Понятия со словом «нормализатор»

В математике централизатор подмножества S группы G — это множество элементов G, которые коммутируют с каждым элементом S, а нормализатор S — это множество элементов G, которые коммутируют с S «в целом». Централизатор и нормализатор S являются подгруппами G и могут пролить свет на структуру G.

Связанные понятия

В теории категорий моноидальные функторы — это функторы между моноидальными категориями, сохраняюющие моноидальную структуру, то есть умножение и тождественный элемент.

Подробнее: Моноидальный функтор
Разбиение интервала на вещественной оси это конечная последовательность вида...
В алгебраической геометрии дивизоры являются обобщением подмногообразий некоторого алгебраического многообразия коразмерности 1. Существуют два различных таких обобщения — дивизоры Вейля и дивизоры Картье (названы в честь Андре Вейля и Пьера Картье), эти понятия эквивалентны в случае многообразий (или схем) без особенностей.

Подробнее: Дивизор (алгебраическая геометрия)
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.

Подробнее: Скобка Пуассона
Гиперфункция (математика) — развитие понятия обобщённой функции. Гиперфункция одной переменной является разностью предельных значений на вещественной оси двух голоморфных функций, определённых, соответственно в верхней и нижней полуплоскостях комплексной плоскости. Гиперфункции многих переменных определены как элементы некоторой когомологической группы с коэффициентами в пучке голоморфных функций. Гиперфункции были открыты Микио Сато в 1958 году.
Дифференцирование в алгебре — операция, обобщающая свойства различных классических производных и позволяющая ввести дифференциально-геометрические идеи в алгебраическую геометрию. Изначально это понятие было введено для исследования интегрируемости выражений в элементарных функциях алгебраическими методами.
В математике, норма́льная фо́рма — простейший либо канонический вид, к которому объект приводится эквивалентными преобразованиями.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.

Подробнее: Естественное преобразование
Тангенциальнозначные формы — это обобщение дифференциальных форм, при котором множеством значений формы является касательное расслоение к многообразию.

Подробнее: Тангенциальнозначная форма
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Рациональная функция — это дробь, числителем и знаменателем которой являются многочлены.
Точный функтор — функтор, который переводит точные последовательности в точные. Точные функторы удобны для вычислений в гомологической алгебре, поскольку их можно сразу применять к резольвентам объектов. Бо́льшая часть гомологической алгебры была построена для того, чтобы сделать возможной работу с функторами, которые не являются точными, но их отличие от точных поддаётся контролю.
Экспоненциальная точная последовательность — фундаментальная короткая точная последовательность пучков, используемая в комплексной алгебраической геометрии.
Конгруэнция — отношение эквивалентности на алгебраической системе, сохраняющееся при основных операциях. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую факторсистему — разбиение исходной алгебраической системы на классы эквивалентности по отношению к конгруэнции.
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.

Подробнее: Кэлеров дифференциал
Топологическое векторное пространство, или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.
Корасслоение — определённый тип непрерывных отображений между топологическими пространствами с определяющим свойством, двойственным к свойству поднятия гомотопий, выполняющихся для расслоений.
Теорема о разностях — теорема, связывающая понятия производной и прямой конечной разности высших порядков для степенной функции натурального показателя степени.
Резольве́нта — один из важных инструментов гомологической алгебры, в частности служащий для вычисления функторов Ext и Tor.
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.

Подробнее: Симметрическая алгебра
Расшире́ние Галуа́ — алгебраическое расширение поля E/K, являющееся нормальным и сепарабельным. При этих условиях E будет иметь наибольшее количество автоморфизмов над K (если E конечно, то количество автоморфизмов также конечно и равно степени расширения ).
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.

Подробнее: Прямая и обратная предельная теорема
У определённых функторов можно взять производные функторы чтобы получить другие функторы, тесно связанные с исходными. Данная операция является довольно абстрактной, но объединяет большое количество конструкций в математике.

Подробнее: Производный функтор
Логарифмический признак сходимости — признак сходимости числовых рядов с положительными членами.
Сингулярные гомологии — теория гомологий, в которой инвариантность и функториальность сразу становятся очевидными, но основное определение требует работы с бесконечномерными пространствами.
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма - однородным многочленом любой степени от двух переменных.
В теории категорий, подфунктор — специальный тип функтора в Set, использующий определение подмножества.
В математике (общей алгебре) многочлен от нескольких переменных над полем называется гармоническим, если лапласиан этого многочлена равен нулю.

Подробнее: Гармонический многочлен
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Лемма о змее — это инструмент, используемый в математике, особенно в гомологической алгебре, для построения длинных точных последовательностей. Лемма о змее верна в любой абелевой категории и играет ключевую роль в гомологической алгебре и её приложениях, например в алгебраической топологии. Гомоморфизмы, построенные с её помощью, обычно называют связывающими гомоморфизмами.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
Слабая гомотопическая эквивалентность — отображение между топологическими пространствами индуцируещее изоморфизм гомотопических групп.
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Моноидальная категория (или тензорная категория) — категория C, снабженная бифунктором...
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Функция Гильберта, ряд Гильберта и многочлен Гильберта градуированной коммутативной алгебры, конечно порождённой над полем — это три тесно связанных понятия, которые позволяют измерить рост размерности однородных компонент алгебры.
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Ультрапредел — конструкция, позволяющая определить предел для широкого класса математических объектов.
Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я