Понятия со словом «конечная»
Конечный мозг (лат. telencephalon) — самый передний отдел головного мозга. Состоит из двух полушарий большого мозга (покрытых корой), мозолистого тела, полосатого тела и обонятельного мозга. Является наиболее крупным отделом головного мозга. Это также самая развитая структура, покрывающая собой все отделы головного мозга.
Конечный покупатель — человек, который осуществляет покупку товаров, услуг, тем самым закрывая свои определенные (непрофессиональные) потребности в зависимости от своих финансовых возможностей.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.
Подробнее: Конечные разности
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Метод конечных разностей — численный метод решения дифференциальных уравнений, основанный на замене производных разностными схемами. Является сеточным методом.
Коне́чная у́лица — название улиц в различных населённых пунктах государств бывшего СССР.
Метод конечных объёмов (в русскоязычной литературе метод контрольных объёмов) — численный метод интегрирования систем дифференциальных уравнений в частных производных.
Инвариант конечного типа (или инвариант Васильева) — класс инвариантов узлов, характеризующийся определённым соотношением на все разрешения сингулярного узла с данным числом самопересечений.
Конечный автомат с выходом — разновидность детерминированного конечного автомата, дополненная выходным алфавитом и функцией выходов.
Метод конечных разностей во временно́й области (англ. Finite Difference Time Domain, FDTD) — один из наиболее популярных методов численной электродинамики, основанный на дискретизации уравнений Максвелла, записанных в дифференциальной форме.
В последнее время государственные структуры все чаще проявляют интерес к оцениванию государственных программ и проводимых политик. Большим спросом пользуются различные методы оценивания, направленные на измерение социального эффекта программы, выявление непосредственных бенефициариев и адресатов. Активно разрабатывается методология оценивания для отраслевых политик, которая в дальнейшем будет внедрена в качестве элемента программно-политического цикла.
Подробнее: Оценивание конечных результатов отраслевых политик
Фильтр с конечной импульсной характеристикой (Нерекурсивный фильтр, КИХ-фильтр) или FIR-фильтр (FIR сокр. от finite impulse response — конечная импульсная характеристика) — один из видов линейных цифровых фильтров, характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого-то момента времени она становится точно равной нулю). Такой фильтр называют ещё нерекурсивным из-за отсутствия обратной связи. Знаменатель передаточной функции такого фильтра...
Метод конечных отношений (МКО) - комплекс измерительных и расчетных операций, основанный на анализе энергоемкости процессов в статике и динамике.
Теорема Жордана теорема о конечных линейных группах гарантирует наличие большой коммутативной подгруппы в любой конечной линейной группе.
Согласованность в конечном счёте (англ. eventual consistency) — одна из моделей согласованности, используемая в распределённых системах для достижения высокой доступности, в рамках которой гарантируется, что в отсутствии изменений данных, через какой-то промежуток времени после последнего обновления («в конечном счёте») все запросы будут возвращать последнее обновлённое значение.
Отпадение конечных согласных в праславянском языке — ряд фонетических изменений, заключающихся в исчезновении конечных согласных -t, -d, -s, -r. Является результатом действия закона открытого слога.
Конечная геометрия — это любая геометрическая система, имеющая конечное количество точек. Например, евклидова геометрия не является конечной, так как евклидова прямая содержит неограниченное число точек, а точнее говоря, содержит ровно столько точек, сколько существует вещественных чисел. Конечная геометрия может иметь любое конечное число измерений.
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
В общей топологии локальная конечность является свойством семейства подмножеств топологического пространства. Это понятие является естественным обобщением понятия конечного семейства и играет ключевую роль при изучении паракомпактности и топологической размерности.
Подробнее: Локально конечное семейство подмножеств
Коне́чный автома́т с па́мятью — математическая модель устройства, поведение которого зависит как от входных условий, так и от предыдущего состояния.
Конечные продукты гликирования (Advanced glycation end-products, AGEs) — это белки или жиры которые подверглись гликированию углеводами. Они могут быть одним из факторов старения и развития или осложнения многих дегенеративных заболеваний, таких как диабет, атеросклероз, хроническая болезнь почек и болезнь Альцгеймера.
Связанные понятия
Множество называется вполне ограниченным, если для любого положительного ε существует конечная ε-сеть для этого множества.
Задача о ходе коня — задача о нахождении маршрута шахматного коня, проходящего через все поля доски по одному разу.
Веер Кнастера — Куратовского — пример такого связного подмножества плоскости, удаление из которого одной точки делает его вполне несвязным.
Задача коммивояжёра (англ. Travelling salesman problem, сокращённо TSP) — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и тому подобное) и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что...
Теорема о дисконтинууме — утверждение о том, что между точками любых двух ограниченных дисконтинуумов можно установить взаимно однозначное соответствие, сохраняющее порядок следования точек на прямой.
Алгоритм ближайшего соседа — один из простейших эвристических методов решения задачи коммивояжёра. Относится к категории «жадных» алгоритмов.
Метод потенциалов является модификацией симплекс-метода решения задачи линейного программирования применительно к транспортной задаче. Он позволяет, отправляясь от некоторого допустимого решения, получить оптимальное решение за конечное число итераций.
Лемма о накачке (лемма о разрастании, лемма-насос; англ. pumping lemma) — важное утверждение теории автоматов, позволяющее во многих случаях проверить, является ли данный язык автоматным. Поскольку все конечные языки являются автоматными, эту проверку имеет смысл делать только для бесконечных языков. Термин «накачка» в названии леммы отражает возможность многократного повторения некоторой подстроки в любой строке подходящей длины любого бесконечного автоматного языка.
Обход дерева (известный также как поиск по дереву) — вид обхода графа, обусловливающий процесс посещения (проверки и/или обновления) каждого узла структуры дерева данных ровно один раз. Такие обходы классифицируются по порядку, в котором узлы посещаются. Алгоритмы в статье относятся к двоичным деревьям, но могут быть обобщены и для других деревьев.
Промежуточная сумма — это сумма последовательности чисел, которая обновляется каждый раз, когда новое число добавляется к последовательности, увеличивая предыдущую промежуточную сумму на величину нового значения. Другое название термина — частичная сумма.
Метод условных вероятностей преобразует такое доказательство во «вполне точном смысле» в эффективный детерминированный алгоритм, который гарантирует обнаружение объекта с желаемыми свойствами. То есть метод дерандомизирует доказательство. Основная идея — заменить каждый случайный выбор в случайном эксперименте детерминированным выбором таким образом, чтобы сохранить условное математическое ожидание неудачи, обусловленной выбором, меньшим 1.
Сортировка выбором (Selection sort) — алгоритм сортировки. Может быть как устойчивый, так и неустойчивый.
Детерминированный алгоритм — алгоритмический процесс, который выдаёт уникальный и предопределённый результат для заданных входных данных.
Алгоритм сортировочной станции — способ разбора математических выражений, представленных в инфиксной нотации. Может быть использован для получения вывода в виде обратной польской нотации или в виде абстрактного синтаксического дерева. Алгоритм изобретен Эдсгером Дейкстрой и назван им «алгоритм сортировочной станции», поскольку напоминает действие железнодорожной сортировочной станции.
Блочная сортировка (Карманная сортировка, корзинная сортировка, англ. Bucket sort) — алгоритм сортировки, в котором сортируемые элементы распределяются между конечным числом отдельных блоков (карманов, корзин) так, чтобы все элементы в каждом следующем по порядку блоке были всегда больше (или меньше), чем в предыдущем. Каждый блок затем сортируется отдельно, либо рекурсивно тем же методом, либо другим. Затем элементы помещаются обратно в массив. Этот тип сортировки может обладать линейным временем...
Задача о самом широком пути — это задача нахождения пути между двумя выбранными вершинами во взвешенном графе, максимизирующего вес минимального по весу ребра графа (если рассматривать вес ребра как ширину дороги, то задача стоит в выборе самой широкой дороги, связывающей две вершины). Задача о самом широком пути известна также как задача об узком месте или задача о пути с максимальной пропускной способностью. Можно приспособить алгоритмы кратчайшего пути для вычисления пропускной способности путём...
Дерево Фенвика (двоичное индексированное дерево, англ. Fenwick tree, binary indexed tree, BIT) — структура данных, позволяющая быстро изменять значения в массиве и находить некоторые функции от элементов массива. Впервые описано Питером Фенвиком в 1994 году. Дерево Фенвика напоминает дерево отрезков, однако проще в реализации.
Тасование Фишера — Йетса (названо в честь Рональда Фишера и Франка Йетса (Frank Yates)), известное также под именем Тасование Кнута (в честь Дональда Кнута), — это алгоритм создания случайных перестановок конечного множества, попросту говоря, для случайного тасования множества. Вариант тасования Фишера-Йетса, известный как алгоритм Саттоло (Sattolo), может быть использован для генерации случайного цикла перестановок длины n. Правильно реализованный алгоритм тасования Фишера-Йетса несмещённый, так...
Сумматор с сохранением переноса (англ. carry-save adder) — является видом цифровых сумматоров, используемых в компьютерной микроархитектуре для вычисления суммы трёх или более n-битных чисел в двоичной системе счисления. Он отличается от других цифровых сумматоров тем, что его выходные два числа той же размерности, что и входные, одно из которых является частной суммой битов, а другое является последовательностью битов переноса.
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.
Подробнее: Линейная задача о назначениях в узких местах
Алгоритм Брезенхе́ма (англ. Bresenham's line algorithm) — это алгоритм, определяющий, какие точки двумерного растра нужно закрасить, чтобы получить близкое приближение прямой линии между двумя заданными точками. Это один из старейших алгоритмов в машинной графике — он был разработан Джеком Элтоном Брезенхэмом (англ. Jack Elton Bresenham) в компании IBM в 1962 году. Алгоритм широко используется, в частности, для рисования линий на экране компьютера. Существует обобщение алгоритма Брезенхэма для построения...
Параметрическая редукция — это техника для разработки эффективных алгоритмов, которые достигают своей эффективности путём препроцессорного шага, в котором вход алгоритма заменяется на меньший вход, называемый «ядром». Результат решения задачи на ядре должен быть либо тем же самым, что и при исходных данных, либо выход решения для ядра должен легко преобразовываться в желаемый выход исходной задачи.