальных сред пользовательского интерфейса, которые облегчают машинное обучение с помощью взаимодействия с человеком. Это область развития искусственного интеллекта (ИИ), в которой пользователи, как правило, не являющиеся экспертами, могут быстро создавать и тестировать модели машинного обучения. Эти модели могут обучаться вводу/выводу данных в реальном времени на примерах человека/компьютера. Так системы машинного обучения учатся у человека и адаптируются к нему, но в то же время человек получает обратную связь и адаптируется к системе.
Интернет медицинских вещей (Internet of Medical Things, IoMT) — это класс умных медицинских устройств, ПО и отдельных смарт-услуг, имеющих возможность подключения и обмена данных в среде интернет, которые совершенствуют и развивают отрасль здравоохранения, помогают предоставлять помощь удаленно, автономно собирать информацию о пациенте. Такие умные устройства (гаджеты, датчики, измерители сердечного ритма и многие др.) собирают и обрабатывают данные, контролируют показатели здоровья, обрабатывают результаты анализов. Условно все устройства и решения IoMT в сфере медицины делятся на два типа: предназначенные для больниц и специалистов, которые в них работают; предназначенные для конечного потребителя, пациента349.
Интернет-вещей (Internet of Things, IoT) — это концепция и основанная на ней вычислительная сеть, соединяющая вещи (физические предметы), оснащенные встроенными информационными технологиями для взаимодействия друг с другом или с внешней средой без участия человека350.
Интероперабельность, совместимость (Interoperability) — это способность открытых систем использовать программы, выполняющиеся одновременно на различных платформах в общей сети, с возможностью обмена информацией между ними. Иначе говоря, программные компоненты системы, расположенные на разных аппаратных платформах в общей сети, должны быть способны работать как часть единой системы. Открытая интероперабельная система должна обладать способностью коммуникации и с другими уровнями АСУ предприятия, обеспечивая одновременно безопасность поступающей извне информации351,352.
Интерпретация (Interpretation) — это действие по объяснению значения чего-либо или способ, которым что-то объясняется или понимается (словарь Вебстера). Интерпрета́тор — программа (разновидность транслятора), выполняющая интерпретацию. Интерпрета́ция — построчный анализ, обработка и выполнение исходного кода программы или запроса, в отличие от компиляции, где весь текст программы, перед запуском анализируется и транслируется в машинный или байт-код без её выполнения353.
Интерпретируемость (Interpretability) — это способность объяснить или представить обоснование модели машинного обучения в понятных человеку терминах354.
Интерфейс мозг-компьютер (Brain—computer interface), иногда называемый интерфейсом мозг-машина (brain—machine interface), — это прямой путь связи между электрической активностью мозга и внешним устройством, чаще всего компьютером или роботизированной конечностью. Исследования интерфейса мозг-компьютер начались в 1970-х годах Жаком Видалем из Калифорнийского университета в Лос-Анджелесе (UCLA) в рамках гранта Национального научного фонда, за которым последовал контракт с DARPA. Статья Видаля 1973 года знаменует собой первое появление выражения «интерфейс мозг-компьютер» в научной литературе355.
Интерфейс прикладного программирования (Application programming interface) — это описание способов (набор классов, процедур, функций, структур или констант), которыми одна компьютерная программа может взаимодействовать с другой программой. Обычно входит в описание какого-либо интернет-протокола, программного каркаса (фреймворка) или стандарта вызовов функций операционной системы. Часто реализуется отдельной программной библиотекой или сервисом операционной системы. Используется программистами при написании всевозможных приложений356.
Интранет (Intranet) — это частная сеть внутри предприятия, которая используется для безопасного обмена корпоративной информацией и вычислительными ресурсами между сотрудниками. Интранет также можно использовать для работы в группах и телеконференций357.
Интерфейс распознавание голоса (Speech Recognition API, SRAPI) — это интерфейс, к лучшим из которых относят: Google Speech-to-Text, AssemblyAI, AWS Transcribe, DeepSpeech, Wav2Letter, SpeechBrain, Coqui358.
Интерфейсный агент (Воплощенный агент) (Embodied agent (also interface agent)) — это агент, который поддерживает интеллектуальное взаимодействие с пользователем. Он действует при формулировке запросов. Агент, который взаимодействует с окружающей средой через физическое тело или представлен графически, изображением человека или мультяшного персонажа, называется воплощенным агентом359.
Инференс (Inference) — это обученная модель нейронной сети на новых данных для получения выходных данных360,361.
Информатика (Computer science) — это наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность её использования для принятия решений. Также под информатикой понимают изучение вычислений, автоматизации и информации. Информатика охватывает теоретические дисциплины (такие как алгоритмы, теория вычислений и теория информации) и практические дисциплины (включая проектирование и внедрение аппаратного и программного обеспечения). Информатика обычно считается областью академических исследований и отличается от компьютерного программирования362.
Информатика медицинских изображений (Medical Imaging Informatics) — это подобласть медицинской информатики, в которой рассматриваются аспекты создания, обработки, управления, передачи, хранения, распространения, отображения, восприятия, конфиденциальности и безопасности изображений. Она пересекается со многими другими дисциплинами, такими как электротехника, компьютерные и информационные науки, медицинская физика, перцептивная физиология и психология, и развилась главным образом в радиологии363.
Информатика поведения (Behavior informatics) — это область знаний, которая позволяет получить информацию о поведении и понимание поведения. В отличие от прикладного анализа поведения с психологической точки зрения, BI создает вычислительные теории, системы и инструменты для качественного и количественного моделирования, представления, анализа и управления поведением отдельных лиц, групп и/или организаций364.
Информационная интеграция (Information integration, II) — это объединение информации из разнородных источников с различными концептуальными, контекстными и типографскими представлениями. Она используется в интеллектуальном анализе данных и консолидации данных из неструктурированные или полуструктурированные ресурсы365.
Информационная система (Information system) — это совокупность содержащейся в базах данных информации и обеспечивающих ее обработку информационных технологий и технических средств366.
Информационная эффективность (Information efficiency) — это эффективность по отношению к априорным предпосылкам и приобретаемому опыту. Оценка информационной эффективности уже заложена в формулу Шолле, оценивающую интеллект367.
Информационное общество (Information society) — это общество, в котором информация и уровень ее применения и доступности кардинальным образом влияют на экономические и социокультурные условия жизни граждан368.
Информационное пространство (Information space) — это совокупность информационных ресурсов, созданных субъектами информационной сферы, средств взаимодействия таких субъектов, их информационных систем и необходимой информационной инфраструктуры369.
Информационная сфера (Information Sphere) — это совокупность информации, объектов информатизации, информационных систем, сайтов в информационно-телекоммуникационной сети Интернет, сетей связи, информационных технологий, субъектов, деятельность которых связана с формированием и обработкой информации, развитием и использованием этих технологий, обеспечивающих информационную безопасность, а также комплекс механизмов регулирования соответствующих общественных отношений370.
Информационно-коммуникационные технологии (Information and communication technologies) — это совокупность информационных технологий, информационных систем и информационно-телекоммуникационных сетей, необходимых для реализации полномочий государственных органов и обеспечения их деятельности371.
Информационные технологии (Information technologies) — это процессы, методы поиска, сбора, хранения, обработки, предоставления, распространения информации и способы осуществления таких процессов и методов372.
Информацио́нный по́иск (Information Retrieval) — это процесс поиска неструктурированной документальной информации, удовлетворяющей информационные потребности, и наука об этом поиске. Информационный поиск связан с хранением, представлением и поиском информации, относящейся к конкретной проблеме пользователя. Ищущий информацию формулирует запрос, который сравнивается с представлениями документа. Пользователям предоставляются максимально похожие документы, которые могут быть актуальными по отношению к запросу на поиск информации373,374.
Информация (Information) — это сведения (сообщения, данные) независимо от формы их представления375.
Информация, составляющая коммерческую тайну (Information constituting a commercial secret) — это сведения любого характера (производственные, технические, экономические, организационные и другие), в том числе о результатах интеллектуальной деятельности в научно-технической сфере, а также сведения о способах осуществления профессиональной деятельности, которые имеют действительную или потенциальную коммерческую ценность в силу неизвестности их третьим лицам, к которым у третьих лиц нет свободного доступа на законном основании, и в отношении которых обладателем таких сведений введен режим коммерческой тайны376.
Информированный поиск (также эвристический поиск) (Heuristic search techniques) — это стратегия поиска решений в пространстве состояний, в которой используются знания, относящиеся к конкретной задаче. Эвристическая функция на каждом шаге перебора оценивает альтернативы на основании дополнительной информации с целью принятия решения о том, в каком направлении следует продолжать перебор377.
Инфраструктура ИИ (AI infrastructure) — это инфраструктура системы искусственного интеллекта, ИИ-инфраструктура, например, AI infrastructure research — исследования в области ИИ-инфраструктур.
Искусственная жизнь (Artificial life) — это междисциплинарная область науки, изучающая вопросы создания, по аналогии с живыми системами, искусственных систем, представленных в виде компьютерных программ или роботов. Искусственная жизнь (часто сокращенно ALife или A-Life) — это область исследований, в которой исследователи изучают системы, связанные с естественной жизнью, ее процессами и ее эволюцией, с помощью моделирования с помощью компьютерных моделей, робототехники и биохимии. Дисциплина была названа Кристофером Лэнгтоном, американским биологом-теоретиком, в 1986 году. В 1987 году Лэнгтон организовал первую конференцию в этой области в Лос-Аламосе, штат Нью-Мексико. Есть три основных вида жизни, названные в честь их подходов: мягкая, основанная на программном обеспечении; жесткий, из метизов; и мокрый, из биохимии. Исследователи искусственной жизни изучают традиционную биологию, пытаясь воссоздать аспекты биологических явлений378.
Искусственная нейронная сеть (Artificial Neural Network) — это математическая модель (а также её программное или аппаратное воплощение), состоящая из слоёв «нейронов», передающих друг другу данные, и построенная по принципу организации и функционирования биологических нейронных сетей. Также, — это программа или аппаратура, моделирующие сеть, построенную на принципах взаимодействия клеток (нейронов, neurode) нервной системы человека. В аппаратной реализации ИНС представляет собой сеть из множества простых процессоров (units, формальных нейронов), объединённых в слои379.
Искусственные языки (Сonstructed language) — это специализированные языки, в которых лексика, фонетика и грамматика были специально разработаны для воплощения определённых целей. Именно целенаправленность отличает искусственные языки от естественных. Иногда данные языки называют ненастоящими языками. Таких языков существует уже более тысячи, и постоянно создаются новые380.
Искусственный интеллект (ИИ) (Artificial Intelligence) — это компьютерная система, основанная на комплексе научных и инженерных знаний, а также технологий создания интеллектуальных машин, программ, сервисов и приложений, имитирующая мыслительные процессы человека или живых существ, способная с определенной степенью автономности воспринимать информацию, обучаться и принимать решения на основе анализа больших массивов данных381,382. С точки зрения инженеров-программистов, искусственный интеллект — это область информатики, объединяющая вычислительные технологии с надежными наборами данных, в рамках которой разрабатываются компьютерные программы для выполнения задач, способных имитировать человеческий интеллект — обнаруживать смысл, обобщать и делать выводы, выявлять взаимосвязи и обучаться с учетом накопленного опыта383,384,385,386.
Искусственный интеллект для ИТ-операций (Artificial Intelligence for IT Operations, AIOps) — это использование машинного обучения и других технологий искусственного интеллекта для автоматизации различных рабочих и технологических ИТ-процессов, которые инженерами-программистами выполняются вручную. AIOps похож на MLOps тем, что использует машинное обучение и другие технологии искусственного интеллекта для автоматизации ИТ-процессов. AIOps отличается от MLOps тем, что автоматизация процессов происходит в отделе ИТ-операций организации, а не в группе машинного обучения и искусственного интеллекта. Также AIOps отличается от MLOps тем, что использует искусственный интеллект для автоматизации группы процессов, а не только одной или двух задач, как это делает MLOps. Искусственный интеллект для ИТ-операций — это новая ИТ-практика, которая применяет искусственный интеллект к ИТ-операциям, чтобы помочь организациям разумно управлять ИТ-инфраструктурой, сетями и приложениями для обеспечения высокого качества, производительности, отказоустойчивости и безопасности. Термин AIOps появился в 2016 году, как отраслевая категория, которая помогает улучшить процессы автоматизации ИТ-операций с помощью технологий искусственного интеллекта387,388,389.
Искусственный Интеллект на уровне человека (Human Level Machine Intelligence) — это синоним полного ИИ, завершенного ИИ, сильного ИИ. Этот термин обозначает степень развития искусственного интеллекта на уровне человека. Человеческий мозг является моделью для создания такого интеллекта.
Искусственный нейрон (Artificial neuron) — это математическая функция, задуманная как модель биологических нейронов, нейронная сеть. Разница между искусственным нейроном и биологическим нейроном представлена на рисунке. Искусственные нейроны — это элементарные единицы искусственной нейронной сети. Искусственный нейрон получает один или несколько входных сигналов (представляющих возбуждающие постсинаптические потенциалы и тормозные постсинаптические потенциалы на нервных дендритах) и суммирует их для получения выходного сигнала (или активации, представляющего потенциал действия нейрона, который передается по его аксону). Обычно каждый вход взвешивается отдельно, а сумма проходит через нелинейную функцию, известную как функция активации или передаточная функция. Передаточные функции обычно имеют сигмовидную форму, но они также могут принимать форму других нелинейных функций, кусочно-линейных функций или ступенчатых функций. Они также часто являются монотонно возрастающими, непрерывными, дифференцируемыми и ограниченными390,391.
Искусственный сверхинтеллект (Artificial Super Intelligence, ASI) — это термин, который обозначает наивысшую степень развития искусственного интеллекта, превосходящую человеческие возможности во всех аспектах его жизнедеятельности392. На сегодняшний день систем искусственного сверхинтеллекта также, как и систем сильного или общего искусственного интеллекта не существует. Многие ученые считают, что до создания супер интеллекта пройдет очень много времени, но большинство из них все же сходятся во мнении, что это рано или поздно произойдет.
Исполняемый код (Executable) — это исполняемая программа, иногда называемая просто исполняемым или двоичным файлом, заставляет компьютер «выполнять указанные задачи в соответствии с закодированными инструкциями», в отличие от файла данных, который необходимо интерпретировать (открыть) программой, чтобы получить действие или результат393.
Исследование (Study) — это вся информация, собранная в одно время или для одной цели или одним главным исследователем. Исследование состоит из одного или нескольких файлов394.
Исследования будущего (Futures studies) — это изучение постулирования возможных, вероятных и предпочтительных вариантов будущего, а также мировоззрений и мифов, лежащих в их основе395.
Исходная отметка (Бенчмарк) ИИ (AI benchmark) — это эталонный тест ИИ для оценки возможностей, эффективности, производительности и для сравнения ИНС, моделей машинного обучения (МО), архитектур и алгоритмов при решении различных задач ИИ создаются и стандартизируется специальные эталонные тесты, исходные отметки. Например, Benchmarking Graph Neural Networks — бенчмаркинг (эталонное тестирование) графовых нейронных сетей (ГНС, GNN) — обычно включает инсталляцию конкретного бенчмарка, загрузку исходных датасетов, проведение тестирования ИНС, добавление нового датасета и повторение итераций.
Исчисление высказываний (также логика высказываний и логика нулевого порядка) (Propositional calculus) — это раздел логики, который имеет дело с высказываниями (которые могут быть истинными или ложными) и потоком аргументов. Сложные предложения образуются путем соединения предложений логическими связками. Предложения без логических связок называются атомарными предложениями. В отличие от логики первого порядка, логика высказываний не имеет дело с нелогическими объектами, предикатами о них или кванторами. Однако весь механизм пропозициональной логики включен в логику первого порядка и логику высшего порядка. В этом смысле логика высказываний является основой логики первого порядка и логики высшего порядка396.
Исчисление соединений регионов (Region connection calculus, RCC) — это действие предназначено для качественного пространственного представления и рассуждений. RCC абстрактно описывает регионы (в евклидовом пространстве или в топологическом пространстве) их возможными отношениями друг к другу. RCC8 состоит из 8 основных отношений, которые возможны между двумя регионами397.
Итерация (Iteration) — это обновление весов после анализа пакета входных записей, которое представляет собой одну итерацию обновления параметров модели нейронной сети398.
Исходный код (Source code) — это любой набор кода с комментариями или без них, написанный с использованием удобочитаемого языка программирования, обычно в виде простого текста. Исходный код программы специально разработан для облегчения работы компьютерных программистов, которые определяют действия, которые должны выполняться компьютером, в основном, путем написания исходного кода. Исходный код часто преобразуется ассемблером или компилятором в двоичный машинный код, который может выполняться компьютером. Затем машинный код может быть сохранен для выполнения в более позднее время399.
«К»
Калибровочный слой (Calibration layer) — это корректировка после прогнозирования, обычно для учета смещения прогноза. Скорректированные прогнозы и вероятности должны соответствовать распределению наблюдаемого набора меток400.
Канонические форматы (Canonical Formats) в информационных технологиях канонизация — это процесс приведения чего-либо в соответствие с некоторой спецификацией… и в утвержденном формате. Канонизация иногда может означать создание канонических данных из неканонических данных. Канонические форматы широко поддерживаются и считаются оптимальными для долгосрочного хранения401.
Капсульная нейронная сеть (Capsule neural network) — это архитектура искусственных нейронных сетей, которая предназначена для распознавания изображений. Главными преимуществами данной архитектуры является существенное снижение размеров необходимой для обучения выборки, а также повышение точности распознавания и устойчивость к атакам типа «белый ящик». Ключевым нововведением капсульных нейросетей является наличие так называемых капсул — элементов, являющихся промежуточными единицами между нейронами и слоями, которые представляют собой группы виртуальных нейронов, отслеживающих не только отдельные детали изображения, но и их расположение друг относительно друга. Данная архитектура была задумана Джеффри Хинтоном в 1979 году, сформулирована в 2011 году и опубликована в двух статьях в октябре 2017 года402,403.
Категориальные данные (Categorical data) — это данные, качественно характеризующие исследуемый процесс или объект, не имеющие количественного выражения. В них каждая единица наблюдения назначается определенной группе или номинальной категории на основе некоторого качественного свойства. Обычно представляют собой построчные значения из ограниченного набора категорий (например, названия городов, наименования товаров, имена сотрудников и клиентов и т.д.). В некоторых случаях могут использоваться и числа, кодирующие эти категории. При обработке таких данных применяются только операции сравнения: «равно» и «не равно», производится их упорядочение, например, по алфавиту. Применение арифметических операций к категориальным данным некорректно, даже если они представлены числами404.
Квантильное группирование (Quantile bucketing) — это распределение значений объекта по сегментам таким образом, чтобы каждый сегмент содержал одинаковое (или почти одинаковое) количество примеров. Например, на следующем рисунке 44 точки разделены на 4 корзины, каждая из которых содержит 11 точек. Чтобы каждый сегмент на рисунке содержал одинаковое количество точек, некоторые сегменты охватывают разную ширину значений x405.
Квантификатор (Quantifier) в логике — это количественная оценка указывает количество экземпляров в области дискурса, которые удовлетворяют открытой формуле. Два наиболее распространенных квантификатора означают «для всех» и «существует». Например, в арифметике квантификаторы позволяют сказать, что натуральные числа продолжаются вечно, записав, что для всех n (где n — натуральное число) существует другое число (скажем, следующее за n), которое на единицу больше, чем n406.
Квантование (Quantization) — это разбиение диапазона отсчётных значений сигнала на конечное число уровней и округления этих значений до одного из двух ближайших к ним уровней407.
Квантовые вычисления (Quantum computing) — это использование квантово-механических явлений, таких как суперпозиция и запутанность, для выполнения вычислений. Квантовый компьютер используется для выполнения таких вычислений, которые могут быть реализованы теоретически или физически408,409.
Квантовые технологии (Quantum technologies) — это технологии создания вычислительных систем, основанные на новых принципах (квантовых эффектах), позволяющие радикально изменить способы передачи и обработки больших массивов данных410.
Киберфизические системы (Cyber-physical systems) — это интеллектуальные сетевые системы со встроенными датчиками, процессорами и приводами, которые предназначены для взаимодействия с физической окружающей средой и поддержки работы компьютерных информационных систем в режиме реального времени411.
Класс (Class) — это термин из набора перечисленных целевых значений меток. Например, в модели бинарной классификации, обнаруживающей спам-рассылку, существует два класса — это спам и не спам. В многоклассовой модели классификации, которая идентифицирует породы собак, классами будут пудель, бигль, мопс и так далее412.
Класс большинства (Majority class) — это метка в наборе данных с несбалансированным классом. Несбалансированные данные относятся к случаям, когда количество наблюдений в классе распределено неравномерно, и часто существует основной класс — класс большинства, который имеет гораздо больший процент набора данных, и второстепенные классы, в которых недостаточно примеров413.
Класс меньшинства (Minority class) — это метка в несбалансированном по классам наборе данных. Например, учитывая набор данных, содержащий 99% ярлыков, не относящихся к спаму, и 1% ярлыков для спама, ярлыки для спама относятся к классу меньшинства в наборе данных с несбалансированным классом414.
Класс сложности NP (недетерминированное полиномиальное время) (NP) — в теории вычислительной сложности — это класс, используемый для классификации проблем принятия решений. NP — это множество проблем решения, для которых экземпляры проблемы, где ответ «да», имеют доказательства, проверяемые за полиномиальное время с помощью детерминированной машины Тьюринга415.
Классификация (Classification). В задачах классификации используется алгоритм для точного распределения тестовых данных по определенным категориям, например, при отделении яблок от апельсинов. Или, в реальном мире, алгоритмы обучения с учителем можно использовать для классификации спама в отдельной папке из вашего почтового ящика. Линейные классификаторы, машины опорных векторов, деревья решений и случайный лес — все это распространенные типы алгоритмов классификации416.
Кластеризация (Clustering) — это метод интеллектуального анализа данных для группировки неразмеченных данных на основе их сходства или различия. Например, алгоритмы кластеризации K-средних распределяют сходные точки данных по группам, где значение K представляет размер группировки и степень детализации. Этот метод полезен для сегментации рынка, сжатия изображений и т.д.417.
Кластеризация временных данных (Temporal data clustering) — это разделение неразмеченного набора временных данных на группы или кластеры, где все последовательности, сгруппированные в одном кластере, должны быть согласованными или однородными. Хотя для кластеризации различных типов временных данных были разработаны различные алгоритмы, все они пытаются модифицировать существующие алгоритмы кластеризации для обработки временной информации418.
Кластеризация на основе центроида (Centroid-based clustering) — это категория алгоритмов кластеризации, которые организуют данные в неиерархические кластеры. Алгоритм k средних (k-means) — это наиболее широко используемый алгоритм кластеризации на основе центроидов, один из алгоритмов машинного обучения, решающий задачу кластеризации419.
Кластерный анализ (Cluster analysis) — это тип обучения без учителя, используемый для исследовательского анализа данных для поиска скрытых закономерностей или группировки в данных; кластеры моделируются с мерой сходства, определяемой такими метриками, как евклидово или вероятностное расстояние.
Ключевые точки (Keypoints) — это координаты определенных объектов на изображении. Например, для модели распознавания изображений в задачах компьютерного зрения, такие как оценка позы человека, обнаружение лиц и распознавание эмоций, обычно работают с ключевыми точками на изображении420
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
2
A/B Testing [Электронный ресурс] https://vwo.com URL: https://vwo.com/ab-testing/ (дата обращения: 28.01.2022)
3
Abductive Logic Programming (ALP) [Электронный ресурс] https://engati.com URL: https://www.engati.com/glossary/abductive-logic-programming (дата обращения 14.02.2022)
4
Abductive reasoning [Электронный ресурс] https://msrblog.com URL: http://msrblog.com/science/mathematic/about-abductive-reasoning.html (дата обращения 14.02.2022)
5
Abstract data type [Электронный ресурс] https://embeddedartistry.com URL: https://embeddedartistry.com/fieldmanual-terms/abstract-data-type/ (дата обращения 14.02.2022)
6
Abstraction [Электронный ресурс] https://riskfirst.org URL: https://riskfirst.org/thinking/Glossary
7
Auto Associative Memory [Электронный ресурс] www.tutorialspoint.com URL: artificial_neural_network/artificial_neural_network_associate_memory.ht https://www.tutorialspoint.com/m#:~:text= These%20kinds%20of%20neural %20networks, with%20the %20given%20input%20pattern (дата обращения: 07.07.2022)
8
Autoencoder [Электронный ресурс] https://neurohive.io URL: https://neurohive.io/ru/osnovy-data-science/avtojenkoder-tipy-arhitektur-i-primenenie/ (дата обращения: 28.01.2022)
9
Automation [Электронный ресурс] https://tis-eg.com URL: https://tis-eg.com/en/what-is-automation-mean/ (дата обращения: 24.03.2023)
10
Автоматизированная обработка персональных данных [Электронный ресурс] URL: https://10.rkn.gov.ru/docs/10/Pravila_obrabotki_PD.pdf (дата обращения: 24.03.2023)
11
Автоматизированная система [Электронный ресурс] https://prezi.com URL: https://prezi.com/p/kjuyqjgiuaux/presentation/ (дата обращения: 24.03.2023)
12
Автоматизированная система управления [Электронный ресурс] https://safe-surf.ru URL: https://safe-surf.ru/glossary/ru/599613 (дата обращения: 24.03.2023)
13
Automated reasoning [Электронный ресурс] https://techtarget.com URL: https://www.techtarget.com/searchenterpriseai/definition/automated-reasoning#:~:text= Automated%20reasoning%20is %20the%20area, inferences%20towards %20that%20goal%20automatically (дата обращения: 18.02.2022)
14
Автономное транспортное средство [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Автономный_транспорт (дата обращения: 24.03.2023)
15
Autonomous [Электронный ресурс] https://www.telusinternational.com URL: https://www.telusinternational.com/insights/ai-data/article/50-beginner-ai-terms-you-should-know (дата обращения: 26.03.2023)
16
Autonomic computing [Электронный ресурс] https://www.accenture.com URL: https://www.accenture.com/us-en/insights/applied-intelligence/artificial-intelligence-glossary (дата обращения: 26.03.2023)
17
Autonomous car [Электронный ресурс] https://synopsys.com URL: https://www.synopsys.com/automotive/what-is-autonomous-car.html (дата обращения: 28.01.2022)
18
Offline inference [Электронный ресурс] https://www.facebook.com URL: https://www.facebook.com/primeclasses.in/photos/a.1765059106881298/3674394015947788/?type=3 (дата обращения: 26.03.2023)
19
Автономный искусственный интеллект https://stepik.org URL: https://stepik.org/lesson/292708/step/2 (дата обращения: 26.03.2023)
20
Autonomous artificial intelligence [Электронный ресурс] https://books.google.ru URL: https://books.google.ru/books?id=_R5XEAAAQBAJ&pg=PT217&lpg=PT217&dq= Autonomous+artificial+intelligence+a+biologically +inspired+system+that+tries+to+reproduce+the +structure+of+the+brain&source=bl&ots=NKsVUXEkc6&sig =ACfU3U23DpeuDH11ONrGFufhEpuVkLGsCw&hl= ru&sa=X&ved=2ahUKEwiz0bqhnPn9AhUCt4sKH Q5RCDoQ6AF6BAgvEAM#v=onepage&q=Autonomous %20artificial%20intelligence%20a%20biologically %20inspired%20system%20that%20tries%20to %20reproduce%20the%20structure%20of%20the %20brain&f=false (дата обращения: 26.03.2023)
21
Autonomous robot [Электронный ресурс] https://techopedia.com URL: https://www.techopedia.com/definition/32694/autonomous-robot (дата обращения: 28.01.2022)
22
Autoregressive Model [Электронный ресурс] https://wiki.loginom.ru URL: https://wiki.loginom.ru/articles/autoregressive-model.html (дата обращения: 08.02.2022)
23
Agent [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary/rl#agent (дата обращения: 26.03.2023)
24
Aggregate [Электронный ресурс] www.umich.edu (дата обращения: 07.07.2022) URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#A
25
Aggregator [Электронный ресурс] www.techopedia.com (дата обращения: 07.07.2022) URL: https://www.techopedia.com/definition/2502/feed-aggregator
26
Агломеративная кластеризация [Электронный ресурс] https://biconsult.ru URL: https://biconsult.ru/products/aglomerativnaya-klasterizaciya-v-mashinnom-obuchenii (дата обращения: 26.03.2023)
27
Адаптивная система [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Адаптивная_система (дата обращения: 26.03.2023)
28
Adaptive neuro fuzzy inference system (ANFIS) [Электронный ресурс] https://hrpub.ru URL: https://www.hrpub.org/download/20190930/AEP1-18113213.pdf (дата обращения 14.02.2022)
30
Сжатие без потерь. [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/ruwiki/38681 (дата обращения: 27.01.2022)
31
Adaptive Gradient Algorithm. [Электронный ресурс] https://jmlr.org URL: https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf (дата обращения: 18.02.2022)
32
Аддитивные технологии [Электронный ресурс] https://books.google.ru URL: https://books.google.ru/books?id=6EYkEAAAQBAJ&pg (дата обращения: 27.03.2023)
33
Isaac Asimov [Электронный ресурс] https://www.techopedia.com URL: https://www.techopedia.com/definition/32134/isaac-asimov (дата обращения: 27.03.2023)
34
Isaac Asimov [Электронный ресурс] https://www.techopedia.com URL: https://www.techopedia.com/definition/32134/isaac-asimov (дата обращения: 27.03.2023)
35
Active Learning/Active Learning Strategy [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary (дата обращения: 27.03.2023)
36
Active Learning, Monica Nicolette Nicolescu, «A framework for learning from demonstration, generalization and practice in human-robot domains,» University of Southern California, 2003.
37
Active Learning, Brenna D and Chernova, Sonia and Veloso, Manuela and Browning, Brett Argall, «A survey of robot learning from demonstration,» Robotics and autonomous systems, vol. 57, pp. 469 — 483, 2009
38
Алгоритм [Электронный ресурс] https://intuit.ru URL: https://intuit.ru/studies/courses/1122/167/lecture/4566 (дата обращения: 27.03.2023)
39
BLEU (Bilingual Evaluation Understudy) [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary/language (дата обращения: 27.03.2023)
40
Q-learning [Электронный ресурс] https://towardsdatascience.com URL: https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c (дата обращения: 07.07.2022)
41
Junction tree algorithm (also Clique Tree) [Электронный ресурс] https://ai.stanford.edu URL: https://ai.stanford.edu/~paskin/gm-short-course/lec3.pdf (дата обращения: 27.03.2023)
42
Junction tree algorithm (also Clique Tree) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Junction_tree_algorithm#cite_note-:1-1 (дата обращения: 27.03.2023)
43
Anytime algorithm [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/eng_rus/423258/anytime (дата обращения: 27.01.2022)
44
Алгоритм обучения [Электронный ресурс] https://azure.microsoft.com URL: https://azure.microsoft.com/en-gb/overview/machine-learning-algorithms/#overview (дата обращения: 07.07.2022)
45
Adam optimization algorithm [Электронный ресурс] https://archive.org URL: https://archive.org/details/riseofexpertcomp00feig (дата обращения: 11.03.2022)
46
Glowworm swarm optimization algorithm (GSO) Applied Mechanics and Materials Vol. 421 (2013) pp 507—511© (2013) Trans Tech Publications, Switzerland doi: 10.4028 www.scientific.net/AMM.421.507 Glowworm Swarm Optimization (GSO) Algorithm for Optimization Problems: A State-of-the-Art Review (дата обращения: 11.01.2022)
47
Perceptron algorithm [Электронный ресурс] https://machinelearningmastery.com URL: https://machinelearningmastery.com/perceptron-algorithm-for-classification-in-python/ (дата обращения: 07.07.2022)
48
Search algorithm [Электронный ресурс] https://www.wikidata.org URL: https://www.wikidata.org/wiki/Q755673 (дата обращения: 27.03.2023)
49
Bees algorithm [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Bees_algorithm#cite_note-Pham_&_al,_2005-1 (дата обращения: 27.03.2023)
50
Algorithmic Assessment [Электронный ресурс] https://www.accenture.com URL: https://www.accenture.com/nz-en/services/applied-intelligence/ai-ethics-governance (дата обращения: 27.03.2023)
51
Biased algorithm [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Algorithmic_bias (дата обращения: 27.03.2023)
52
Алгоритмическая предвзятость [Электронный ресурс] https://ru.wikibrief.org URL: https://ru.wikibrief.org/wiki/Algorithmic_bias (дата обращения: 27.03.2023)
53
Алгоритмы машинного обучения [Электронный ресурс] https://azure.microsoft.com URL: https://azure.microsoft.com/ru-ru/overview/machine-learning-algorithms/#overview (дата обращения: 07.07.2022)
54
Analysis of algorithms (AofA) [Электронный ресурс] https://aofa.cs.purdue.edu URL: https://aofa.cs.purdue.edu/#:~:text=Analysis%20of%20Algorithms%20(AofA)%20is,%2C%20combinatorial%2C%20and%20analytic%20methods (дата обращения: 18.02.2022)
55
Time series analysis [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary/clustering#time-series-analysis (дата обращения: 27.03.2023)
56
Time series analysis [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/time-series-analysis (дата обращения: 27.03.2023)
57
Data analysis [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/ruwiki/1727524 (дата обращения: 16.02.2022)
58
Sentiment analysis [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary/language#sentiment-analysis (дата обращения: 16.02.2022)
59
Principal component analysis (PCA) [Электронный ресурс] http://alumni.media.mit.edu URL: http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html (дата обращения: 27.03.2023)
60
Decision intelligence [Электронный ресурс] https://www.simplilearn.com URL: https://www.simplilearn.com/decision-intelligence-article (дата обращения: 27.03.2023)
61
Data analytics [Электронный ресурс] www.investopedia.com (дата обращения: 07.07.2022) URL: https://www.investopedia.com/terms/d/data-analytics.asp
62
Annotation [Электронный ресурс] https://appen.com URL: https://appen.com/ai-glossary/ (дата обращения 05.04.2020)
63
Entity annotation [Электронный ресурс] https://bigdataanalyticsnews.com URL: https://bigdataanalyticsnews.com/artificial-intelligence-glossary/ (дата обращения: 27.03.2023)
64
Анонимизация [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Анонимизация (дата обращения: 27.03.2023)
65
Ensemble [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/ensemble (дата обращения: 27.03.2023)
66
Antivirus software [Электронный ресурс] www.webroot.com (дата обращения: 07.07.2022) URL: https://www.webroot.com/ca/en/resources/tips-articles/what-is-anti-virus-software
67
API-AS-a-service [Электронный ресурс] www.sofokus.com (дата обращения: 07.07.2022) URL: https://www.sofokus.com/glossary-of-digital-business/#ABCD
68
Dataset API (tf. data) [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary/tensorflow#dataset-api-tf.data (дата обращения: 27.03.2023)
69
Аппаратное обеспечение [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Аппаратное_обеспечение (дата обращения: 27.03.2023)
70
Аппаратное ускорение [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Аппаратное_ускорение (дата обращения: 27.03.2023)
71
Аппаратно-программный комплекс [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/ (дата обращения: 27.03.2023)
72
Аппаратный акселератор [Электронный ресурс] https://www.computer-museum.ru URL: https://www.computer-museum.ru/dictionary/term/4783/ (дата обращения: 27.03.2023)
73
Аппаратный Сервер [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Сервер_(аппаратное_обеспечение) (дата обращения: 27.03.2023)
74
Prior [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Prior_probability (дата обращения: 27.03.2023)
75
Artifact [Электронный ресурс] https://en.wikipedia.org https://en.wikipedia.org/wiki/Artifact_(software_development) (дата обращения: 07.07.2022)
76
Archival Storage [Электронный ресурс] www.komprise.com (дата обращения: 07.07.2022) URL: https://www.komprise.com/glossary_terms/archival-storage/
77
Archival Information Collection (AIC) [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#A (дата обращения: 07.07.2022)
78
Agent architecture [Электронный ресурс] https://dic.academic URL: https://en-academic.com/dic.nsf/enwiki/2205509 (дата обращения 28.02.2022)
79
Архитектура вычислительной машины [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Архитектура_(значения) (дата обращения: 28.03.2023)
80
Архитектура вычислительной системы [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Архитектура_вычислительной_системы (дата обращения: 28.03.2023)
81
Matrix Processing Engine Architecture (MPE) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Systems_architecture#cite_note-5 (дата обращения: 28.03.2023)
82
Matrix Processing Engine Architecture (MPE) [Электронный ресурс] https://www.gyrfalcontech.ai URL: https://www.gyrfalcontech.ai/mpe-architecture/ page 9 (дата обращения: 28.03.2023)
83
Architecture of a system [Электронный ресурс] http://cabibbo.dia URL: http://cabibbo.dia.uniroma3.it/ids/altrui/ieee1471.pdf (дата обращения: 28.03.2023)
84
Архитектура фон Неймана [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Von_Neumann_architecture (дата обращения: 07.07.2022)
85
Архитектурная группа описаний [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Архитектура_системы (дата обращения: 28.03.2023)
86
Архитектурная группа описаний [Электронный ресурс] https://habr.com URL: https://habr.com/ru/post/347204/ (дата обращения: 28.03.2023)
87
Architectural frameworks [Электронный ресурс] https://implementationscience.biomedcentral.com URL: https://implementationscience.biomedcentral.com /articles/10.1186/s13012-017-0607-7#:~:text=Architectural%20frameworks %20are%20high%2Dlevel, principles %20that%20guide%20their%20evolution (дата обращения: 07.07.2022)
88
Asymptotic computational complexity [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/eng_rus/429332/asymptotic (дата обращения: 27.01.2022)
89
Асинхронные межкристальные протоколы [Электронный ресурс] https://studopedia.ru URL: https://studopedia.ru/3_184365_asinhronnie-i-sinhronnie-protokoli.html (дата обращения: 28.03.2023)
90
Association [Электронный ресурс] https://www.ibm.com URL: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning (дата обращения: 28.03.2023)
91
Association for the Advancement of Artificial Intelligence (AAAI) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Association_for_the_Advancement_of_Artificial_Intelligence#cite_note-1 (дата обращения: 28.03.2023)
92
Association for the Advancement of Artificial Intelligence (AAAI) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Association_ for_the_Advancement_of_Artificial_Intelligence#cite_note-1 (дата обращения: 28.03.2023)
93
Attributional calculus Ryszard S. Michalski (2004), ATTRIBUTIONAL CALCULUS: A LOGIC AND REPRESENTATION LANGUAGE FOR NATURAL INDUCTION. Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA 22030—4444 and Institute of Computer Science, Polish Academy of Sciences, Warsaw.
94
Affective computing [Электронный ресурс] //OpenMind URL: https://www.bbvaopenmind.com/en/technology/digital-world/what-is-affective-computing/ (дата обращения 14.02.2022)
95
Database [Электронный ресурс] https://www.coe.int URL: https://www.coe.int/en/web/artificial-intelligence/glossary (дата обращения: 28.03.2023)
96
База Данных ImageNet [Электронный ресурс] www.wikiwand.com/en URL: https://www.wikiwand.com/en/IEEE_Computational_Intelligence_Society (дата обращения: 07.07.2022)
97
MNIST [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/mnist (дата обращения: 28.03.2023)
98
Baseline [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#baseline (дата обращения: 28.03.2023)
99
Bayesian optimization [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#bayesian-optimization (дата обращения: 28.03.2023)
100
Bayesian Network [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/ruwiki/1738444 (дата обращения: 31.01.2022)
101
Байесовский классификатор в машинном обучении [Электронный ресурс] https://wiki.loginom.ru URL: https://wiki.loginom.ru/articles/bayesian_classifier.html (дата обращения: 07.07.2022)
102
Bayesian programming [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Bayesian_programming (дата обращения: 28.03.2023)
103
Байесовское программирование [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Байесовское_программирование (дата обращения: 28.03.2023)
104
Tower [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#tower (дата обращения: 28.03.2023)
105
Byte [Электронный ресурс] www.umich.edu (дата обращения: 07.07.2022) URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#B
106
Безопасность критической информационной инфраструктуры [Электронный ресурс] http://www.kremlin.ru URL: http://www.kremlin.ru/acts/bank/42128 (дата обращения: 28.03.2023)
107
Application security [Электронный ресурс] www.csoonline.com URL: https://www.csoonline.com/article/3315700/what-is-application-security-a-process-and-tools-for-securing-software.html (дата обращения: 07.07.2022)
108
Benchmark [Электронный ресурс] https://medium.com URL: https://medium.com/@tauheedul/it-hardware-benchmarks-for-machine-learning-and-artificial-intelligence-6183ceed39b8 (дата обращения 11.03.2022)
109
Бенчмаркинг [Электронный ресурс] https://trends.rbc.ru URL: https://trends.rbc.ru/trends/education/61540f1e9a7947ed382de149 (дата обращения: 28.03.2023)
110
Wireless network [Электронный ресурс] https://en.wikipedia.org (дата обращения: 07.07.2022) URL: https://en.wikipedia.org/wiki/Wireless_network
111
WiBB Wireless broadband [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Wireless_broadband (дата обращения: 07.07.2022)
112
BETA [Электронный ресурс] www.sofokus.com URL: https://www.sofokus.com/glossary-of-digital-business/#ABCD (дата обращения: 07.07.2022)
113
The Keras Library [Электронный ресурс] https://datawider.com URL: https://datawider.com/top-10-python-libraries/#_ftn2 (дата обращения: 28.03.2023)
114
Matplotlib [Электронный ресурс] https://books.google.ru URL: https://books.google.ru/books?id=-w2DEAAAQBAJ&pg=PT391&lpg=PT391&dq=It +has+been+emulated+from+MATLAB+and+thus +contains+global+styles+very+similar+to+MATLAB, +including+the+object+hierarchy&source=bl&ots=ruX5Ow1E-j&sig=ACfU3U1FqV3-RtxTevhXaIQNPRheAJbv8A&hl= ru&sa=X&ved=2ahUKEwjzycGevP79AhXSy4sKHdq3 Dsc4ChDoAXoECBYQAw#v=onepage&q=It%20has %20been%20emulated%20from%20MATLAB %20and%20thus%20contains%20global%20styles %20very%20similar%20to%20MATLAB%2C %20including%20the%20object%20hierarchy&f=false (дата обращения: 28.03.2023)
115
Библиотека Numpy [Электронный ресурс] https://datawider.com URL: https://datawider.com/top-10-python-libraries/#_ftn1 (дата обращения: 07.07.2022)
116
PyTorch (Torch Library) [Электронный ресурс] https://datawider.com URL: https://datawider.com/top-10-python-libraries/#_ftn3 (дата обращения: 28.03.2023)
117
Scikit-learn Library [Электронный ресурс] https://datawider.com URL: https://datawider.com/top-10-python-libraries/#_ftn10 (дата обращения: 28.03.2023)
118
SciPy Library [Электронный ресурс] https://datawider.com URL: https://datawider.com/top-10-python-libraries/#_ftn6 (дата обращения: 28.03.2023)
119
Theano [Электронный ресурс] https://datawider.com URL: https://datawider.com/top-10-python-libraries/#_ftn7 (дата обращения: 28.03.2023)
120
Bigram [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Bigram (дата обращения: 28.03.2023)
121
Binary tree [Электронный ресурс] https://habr.com URL: https://habr.com/ru/post/267855/ (дата обращения: 31.01.2022)
122
Bioconservatism [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Bioconservatism (дата обращения: 07.07.2022)
123
.Bioconservatism [Электронный ресурс] www.wise-geek.com URL: https://www.wise-geek.com/what-is-bioconservatism.htm (дата обращения: 07.07.2022)
124
Biometrics [Электронный ресурс] https://recfaces.com URL: https://recfaces.com/articles/types-of-biometrics (дата обращения: 28.03.2023)
125
Биометрия [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Биометрия (дата обращения: 28.03.2023)
126
IFU (Instruction Fetch Unit) [Электронный ресурс] https://www.module.ru URL: https://www.module.ru/uploads/media/1507808903-512-gflops-f52673fe3c.pdf (дата обращения: 28.03.2023)
127
Vision Processing Unit (VPU) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Vision_processing_unit#cite_note-1 (дата обращения: 28.03.2023)
128
Blockchain [Электронный ресурс] https://books.google.ru URL: https://books.google.ru/books?id=-w2DEAAAQBAJ&pg=PT301&lpg=PT301&dq= algorithms+and+protocols+for+decentralized +storage+and+processing+of+transactions+structured +as+a+sequence+of+linked+blocks+without+the +possibility+of+their+subsequent+change&source =bl&ots=ruX5Ow4F-g&sig=ACfU3U0fmUw6tcXO QoRbPdWNAfwf5AFY WQ&hl=ru&sa=X&ved=2ahUKEwjmpsrjx_79AhW DmIsKHQqDBvMQ6AF6BAgrEAM#v=onepage&q= algorithms%20and%20protocols%20for %20decentralized%20storage%20and%20processing %20of%20transactions%20structured%20as%20a %20sequence%20of%20linked%20blocks%20without %20the%20possibility%20of%20their%20subsequent %20change&f=false (дата обращения: 28.03.2023)
129
Large language model [Электронный ресурс] https://medium.com URL: https://medium.com/unpackai/language-models-in-ai-70a318f43041 (дата обращения: 07.07.2022)
130
Большие данные [Электронный ресурс] https://ulgov.ru URL: https://ulgov.ru/page/index/permlink/id/14949/ (дата обращения: 28.03.2023)
131
Occam’s razor [Электронный ресурс] https://medium.com URL: https://medium.com/mlearning-ai/an-introduction-to-occams-razor-bound-in-machine-learning-80ba5456c8dc (дата обращения: 07.07.2022)
132
Boosting [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Boosting_(machine_learning) (дата обращения: 28.03.2023)
133
Replay buffer [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#replay-buffer (дата обращения: 28.03.2023)
134
Быстрое кодирование [Электронный ресурс] www.helenkapatsa.ru URL: https://www.helenkapatsa.ru/bystroie-kodirovaniie/ (дата обращения: 07.07.2022)
135
Бытовой искусственный интеллект [Электронный ресурс] https://apr.moscow URL: https://apr.moscow/content/data/6/11 Технологии искусственного интеллекта. pdf (дата обращения: 28.03.2023)
136
Holdout data [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#holdout-data (дата обращения: 28.03.2023)
137
Holdout data [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/holdout-data (дата обращения: 28.03.2023)
138
Data variability [Электронный ресурс] www.investopedia.com URL: https://www.investopedia.com/terms/v/variability.asp (дата обращения: 07.07.2022)
139
Data entry [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#D (дата обращения: 07.07.2022)
140
Weight [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#W (дата обращения: 07.07.2022)
141
Vector processor or array processor [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Vector_processor (дата обращения: 07.07.2022)
142
Probabilistic programming (PP) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Probabilistic_programming (дата обращения: 28.03.2023)
143
Вероятностное программирование (Probabilistic programming) [Электронный ресурс] https://wiki5.ru URL: https://wiki5.ru/wiki/Probabilistic_programming (дата обращения: 28.03.2023)
144
Intelligence explosion [Электронный ресурс] www.techopedia.com URL: https://www.techopedia.com/definition/32777/intelligence-explosion (дата обращения: 07.07.2022)
145
Intelligence explosion [Электронный ресурс] https://hplusmagazine.com URL: https://hplusmagazine.com/2011/03/07/why-an-intelligence-explosion-is-probable/ (дата обращения: 07.07.2022)
146
Video analytics [Электронный ресурс] https://tadviser.com URL: https://tadviser.com/index.php/Article:Video_analytics_(terms,_scopes_of_application,_technologies) (дата обращения: 28.03.2023)
147
Видеоаналитика [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Видеоаналитика (дата обращения: 28.03.2023)
148
Виртуализация [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Виртуализация (дата обращения: 28.03.2023)
149
Виртуальный помощник [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Виртуальный_ассистент (дата обращения: 28.03.2023)
150
Virtual Reality (VR) [Электронный ресурс] www.igi-global.com URL: https://www.igi-global.com/dictionary/augmented-reality-framework-socialization-between/31774 (дата обращения: 07.07.2022)
151
Virtual Reality (VR) [Электронный ресурс] www.techtarget.com URL: https://www.techtarget.com/whatis/definition/virtual-reality (дата обращения: 07.07.2022)
152
Intrinsic motivation [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Intrinsic_motivation_(artificial_intelligence) (дата обращения: 07.07.2022)
153
Внутригрупповая предвзятость [Электронный ресурс] https://naukatehnika.com URL: https://naukatehnika.com/predvzyatost-iskusstvennogo-intellekta.html (дата обращения: 07.07.2022)
154
Return [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#return (дата обращения: 28.03.2023)
155
Reward [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#reward (дата обращения: 28.03.2023)
156
Embodied cognitive science [Электронный ресурс] https://psychology.fandom.com URL: https://psychology.fandom.com/wiki/Embodied_cognitive_science (дата обращения 14.03.2022)
157
Speech perception [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Speech_perception#:~: text =Speech%20perception%20is%20the%20process, psychology%20and%20perception%20in%20psychology (дата обращения: 07.07.2022)
158
Forget gate [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#forget-gate (дата обращения: 28.03.2023)
159
Rotational invariance [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#rotational-invariance (дата обращения: 28.03.2023)
160
Time complexity [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Time_complexity (дата обращения: 07.07.2022)
161
Time Series [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Time_series (дата обращения: 28.03.2023)
162
Temporal data [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#temporal_data (дата обращения: 28.03.2023)
163
Time series [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#T (дата обращения: 07.07.2022)
164
Embedding [Электронный ресурс] https://appen.com URL: https://appen.com/ai-glossary/ (дата обращения 28.02.2022)
165
Embedding space [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#embedding-space (дата обращения: 28.03.2023)
166
Word embedding [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Word_embedding (дата обращения: 07.07.2022)
167
Входной слой [Электронный ресурс] https://mcs.mail.ru URL: https://naukatehnika.com/predvzyatost-iskusstvennogo-intellekta.html (дата обращения: 07.07.2022)
168
Secondary analysis [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#S (дата обращения: 07.07.2022)
169
Action selection [Электронный ресурс] https://www.netinbag.com/ URL: https://www.netinbag.com/ru/internet/what-is-action-selection.html (дата обращения: 18.02.2022)
170
Feature selection [Электронный ресурс] https://medium.com URL: https://medium.com/@lee.riyal/feature-selection-techniques-snippets-fcc36a7ef55b (дата обращения 28.02.2022)
171
Candidate sampling [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#candidate-sampling (дата обращения: 28.03.2023)
172
Outliers [Электронный ресурс] https://medium.com URL: https://medium.com/analytics-vidhya/its-all-about-outliers-cbe172aa1309 (дата обращения: 28.03.2023)
173
Inference [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/inference (дата обращения: 28.03.2023)
174
Feature extraction [Электронный ресурс] https://deepai.org URL: https://deepai.org/machine-learning-glossary-and-terms/feature-extraction (дата обращения: 14.02.2022)
175
Graph execution [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/graph-execution (дата обращения: 28.03.2023)
176
Satisfiability [Электронный ресурс] https://www.openmv.org URL: https://www.openmv.org/glossary/satisfiability/ (дата обращения: 28.03.2023)
177
Rectified Linear Unit [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/rectified-linear-unit-relu (дата обращения: 28.03.2023)
178
Convex optimization [Электронный ресурс] https://en.mimi.hu URL: https://en.mimi.hu/artificial_intelligence/convex_optimization.html (дата обращения 22.02.2022)
179
Convex function [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#convex-function (дата обращения: 28.03.2023)
180
Convex function [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#expandable-7 (дата обращения: 28.03.2023)
181
Convex set [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#convex-set (дата обращения: 28.03.2023)
182
Output layer [Электронный ресурс] https://mcs.mail.ru URL: https://www.techopedia.com/definition/30351/outlier-detection (дата обращения: 07.07.2022)
183
Computation [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Computation (дата обращения: 07.07.2022)
184
Computational problem [Электронный ресурс] https://cs.stackexchange.com URL: https://cs.stackexchange.com/questions/47757/computational-problem-definition (дата обращения 12.03.2022)
185
Computational cybernetics [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Computational_cybernetics (дата обращения: 28.03.2023)
186
Вычислительная математика [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/ (дата обращения: 28.03.2023)
187
Computational neuroscience [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Computational_neuroscience (дата обращения: 28.03.2023)
188
Вычислительная нейробиология [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Вычислительная_нейробиология (дата обращения: 28.03.2023)
189
Вычислительная система [Электронный ресурс] https://ru.wikipedia.org URL: https://cdto.wiki/Вычислительная_система (дата обращения: 28.03.2023)
190
Computational statistics [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Computational_statistics (дата обращения: 28.03.2023)
191
Computational statistics (Computational science) [Электронный ресурс] https://www.techopedia.com URL: https://www.techopedia.com/definition/6579/computational-science (дата обращения: 28.03.2023)
192
Computational number theory [Электронный ресурс] https://en-academic.com URL: https://en-academic.com/dic.nsf/enwiki/282959 (дата обращения: 28.03.2023)
193
Вычислительная теория чисел [Электронный ресурс] https://wiki5.ru URL: https://wiki5.ru/wiki/Computational_number_theory (дата обращения: 28.03.2023)
194
Computational chemistry [Электронный ресурс] https://goldbook.iupac.org URL: https://goldbook.iupac.org/terms/view/CT06952 (дата обращения: 28.03.2023)
195
Computational chemistry [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Computational_chemistry (дата обращения: 28.03.2023)
196
Вычислительная химия [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Вычислительная_химия (дата обращения: 28.03.2023)
197
Вычислительная эффективность агента или обученной модели [Электронный ресурс] https://vc.ru URL: https://vc.ru/ml/253499-kak-schitat-effektivnost-iskusstvennogo-intellekta-na-primere-umnogo-ekskavatora (дата обращения: 28.03.2023)
198
Вычислительная эффективность интеллектуальной системы [Электронный ресурс] https://vc.ru URL: https://vc.ru/ml/253499-kak-schitat-effektivnost-iskusstvennogo-intellekta-na-primere-umnogo-ekskavatora (дата обращения: 28.03.2023)
199
Вычислительные блоки [Электронный ресурс] https://www.osp.ru URL: https://www.osp.ru/os/1997/06/179341 (дата обращения: 28.03.2023)
200
Computational humor [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Computational_humor (дата обращения: 28.03.2023)
201
Anomaly detection [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#anomaly-detection (дата обращения: 28.03.2023)
202
Выявление аномалий [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Выявление_аномалий (дата обращения: 28.03.2023)
203
Generative Adversarial Network (GAN) [Электронный ресурс] https://machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/generative-models-and-gans-fe7efc20020b/ (дата обращения: 11.02.2022)
204
Generative model [Электронный ресурс] https://habr.com URL: https://habr.com/ru/company/wunderfund/blog/334568/ (дата обращения: 31.01.2022)
205
Генеративный ИИ (Generative AI) [Электронный ресурс] https://expinet.ru URL: https://expinet.ru/novosti/chto-novogo-v-hype-cikle-gartnera-2022-g.html (дата обращения: 28.03.2023)
206
Generator [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#generator (дата обращения: 28.03.2023)
207
Генерация естественного языка (NLG) [Электронный ресурс] https://mcs.mail.ru URL: https://www.ibm.com/blogs/watson/2020/11/nlp-vs-nlu-vs-nlg-the-differences-between-three-natural-language-processing-concepts/ (дата обращения: 07.07.2022)
208
Candidate generation [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/recommendation/overview/candidate-generation (дата обращения: 10.01.2022)
209
Genetic Algorithm [Электронный ресурс] https://habr.com URL: https://habr.com/ru/post/128704/ (дата обращения: 31.01.2022)
210
Genetic operator [Электронный ресурс] https://devforum.roblox.com URL: https://devforum.roblox.com/t/an-introduction-to-genetic-algorithms/1439469 (дата обращения 03.04.2020)
211
Genomic data [Электронный ресурс] www.techopedia.com URL: https://www.techopedia.com/definition/31247/genomic-data (дата обращения 03.04.2020)
212
Hetero Associative memory [Электронный ресурс] https://www.tutorialspoint.com URL: https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_associate_memory.htm# (дата обращения: 28.03.2023)
213
Human-machine hybridization [Электронный ресурс] www.mdpi.com URL: https://www.mdpi.com/journal/sensors/special_issues/Human_Machine_sensors (дата обращения: 07.07.2022)
214
Гибридные модели [Электронный ресурс] URL: https://digital.gov.ru/uploaded/files/07102019ii.pdf стр. 42 (дата обращения: 28.03.2023)
215
Гибридный суперкомпьютер [Электронный ресурс] https://www.ascod.ru URL: https://www.ascod.ru/products/servers/hybrid/ (дата обращения: 28.03.2023)
216
Гиперпараметр [Электронный ресурс] https://hmong.ru URL: https://hmong.ru/wiki/Hyper-heuristics (дата обращения: 07.07.2022)
217
Hyper-heuristic [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Hyper-heuristic (дата обращения: 28.03.2023)
218
Depth [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/depth (дата обращения: 28.03.2023)
219
Deep model [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/deep-model (дата обращения: 28.03.2023)
220
Deep neural network [Электронный ресурс] https://machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/ (дата обращения: 08.02.2022)
221
Depthwise separable convolutional neural network (sepCNN) [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#depthwise-separable-convolutional-neural-network-sepcnn (дата обращения: 28.03.2023)
222
Deep Learning (DL) [Электронный ресурс] https://www.algotive.ai URL: https://www.algotive.ai/blog/everything-you-need-to-know-about-deep-learning-the-technology-that-mimics-the-human-brain (дата обращения: 28.03.2023)
223
Государство-как-Платформа [Электронный ресурс] https://www.csr.ru URL: https://www.csr.ru/upload/iblock/313/3132b2de9ccef0db1eecd56071b98f5f.pdf (дата обращения: 28.03.2023)
224
Государство-как-Платформа [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Ссылки:Государство_как_платформа (дата обращения: 28.03.2023)
225
Gradient [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#gradient (дата обращения: 28.03.2023)
226
Gradient clipping [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#gradient-clipping (дата обращения: 28.03.2023)
227
Gradient descent [Электронный ресурс] https://medium.com URL: https://medium.com/@rndayala/gradient-descent-algorithm-2553ccc79750 (дата обращения 14.03.2022)
228
Decision boundary [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#decision-boundary (дата обращения: 28.03.2023)
229
Graph [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#graph (дата обращения: 28.03.2023)
230
Graph (abstract data type) [Электронный ресурс] www.semanticscholar.org URL: https://www.semanticscholar.org/topic/Graph-(discrete-mathematics)/23410 (дата обращения 28.01.2022)
231
Graph (discrete mathematics) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Graph_(discrete_mathematics) (дата обращения: 28.03.2023)
232
Графический кластер (GPC) [Электронный ресурс] https://habr.com URL: https://habr.com/ru/company/pixonic/blog/520136/ (дата обращения: 28.03.2023)
233
Graphical Processing Unit (GPU) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Graphics_processing_unit (дата обращения: 28.03.2023)
234
Computational Graphics Processing Unit [Электронный ресурс] www.boston.co.uk URL: https://www.boston.co.uk/info/nvidia-kepler/what-is-gpu-computing.aspx (дата обращения 14.03.2022)
235
Graph database (GDB) [Электронный ресурс] https://aws.amazon.com URL: https://aws.amazon.com/ru/nosql/graph/ (дата обращения: 11.03.2022)
236
Graph neural networks [Электронный ресурс] https://arxiv.org URL: https://arxiv.org/pdf/1812.08434 (дата обращения: 07.07.2022)
237
Knowledge graphs (Графы знаний) [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Knowledge_Graph (дата обращения: 28.03.2023)
238
Ridge regularization [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#ridge-regularization (дата обращения: 16.04.2023)
239
Restricted-use data [Электронный ресурс] www.umich.edu (дата обращения: 07.07.2022) URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#R
240
Dartmouth workshop [Электронный ресурс] https://static.hlt.bme.hu URL: https://static.hlt.bme.hu/semantics/external/pages/John_McCarthy/en.wikipedia.org/wiki/Dartmouth_workshop.html (дата обращения: 16.04.2023)
241
Datamining [Электронный ресурс] https://bellintegrator.ru URL: https://bellintegrator.ru/ArtificialIntelligence/Data-Mining (дата обращения: 19.02.2022)
242
Downsampling [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#downsampling (дата обращения: 09.04.2023)
243
Binary number [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#B (дата обращения: 07.07.2022)
244
Binary format [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#B (дата обращения: 07.07.2022)
245
Binary classification [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/binary-classification (дата обращения: 09.04.2023)
246
Bidirectional language model [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#bidirectional-language-model (дата обращения: 09.04.2023)
247
Bidirectional [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#bidirectional (дата обращения: 09.04.2023)
248
Crash blossom [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#crash-blossom (дата обращения: 09.04.2023)
249
Deductive classifier [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Deductive_classifier (дата обращения: 09.04.2023)
250
Дедукция, стр. 36 Педагогический словарь: учеб. пособие для студ. высш. П24 учеб. заведений/ [В.И.Загвязинский, А.Ф.Закирова, Т. А. Строкова и др.]; под ред. В.И.Загвязинского, А.Ф.Закировой. — М.: Издательский центр «Академия», 2008. — 352 с. (дата обращения: 09.04.2023)
251
Action [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#action (дата обращения: 09.04.2023)
252
Declarative programming [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Declarative_programming (дата обращения: 09.04.2023)
253
Декларативное программирование [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Декларативное_программирование (дата обращения: 09.04.2023)
254
Demographic parity [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#demographic-parity (дата обращения: 09.04.2023)
255
Behavior tree (BT) [Электронный ресурс] https://habr.com URL: https://habr.com/ru/company/cloud_mts/blog/306214/ (дата обращения: 31.01.2022)
256
Issue tree [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Issue_tree (дата обращения: 09.04.2023)
257
Decision Tree [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#decision-tree (дата обращения: 09.04.2023)
258
Decision Tree [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Decision_tree (дата обращения: 09.04.2023)
259
Дерево решений [Электронный ресурс] https://loginom.ru URL: https://loginom.ru/blog/decision-tree (дата обращения: 09.04.2023)
260
Decompression [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#D (дата обращения: 07.07.2022)
261
Децентрализованное управление [Электронный ресурс] https://be5.biz URL: https://be5.biz/ekonomika/u001/09.html (дата обращения: 09.04.2023)
262
Decentralized applications (dApps) [Электронный ресурс] www.investopedia.com URL: https://www.investopedia.com/terms/d/decentralized-applications-dapps.asp (дата обращения: 07.07.2022)
263
Decoder [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/ruwiki/317857 (дата обращения: 18.02.2022)
264
Diagnosis [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Diagnosis_(artificial_intelligence) (дата обращения: 09.04.2023)
265
Dialogue system [Электронный ресурс] www.lix.polytechnique.fr URL: https://www.lix.polytechnique.fr/~lengrand/Events/Dyckhoff/Slides/Nordstrom.pdf (дата обращения 27.01.2022)
266
Дизайн-центр [Электронный ресурс] https://kartaslov.ru URL: https://kartaslov.ru/значение-слова/дизайн-центр (дата обращения: 09.04.2023)
267
Dynamic model [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/dynamic-model (дата обращения: 09.04.2023)
268
Динамическая модель [Электронный ресурс] https://kartaslov.ru URL: https://kartaslov.ru/карта-знаний/Динамическая+модель (дата обращения: 09.04.2023)
269
Dynamic epistemic logic [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Dynamic_epistemic_logic (дата обращения: 09.04.2023)
270
Discrete system [Электронный ресурс] www.semanticscholar.org URL: https://www.semanticscholar.org/topic/Discrete-system/272487 (дата обращения 22.03.2022)
271
Discrete feature [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#discrete-feature (дата обращения 22.03.2022)
272
Discriminator [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#discriminator (дата обращения 22.03.2022)
273
Discriminative model [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#discriminative_model (дата обращения: 09.04.2023)
274
Wild code [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#W (дата обращения: 07.07.2022)
275
Long Tail [Электронный ресурс] www.sofokus.com URL: https://www.sofokus.com/glossary-of-digital-business/#L (дата обращения: 07.07.2022)
276
.Документация отбора получателей поддержки исследовательских центров в сфере искусственного интеллекта, в том числе в области «сильного» искусственного интеллекта, систем доверенного искусственного интеллекта и этических аспектов применения искусственного интеллекта. [Электронный ресурс] ac.gov.ru URL: https://ac.gov.ru/uploads/_Projects/AI_otbor/Documents.pdf (дата обращения: 30.08.2023)
277
Documentation [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#D (дата обращения: 07.07.2022)
278
Документированная информация [Электронный ресурс] https://safe-surf.ru URL: https://safe-surf.ru/glossary/ru/835/ (дата обращения: 09.04.2023)
279
Remote Medical Care [Электронный ресурс] www.comarch.com URL: https://www.comarch.com/healthcare/products/remote-medical-care/ (дата обращения: 07.07.2022)
280
Долгая краткосрочная память [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/ (дата обращения: 07.07.2022)
281
Augmented reality [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Augmented_reality (дата обращения: 09.04.2023)
282
.What Is Augmented Intelligence? [Электронный ресурс] digitalreality.ieee.org URL: https://digitalreality.ieee.org/publications/what-is-augmented-intelligence (дата обращения: 31.08.2023). — Текст: электронный.
283
Augmented Intelligence [Электронный ресурс] https://gartner.com URL: https://www.gartner.com/en/information-technology/glossary/augmented-intelligence#:~:text= Augmented%20intelligence%20is%20a%20design, decision %20making%20and%20new%20experiences (дата обращения: 28.01.2022)
284
.Auxiliary Learning as a step towards Artificial General Intelligence. [Электронный ресурс] arxiv.org URL: https://arxiv.org/abs/2212.00061 (дата обращения: 28.08.2023)
285
Admissible heuristic [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Admissible_heuristic (дата обращения: 09.04.2023)
286
Recognition accuracy [Электронный ресурс] https://singapore-academy.org URL: https://singapore-academy.org/libcdo/100.pdf стр. 60 (дата обращения: 09.04.2023)
287
Data veracity [Электронный ресурс] https://datafloq.com URL: https://datafloq.com/read/data-veracity-new-key-big-data/ (дата обращения: 07.07.2022)
288
Доступ к информации [Электронный ресурс] https://ru.wikipedia.org/wiki/Доступность_информации (дата обращения: 09.04.2023)
289
Доступ к информации, составляющей коммерческую тайну [Электронный ресурс] http://www.fsk-ees.ru URL: http://www.fsk-ees.ru/upload/docs/Polozhenie-comtayna.pdf стр. 1 (дата обращения: 09.04.2023)
290
Драйвер [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Драйвер (дата обращения: 09.04.2023)
291
Decision tree [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#decision-tree (дата обращения: 09.04.2023)
292
Дрон [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Беспилотный_летательный_аппарат (дата обращения: 09.04.2023)
293
Friendly artificial intelligence [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/searchall.php?SWord=Friendly+artificial+intelligence+&from=ru&to=xx&did=&stype=0 (дата обращения: 09.03.2022)
294
Unit of analysis [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#U (дата обращения: 07.07.2022)
295
Model capacity [Электронный ресурс] https://stats.stackexchange.com URL: https://stats.stackexchange.com/questions/312424/what-is-the-capacity-of-a-machine-learning-model (дата обращения: 07.07.2022)
296
Natural language [Электронный ресурс] www.thoughtco.com URL: https://www.thoughtco.com/what-is-a-natural-language-1691422 (дата обращения: 07.07.2022)
297
Greedy policy [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#greedy-policy (дата обращения: 09.04.2023)
298
Mind uploading [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Mind_uploading (дата обращения: 07.07.2022)
299
Sequence-to-sequence task [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#sequence-to-sequence-task (дата обращения: 09.04.2023)
300
Закон Мура [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Закон_Мура (дата обращения: 09.04.2023)
301
Закрытый словарь [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/machine-learning-algorithms-in-laymans-terms-part-1-d0368d769a7b/ (дата обращения: 07.07.2022)
302
Big O notation [Электронный ресурс] https://upread.ru URL: https://upread.ru/art.php?id=659 (дата обращения: 04.02.2022)
303
Record [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#R (дата обращения: 07.07.2022)
304
Data protection [Электронный ресурс] www.techopedia.com URL: https://www.techopedia.com/definition/29406/data-protection (дата обращения: 07.07.2022)
305
Commonsense knowledge [Электронный ресурс] https://wikiaro.ru URL: https://wikiaro.ru/wiki/Commonsense_reasoning (дата обращения: 09.02.2022)
306
.Здравый смысл. [Электронный ресурс] bigenc.ru URL: https://bigenc.ru/c/zdravyi-smysl-7e3cac (дата обращения: 30.08.2023)
307
AI winter [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/AI_winter (дата обращения: 07.07.2022)
308
.Commonsense knowledge (artificial intelligence). [Электронный ресурс] en.wikipedia.org URL: https://en.wikipedia.org/wiki/Commonsense_knowledge_(artificial_intelligence) (дата обращения: 30.08.2023)
309
Знания [Электронный ресурс] http://www.glossary.ru URL: http://www.glossary.ru/cgi-bin/gl_sch2.cgi?RHtgto9 (дата обращения: 09.04.2023)
310
Rete algorithm [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Rete_algorithm (дата обращения: 09.04.2023)
311
TensorFlow Playground [Электронный ресурс] https://cloud.google.com URL: https://cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground (дата обращения: 07.07.2022)
312
Игровой ИИ [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Игровой_искусственный_интеллект (дата обращения: 09.04.2023)
313
Hierarchical file [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#H (дата обращения: 07.07.2022)
314
Hierarchical clustering [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#hierarchical-clustering (дата обращения: 09.04.2023)
315
SLD resolution [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/SLD_resolution (дата обращения: 09.04.2023)
316
Knowledge extraction [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Knowledge_extraction (дата обращения: 09.04.2023)
317
Entity extraction [Электронный ресурс] https://www.telusinternational.com URL: https://www.telusinternational.com/insights/ai-data/article/50-beginner-ai-terms-you-should-know (дата обращения: 09.04.2023)
318
Ontology learning [Электронный ресурс] https://psychology.fandom.com URL: https://psychology.fandom.com/wiki/Ontology_learning (дата обращения: 07.07.2022)
319
Feature learning [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Feature_learning (дата обращения: 27.04.2023)
320
AI acceleration [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/AI_accelerator (дата обращения: 27.04.2023)
321
AI acceleration [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/AI_accelerator (дата обращения: 27.04.2023)
322
AI-enabled healthcare [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Artificial_intelligence_in_healthcare (дата обращения: 27.04.2023)
323
Именованные графы [Электронный ресурс] https://wikimili.com/en URL: https://wikimili.com/en/Named_graph (дата обращения: 07.07.2022)
324
Simulated annealing (SA) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Simulated_annealing (дата обращения: 27.04.2023)
325
Momentum [Электронный ресурс] https://blog.paperspace.com URL: https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/ (дата обращения: 07.07.2022)
326
Size invariance [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#size-invariance (дата обращения: 27.04.2023)
327
Individual fairness [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#individual-fairness (дата обращения: 27.04.2023)
328
Inductive Bias [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Inductive_bias (дата обращения: 27.04.2023)
329
Inductive reasoning [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Inductive_reasoning (дата обращения: 27.04.2023)
330
Индукция [Электронный ресурс] https://4brain.ru URL: https://4brain.ru/blog/abdukciya-poisk-istiny-cherez-rasshirenie-soznaniya/ (дата обращения: 27.04.2023)
331
Индустриальный Интернет [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Индустриальный_интернет (дата обращения: 27.04.2023)
332
Knowledge engineering [Электронный ресурс] www.investopedia.com URL: https://www.investopedia.com/terms/k/knowledge-engineering.asp (дата обращения: 07.07.2022)
333
Incremental learning [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Incremental_learning (дата обращения: 27.04.2023)
334
Инструмент White papers [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Вайт_пейпер (дата обращения: 27.04.2023)
335
Инструмент машинного обучения Pandas [Электронный ресурс] https://atlansys.tech URL: https://atlansys.tech/atlansys-companion/ (дата обращения: 27.04.2023)
336
Pandas [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Pandas (дата обращения: 27.04.2023)
337
Vital A.I. [Электронный ресурс] http://www.vital.ai/ URL: http://www.vital.ai/ (дата обращения: 27.04.2023)
338
Integrated GPU [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Graphics_processing_unit#Integrated_graphics_processing_unit (дата обращения: 27.04.2023)
339
Интеллект [Электронный ресурс] https://www.surwiki.admsurgut.ru URL: https://www.surwiki.admsurgut.ru/wiki/index.php?title=Теория_искусственного_интеллекта (дата обращения: 27.04.2023)
340
Козлов А. Н. Интеллектуальные информационные системы [Текст]: учеб. / ФГБОУ ВПО Пермская ГСХА. — Пермь. 2013. — 306 с.
341
Остроух А. В. Интеллектуальные системы [Текст]: монография. / Издательство «Научно-инновационный центр». — Красноярск. 2020. — 316 с.
342
Интеллектуальная система [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/ruwiki/176467 (дата обращения: 07.07.2022)
343
Intelligent control [Электронный ресурс] https://intelligent-control.ieeecss.org URL: http://intelligent-control.ieeecss.org (дата обращения: 07.07.2022)
344
Интеллектуальные агенты [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Интеллектуальный_агент (дата обращения: 27.04.2023)
345
Интеллектуальные задачи [Электронный ресурс] http://pgsha.ru URL: http://pgsha.ru:8008/books/study/Интеллектуальные задачи. pdf стр. 8 (дата обращения: 27.04.2023)
346
Intelligent agent [Электронный ресурс] www.techslang.com URL: https://www.techslang.com/definition/what-is-an-intelligent-agent/ (дата обращения: 07.07.2022)
347
Data Mining [Электронный ресурс] https://bigdataschool.ru URL: https://www.teradata.ru/Glossary/What-is-Data-Mining (дата обращения: 17.02.2022)
348
Интеллектуальный персональный помощник [Электронный ресурс] https://wiki2.org URL: https://wiki2.org/en/Intelligent_personal_assistant (дата обращения: 07.07.2022)
349
Интернет медицинских вещей [Электронный ресурс] https://tallinn.mhealth.events URL: https://tallinn.mhealth.events/article/iot-v-meditsine-kak-internet-veshchey-sovershenstvuet-sferu-zdravoohraneniya-97414 (дата обращения: 01.05.2023)
350
Интернет-вещей [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Интернет_вещей (дата обращения: 01.05.2023)
351
Interoperability [Электронный ресурс] https://www.techopedia.com URL: https://www.techopedia.com/definition/631/interoperability (дата обращения: 01.05.2023)
352
Интероперабельность [Электронный ресурс] https://www.reallab.ru URL: https://www.reallab.ru/bookasutp/1-arhitektura-sistemi/1-3-ponyatie-otkritoi-sistemi/ пункт 1.3.1 (дата обращения: 01.05.2023)
353
Interpretation [Электронный ресурс] www.technitrad.com URL: https://www.technitrad.com/what-is-interpretation/ (дата обращения: 07.07.2022)
354
Interpretability [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#interpretability (дата обращения: 01.05.2023)
355
Brain—computer interface [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Brain%E2%80%93computer_interface (дата обращения: 07.07.2022)
356
Application programming interface (API) [Электронный ресурс] https://ibm.com URL: https://www.ibm.com/cloud/learn/api (дата обращения: 19.02.2022)
357
Intranet [Электронный ресурс] www.techtarget.com URL: https://www.techtarget.com/whatis/definition/intranet (дата обращения: 07.07.2022)
358
Speech Recognition API [Электронный ресурс] www.assemblyai.com URL: https://www.assemblyai.com/blog/the-top-free-speech-to-text-apis-and-open-source-engines/ (дата обращения: 07.07.2022)
359
Embodied agent [Электронный ресурс] https://scholar.uwindsor.ca URL: https://scholar.uwindsor.ca/cgi/viewcontent.cgi?article=8732&context=etd (дата обращения 28.02.2022)
360
Inference [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#inference (дата обращения: 01.05.2023)
361
Inference [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Statistical_inference (дата обращения: 01.05.2023)
362
Computer science [Электронный ресурс] https://view.officeapps.live.com URL: www.lib.unn.ru src=http%3A%2F%2F%2Fstudents%2Fsrc%2FZibtceva4.do https://view.officeapps.live.com/op/view.aspx?c&wd Origin=BROWSELINK (дата обращения: 07.07.2022)
363
Medical Imaging Informatics [Электронный ресурс] https://radiologykey.com URL: https://radiologykey.com/medical-imaging-informatics/ (дата обращения: 07.07.2022)
364
Behavior informatics (BI) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Behavior_informatics (дата обращения: 01.05.2023)
365
Информационная интеграция [Электронный ресурс] https://hmong.ru URL: https://hmong.ru/wiki/Inference_engine (дата обращения: 07.07.2022)
366
Информационная система [Электронный ресурс] https://docs.cntd.ru URL: https://docs.cntd.ru/document/901990051 Статья 2. Основные понятия, используемые в настоящем Федеральном законе от 27.07.2006 N 149-ФЗ (дата обращения: 01.05.2023)
367
Информационная эффективность [Электронный ресурс] https://vc.ru URL: https://vc.ru/ml/253499-kak-schitat-effektivnost-iskusstvennogo-intellekta-na-primere-umnogo-ekskavatora (дата обращения: 01.05.2023)
368
Информационное общество [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Стратегия_развития_информационного_общества_в_РФ_на_2017_-_2030 (дата обращения: 01.05.2023)
369
Информационное пространство [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Информационное_пространство (дата обращения: 01.05.2023)
370
Information Sphere [Электронный ресурс] www.igi-global.com URL: https://www.igi-global.com/dictionary/hybrid-intelligence-framework-for-improvement-of-information-security-of-critical-infrastructures/90886 (дата обращения: 07.07.2022)
371
Информационно-коммуникационные технологии [Электронный ресурс] http://government.ru URL: http://government.ru/docs/all/130305/ Общие положения (дата обращения: 02.05.2023)
372
Информационные технологии [Электронный ресурс] https://docs.cntd.ru URL: https://docs.cntd.ru/document/901990051 ФЗ №149 от 27 июля 2006 года «Об информации, информационных технологиях и о защите информации» (дата обращения: 02.05.2023)
373
Information Retrieval [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Information_retrieval (дата обращения: 02.05.2023)
374
Информацио́нный по́иск [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Информационный_поиск (дата обращения: 02.05.2023)
375
Информация [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Информация (дата обращения: 02.05.2023)
376
Информация, составляющая коммерческую тайну [Электронный ресурс] http://pravo.gov.ru URL: http://pravo.gov.ru/proxy/ips/?docbody=&nd=102088094 ФЗ №98 от 29 июля 2004 года «О коммерческой тайне» (дата обращения: 02.05.2023)
377
Информированный поиск [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Информированный_метод_поиска (дата обращения: 02.05.2023)
378
Artificial life [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Artificial_life (дата обращения: 07.07.2022)
379
Искусственная нейронная сеть [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Нейронная_сеть (дата обращения: 02.05.2023)
380
Искусственные языки [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Портал:Искусственные_языки (дата обращения: 02.05.2023)
381
.Указ Президента Российской Федерации от 10.10.2019 г. №490 «О развитии искусственного интеллекта в Российской Федерации». [Электронный ресурс] // www.kremlin.ru URL: http://www.kremlin.ru/acts/bank/44731 (дата обращения: 14.01.2022)
382
.Чесалов А. Ю. Глоссариум по искусственному интеллекту и информационным технологиям / А. Ю. Чесалов. — 1-е изд. — Москва: Ridero, 2021. — 324 с. — URL: https://ridero.ru/books/glossarium_po_informacionnym_ tekhnologiyam_i_iskusstvennomu_intellektu/ (дата обращения: 21.05.2023). — Текст: электронный.
383
.Системы искусственного интеллекта — их развитие и области применения. [Электронный ресурс] // www.directum.ru. URL: https://www.directum.ru/blog-post/1927# (дата обращения: 16.01.2022)
384
.Остроух А. В. Введение в искусственный интеллект [текст].-Красноярск: Издательство «Научно-инновационный центр», 2020.-249 с.
385
.Искусственный интеллект (ИИ). [Электронный ресурс] // www.ibm.com. URL: https://www.ibm.com/ru-ru/cloud/learn/what-is-artificial-intelligence
386
Artificial Intelligence [Электронный ресурс] https://absel.ua URL: https://absel.ua/news/tri-tipa-iskusstvennogo-intellekta-ponimanie-ii.htmlobuchenii (дата обращения: 18.02.2022)
387
.Artificial Intelligence for IT Operations (AIOps) [Электронный ресурс] www.cio.com URL: https://www.cio.com/article/196239/what-is-aiops-injecting-intelligence-into-it-operations.html (дата обращения: 07.07.2022)
388
.Artificial Intelligence for IT Operations (AIOps) [Электронный ресурс] www.gartner.com URL: https://www.gartner.com/en/information-technology/glossary/aiops-platform (дата обращения: 07.07.2022)
389
.Искусственный интеллект для ИТ-операций [Электронный ресурс] //networkguru.ru URL: https://networkguru.ru/aiops-artificial-intelligence-for-it-operations/ (дата обращения: 07.07.2022)
390
Artificial neuron [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Artificial_neuron (дата обращения: 07.07.2022)
391
Artificial neuron [Электронный ресурс] https://towardsdatascience.com URL: https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc (дата обращения: 07.07.2022)
392
Artificial Superintelligence (ASI) [Электронный ресурс] https://www.techopedia.com URL: https://www.techopedia.com/definition/31619/ artificial-superintelligence-asi#:~:text=Artificial %20superintelligence %20is%20a%20term, of%20computers %20will%20surpass%20humans (дата обращения: 02.05.2023)
393
Executable [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Executable (дата обращения: 07.07.2022)
394
Study [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#S (дата обращения: 07.07.2022)
395
Futures studies [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Category:Futures_studies (дата обращения: 02.05.2023)
396
Propositional calculus [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Propositional_calculus (дата обращения: 02.05.2023)
397
Region connection calculus (RCC) [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Region_connection_calculus (дата обращения: 02.05.2023)
398
Iteration [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/iteration (дата обращения: 02.05.2023)
399
Source code [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Source_code (дата обращения: 07.07.2022)
400
Calibration layer [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#iteration (дата обращения: 02.05.2023)
401
Canonical Formats [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#C (дата обращения: 07.07.2022)
402
Capsule neural network [Электронный ресурс] https://ru.what-this.com URL: https://ru.what-this.com/7202531/1/kapsulnaya-neyronnaya-set.html (дата обращения: 07.02.2022)
403
Capsule neural network [Электронный ресурс] https://neurohive.io URL: https://neurohive.io/ru/osnovy-data-science/kapsulnaja-nejronnaja-set-capsnet/ (дата обращения: 08.02.2022)
404
Categorical data [Электронный ресурс] https://machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/understanding-feature-engineering-part-2-categorical-data-f54324193e63/ (дата обращения: 03.03.2022)
405
Quantile bucketing [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#quantile-bucketing (дата обращения: 02.05.2023)
406
Квантификатор [Электронный ресурс] https://wiki5.ru URL: https://wiki5.ru/wiki/Quantifier_(logic) (дата обращения: 02.05.2023)
407
Квантование [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Квантование_(обработка_сигналов) (дата обращения: 02.05.2023)
408
Квантовые вычисления [Электронный ресурс] https://ts2.space URL: https://ts2.space/ru/квантовое-машинное-обучение-для-опти (дата обращения: 02.05.2023)
409
Квантовый компьютер [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Квантовый_компьютер (дата обращения: 02.05.2023)
410
Квантовые технологии [Электронный ресурс] https://studme.org URL: https://studme.org/392255/ekonomika/tehnologii_upravleniya_setevoy_ekonomiki (дата обращения: 02.05.2023)
411
Киберфизические системы [Электронный ресурс] https://ulgov.ru URL: https://ulgov.ru/page/index/permlink/id/14949/ (дата обращения: 02.05.2023)
412
Class [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/class (дата обращения: 02.05.2023)
413
Majority class [Электронный ресурс] https://towardsdatascience.com URL: https://towardsdatascience.com/how-to-handle-imbalance-data-and-small-training-sets-in-ml-989f8053531d (дата обращения: 07.07.2022)
414
Класс меньшинства [Электронный ресурс] https://docs.microsoft.com URL: https://docs.microsoft.com/ru-ru/azure/open-datasets/dataset-mnist?tabs=azureml-opendatasets (дата обращения: 07.07.2022)
415
NP [Электронный ресурс] https://wiki2.org URL: https://wiki2.org/en/NP_(complexity) (дата обращения: 03.03.2022)
416
Classification [Электронный ресурс] https://www.ibm.com URL: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning (дата обращения: 03.05.2023)
417
Clustering [Электронный ресурс] https://medium.com URL: https://medium.com/@venkatesh.t.16072001/difference-between-supervised-and-unsupervised-learning-algorithm-8bda6352489f (дата обращения: 03.05.2023)
418
Temporal data clustering [Электронный ресурс] www.sciencedirect.com URL: https://www.sciencedirect.com/topics/computer-science/temporal-data (дата обращения: 07.07.2022)