Понятия со словом «пронумеровать»
Связанные понятия
Куб принца Руперта (англ. Prince Rupert’s cube) — самый большой куб, который может пройти через отверстие, вырезанное в единичном кубе (то есть через куб, рёбра которого имеют размер 1). Ребро куба Руперта приблизительно на 6 % длиннее, чем ребро куба, через который он проходит. Задача поиска такого куба тесно связана с задачей поиска самого большего квадрата, который полностью расположен в пределах единичного куба, и имеет аналогичное решение.
Куб Фибоначчи можно определить в терминах кодов Фибоначчи и расстояния Хэмминга, независимых множеств вершин в путях, или через дистрибутивные решётки.
Пифагорова мозаика (замощение двумя квадратами) — замощение евклидовой плоскости квадратами двух различных размеров, в которой каждый квадрат касается четырёх квадратов другого размера своими четырьмя сторонами. Исходя из этой мозаики, можно доказать (наглядно) теорему Пифагора, за что мозаика и получила название пифагоровой. Мозаика часто используется в качестве узора для кафельного пола. В этом контексте мозаика известна также как узор классов.
Метод шаров и перегородок (англ. stars and bars — букв. «звёздочки и чёрточки») — это графический метод для вывода некоторых комбинаторных теорем. Метод популяризировал Уильям Феллер в его классической книге по теории вероятностей. Метод может быть использован для решения многих простых задач подсчёта, таких как «сколькими способами можно разложить n неразличимых шаров по k различимым ящикам».
Свёртка последовательностей — это результат перемножения элементов двух заданных числовых последовательностей таким образом, что члены одной последовательности берутся с возрастанием индексов, а члены другой — с убыванием (что и служит основанием для принятого названия данной операции).
Набор плиток с самозамощением (англ. setiset) порядка n — это набор из n фигур, обычно плоских, каждая из которых допускает замощение меньшими копиями тех же n фигур. Более точно, n фигур могут быть собраны n различными способами, дающими большие копии фигур из того же набора, и коэффициент увеличения один и тот же. Рисунок 1 показывает пример для n = 4 с использованием декамино различной формы. Концепцию можно обобщить и использовать фигуры большей размерности. Название setisets дал Ли Сэллоус (англ...
Матрица жёсткости (матрица Дирихле) — матрица особого вида, использующаяся в методе конечных элементов для решения дифференциальных уравнений в частных производных. Она применяется при решениях задач электродинамики и механики.
Двоичный алгоритм поиска подстроки (также bitap algorithm, shift-or algorithm) — алгоритм поиска подстроки, использующий тот факт, что в современных компьютерах битовый сдвиг и побитовое ИЛИ являются атомарными операциями. По сути, это примитивный алгоритм поиска с небольшой оптимизацией, благодаря которой за одну операцию производится до 32 сравнений одновременно (или до 64, в зависимости от разрядности машины). Легко переделывается на приблизительный поиск.
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Треугольник Паскаля — бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля. Числа, составляющие треугольник Паскаля, возникают естественным образом в алгебре, комбинаторике, теории вероятностей, математическом анализе, теории чисел.
Исчезновение клетки (появление клетки) — известный класс задач (оптических иллюзий) на перестановку фигур, обладающих признаками софизмов: изначально в их условие введена замаскированная ошибка. Некоторые из этих задач тесно связаны со свойствами последовательности чисел Фибоначчи.
Рациональное решето — это алгоритм общего вида для разложения целых чисел на простые множители. Алгоритм является частным случаем общего метода решета числового поля. Хотя он менее эффективен, чем общий алгоритм, концептуально он проще. Алгоритм может помочь понять, как работает общий метод решета числового поля.
Заполняющие пространство деревья — это геометрические построения, аналогичные кривым Пеано, но имеет ветвящуюся подобно дереву структуру и корень. Заполняющее пространство дерево определяется пошаговым процессом, который даёт дерево, в котором любая точка пространства имеет конечной длины путь, который сходится к данной точке. В отличие от заполняющих пространство кривых, каждый путь в дереве короток, что позволяет любую часть пространства достичь из корня...
Принцип Дирихле нередко применяется при доказательстве теорем, особенно в дискретной математике; в частности, в теории диофантовых приближений при анализе систем линейных неравенств.
Контактное число (иногда число Ньютона, в химии соответствует координационному числу) — максимальное количество шаров единичного радиуса, которые могут одновременно касаться одного такого же шара в n-мерном евклидовом пространстве (предполагается, что шары не проникают друг в друга, то есть объём пересечения любых двух шаров равен нулю).
Солитер — это настольная игра для одного игрока, в которой переставляются колышки на доске с отверстиями. Некоторые комплекты используют шарики и доски с выемками. В США игра имеет название Peg Solitaire (колышковый солитер), а название Солитер относится к пасьянсу. В Великобритании игра известна под именем Solitaire (солитер), а карточная игра называется Patience (пасьянс). В некоторых местах, в частности, в Индии, игра носит название Brainvita.
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Таблица характеров — это двумерная таблица, строки которой соответствуют неприводимым представлениям группы, а столбцы которой соответствует классам сопряжённости элементов группы. Элементы матрицы состоят из характеров, следов матриц, представляющих группу элементов класса столбца в определяемом строкoй представлении группы.
Диаграмма Насси — Шнейдермана (англ. Nassi — Shneiderman diagram) — это графический способ представления структурированных алгоритмов и программ, разработанный в 1972 году американскими аспирантами Беном Шнейдерманом и Айзеком Насси.
Число пересечений графа — наименьшее число элементов в представлении данного графа как графа пересечений конечных множеств, или, эквивалентно, наименьшее число клик, необходимых для покрытия всех рёбер графа.
Однородные координаты ―
система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.
Подробнее: Линейная задача о назначениях в узких местах
Задача Наполеона — знаменитая задача построения с помощью циркуля. В этой задаче дана окружность и её центр. Задача состоит в делении окружности на четыре равных дуги с помощью только циркуля. Наполеон был известным любителем математики, но неизвестно, он ли придумал или решил эту задачу. Друг Наполеона итальянский математик Лоренцо Маскерони придумал при геометрических построениях ограничение на использование только циркуля (не использовать линейку). Но, фактически, задача выше является более простой...
Алгоритм Грэхема — алгоритм построения выпуклой оболочки в двумерном пространстве.
В теории групп циклическая перестановка — это перестановка элементов некоторого множества X, которая переставляет элементы некоторого подмножества S множества X циклическим образом, сохраняя на месте остальные элементы X (т.е. отображая их в себя). Например, перестановка {1, 2, 3, 4}, переводящая 1 в 3, 3 в 2, 2 в 4 и 4 в 1 является циклической, в то время как перестановка, переводящая 1 в 3, 3 в 1, 2 в 4 и 4 в 2 циклической не является.
Площадь круга с радиусом r равна πr2. Здесь символ π (греческая буква пи) обозначает константу, выражающую отношение длины окружности к её диаметру или площади круга к квадрату его радиуса. Поскольку площадь правильного многоугольника равна половине его периметра, умноженного на апофему (высоту), а правильные многоугольники стремятся к окружности при росте числа сторон, площадь круга равна половине длины окружности, умноженной на радиус (то есть 1⁄2 × 2πr × r).
В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.
Подробнее: Задача о принадлежности точки многоугольнику
Плитки Вана (или домино Вана), впервые предложенные математиком, логиком и философом Хао Ваном в 1961, — это класс формальных систем. Они моделируются визуально с помощью квадратных плиток с раскрашиванием каждой стороны. Определяется набор таких плиток (например, как на иллюстрации), затем копии этих плиток прикладываются друг к другу с условием согласования цветов сторон, но без вращения или симметрического отражения плиток.
Пятьдесят девять икосаэдров (англ. The Fifty-Nine Icosahedra) — это книга, написанная и проиллюстрированная Гарольдом Коксетером, Патриком дю Валем, Х. Т. Флазером и Дж. Ф. Петри. В книге перечислены некоторые звёздные формы правильных выпуклых (платоновых) икосаэдров, построенных согласно набору правил, предложенных Дж. Ч. П. Миллером.
Задача Рамсея, задача о знакомствах среди шести человек — это математическая теорема в теории Рамсея, частный случай теоремы Рамсея.
Задача о наименьшей окружности или задача о минимальном покрывающем круге — задача о вычислении наименьшей окружности, содержащей все заданные точки из множества на евклидовой плоскости.
Алгоритм Эдмондса или алгоритм Чу — Лью/Эдмондса — это алгоритм поиска остовного ориентированного корневого дерева минимального веса (иногда называемого оптимальным ветвлением).
n-Мерная
целочисленная решётка (или кубическая решётка), обозначается Zn, — это решётка в евклидовом пространстве Rn, точки которой являются n-кортежами целых чисел. Двумерная целочисленная решётка называется также квадратной решёткой. Zn является наиболее простым примером решётки корней. Целочисленная решётка является нечётной унимодулярной решёткой.
Ранцевая криптосистема Меркла-Хеллмана, основанная на «задаче о рюкзаке», была разработана Ральфом Мерклем и Мартином Хеллманом в 1978 году. Это была одна из первых криптосистем с открытым ключом, но она оказалась криптографически нестойкой и, как следствие, не приобрела популярности.
Диаграммы Юнга — наглядноe описание представлений симметрических и полных линейных групп и изучения их свойств.
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
Два-графы не являются графами, и их не следует путать с другими объектами, которые называются 2-графами в теории графов, в частности, с 2-регулярными графами. Для их различения используется слово «два», а не цифра «2».
Разбиение многоугольника — это множество примитивных элементов (например, квадратов), которые не накладываются и объединение которых равно многоугольнику. Задача о разбиении многоугольника — это задача поиска разбиения, которое в некотором смысле минимально, например, разбиение с наименьшим числом элементов или разбиение с наименьшей суммой длин сторон.
В математике деление на два, деление пополам — это математическая операция, частный случай деления. Древние египтяне отличали деление на два от деления на другие числа, поскольку их алгоритм умножения использовал деление на два как один из промежуточных этапов. В XVI веке некоторые математики предложили рассматривать деление на два как операцию, отличающуюся от деления на другие числа. В современном программировании также иногда выделяют деление именно на два.
Набор окружностей
Джонсона состоит из трёх окружностей одинакового радиуса r, имеющих одну общую точку пересечения H. В такой конфигурации окружности обычно имеют четыре точки пересечения (точки, через которые проходят по меньшей мере две окружности) — это общая точка пересечения H, через которую проходят все три окружности, и по дополнительной точке для каждой пары окружностей (будем о них говорить как о попарных пересечениях). Если любые две окружности не пересекаются (а только лишь касаются) они...
Однородная мозаика может существовать как на евклидовой плоскости, так и на гиперболической плоскости. Однородные мозаики связаны с конечными однородными многогранниками, которые можно считать однородными замощениями сферы.
Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные...
Гипотеза Хивуда, или теорема Рингеля — Янгса даёт нижнюю границу для числа цветов, которые необходимы для раскраски графа на поверхности с заданным родом. Эта граница называется хроматическим числом поверхности или числом Хивуда. Для поверхностей рода 0, 1, 2, 3, 4, 5, 6, 7, ..., требуемое число цветов равно 4, 7, 8, 9, 10, 11, 12, 12, ....
В геометрии конфигурацией
Мёбиуса или тетраэдрами Мёбиуса называется конфигурация в евклидовом пространстве или проективном пространстве, состоящая из двух взаимно вписанных тетраэдров — каждая вершина одного тетраэдра лежит на плоскости, проходящей через грань другого тетраэдра и наоборот. Таким образом, в результирующей системе восьми точек и восьми плоскостей каждая точка лежит на четырёх плоскостях (три плоскости определяют вершину тетраэдра, а четвёртая плоскость — это плоскость, проходящая...
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.