Связанные понятия
Гиперболи́ческая траекто́рия — в астродинамике и небесной механике траектория объекта вокруг центрального тела со скоростью, достаточной для преодоления притяжения центрального тела. Форма траектории в нерелятивистском случае является гиперболой. Эксцентриситет орбиты превышает единицу.
Круговая орбита — орбита, все точки которой находятся на одинаковом расстоянии от центральной точки, создаваемая обращающимся вокруг неподвижной оси телом. Может рассматриваться как частный случай эллиптической орбиты при нулевом эксцентриситете. В Солнечной системе почти круговые орбиты у Венеры (эксцентриситет 0,0068) и Земли (эксцентриситет 0,0167).
Уравнение центра — в задаче двух тел угловое расстояние между истинным положением тела на эллиптической орбите и положением, которое занимало бы тело в случае равномерного движения по круговой орбите с тем же периодом обращения. Определяется как разность между истинной аномалией ν и средней аномалией M, обычно представляется в виде функции средней аномалии и эксцентриситета орбиты e.
Функция масс двойных звёзд (англ. Binary mass function) — функция, создающая ограничения для массы ненаблюдаемого компонента (звезды или экзопланеты) в спектрально-двойных звёздах или планетных системах с одной линией. Значение определяется по наблюдаемым характеристикам: по орбитальному периоду двойной системы и пику лучевой скорости наблюдаемой звезды. Скорость одного компонента двойной и орбитальный период двойной системы предоставляют частичную информацию о расстоянии и гравитационном взаимодействии...
Время свободного падения — характерное время, которое потребуется телу для коллапса под действием силы тяготения, если никакие другие силы не противодействуют коллапсу. Играет важную роль при определении временных шкал ряда астрофизических процессов, таких как звездообразование, вспышки сверхновых звёзд.
В классической механике,
задача двух тел состоит в том, чтобы определить движение двух точечных частиц, которые взаимодействуют только друг с другом. Распространённые примеры включают спутник, обращающийся вокруг планеты, планета, обращающаяся вокруг звезды, две звезды, обращающиеся вокруг друг друга (двойная звезда), и классический электрон, движущийся вокруг атомного ядра.
Эллиптическая орбита — в астродинамике и небесной механике кеплерова орбита с эксцентриситетом меньше 1. Круговая орбита является частным случаем эллиптической орбиты при нулевом эксцентриситете. В более строгом определении эллиптической орбиты круговые орбиты исключаются; таким образом, эллиптические орбиты имеют эксцентриситет строго больше нуля и меньше единицы. В более широком смысле эллиптической орбитой является кеплерова орбита с отрицательной энергией. Такое определение включает и радиальные...
Центростремительное ускорение — компонента ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной (вторая компонента, тангенциальное ускорение, характеризует изменение модуля скорости). Направлено к центру кривизны траектории, чем и обусловлен термин. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение». Ту составляющую суммы сил, которая обуславливает это ускорение, называют центростремительной силой.
Сила F, действующая на точку P, называется центральной с центром в точке O, если во всё время движения она действует вдоль линии, соединяющей точки O и P.
Координаты Борна в специальной теории относительности — система координат, применяемая для описания вращающейся окружности или (в более общем смысле) диска.
Углы Эйлера — углы, описывающие поворот абсолютно твердого тела в трёхмерном евклидовом пространстве.
Теоре́ма о сложе́нии скоросте́й — одна из теорем кинематики, связывает между собой скорости материальной точки в различных системах отсчёта. Утверждает, что при сложном движении материальной точки её абсолютная скорость равна сумме относительной и переносной скоростей.
Фокус — в геометрии точка, относительно которой (которых) проводится построение некоторых кривых. Например, один или два фокуса могут использоваться при построении конических сечений, в число которых входит окружность, эллипс, парабола и гипербола. Также два фокуса используются при построении овала Кассини и овала Декарта. Большее число фокусов рассматривается при определении n-эллипса.
Эклиптическая система координат , или эклиптикальные координаты:49 — это система небесных координат, в которой основной плоскостью является плоскость эклиптики, а полюсом — полюс эклиптики. Она применяется при наблюдениях за движением небесных тел Солнечной системы, плоскости орбит многих из которых, как известно, близки к плоскости эклиптики, а также при наблюдениях за видимым перемещением Солнца по небу за год:30.
Центр масс , центр ине́рции, барице́нтр (от др.-греч. βαρύς — тяжёлый + κέντρον — центр) — (в механике) - геометрическая точка, характеризующая движение тела или системы частиц как целого. В общем случае центр масс не совпадает с центром тяжести, совпадение происходит только у систем материальных точек и тел с однородной по объёму плотностью в однородном гравитационном поле.
В физике, при рассмотрении нескольких систем отсчёта (СО), возникает понятие сложного движения — когда материальная точка движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух системах отсчета (далее СО).
Подробнее: Сложное движение
В математике и физике барице́нтр, или геометри́ческий центр, двумерной области — это среднее арифметическое положений всех точек фигуры. Определение распространяется на любой объект в n-мерном пространстве — барицентр является средним положением всех точек фигуры по всем координатным направлениям. Неформально — это точка равновесия фигуры, вырезанной из картона в предположении, что картон имеет постоянную плотность и гравитационное поле постоянно по величине и направлению.
Подробнее: Барицентр
Параболическая траектория — в астродинамике и небесной механике кеплерова орбита, эксцентриситет которой равен 1. Если тело удаляется от притягивающего центра, такая орбита называется орбитой ухода, если приближается — орбитой захвата. Иногда подобную орбиту называют орбитой C3 = 0 (см. Характеристическая энергия).
Сфера Хилла располагается между точками Лагранжа L1 и L2, лежащими на прямой, соединяющей центры двух тел. В этом направлении область гравитационного влияния подчинённого тела меньше всего, и это ограничивает размер сферы Хилла. За пределами этого расстояния орбита любого третьего тела, обращающегося вокруг подчинённого тела, будет частично пролегать за пределами сферы Хилла, и поэтому будет всё больше и больше подвергаться возмущению приливными силами центрального тела. В конечном итоге подчинённый...
Круговое движение является ускоренным, даже если происходит с постоянной угловой скоростью, потому что вектор скорости объекта постоянно меняет направление. Такое изменение направления скорости вызывает ускорение движущегося объекта центростремительной силой, которая толкает движущийся объект по направлению к центру круговой орбиты. Без этого ускорения объект будет двигаться прямолинейно в соответствии с законами Ньютона.
Земной эллипсоид — эллипсоид вращения, размеры которого подбираются при условии наилучшего соответствия фигуре квазигеоида для Земли в целом (общеземной эллипсоид) или отдельных её частей (референц-эллипсоид).
Орбитальная скорость тела (обычно планеты, естественного или искусственного спутника, кратной звезды) — скорость, с которой оно вращается вокруг барицентра системы, как правило вокруг более массивного тела.
Узел орбиты — одна из двух диаметрально противоположенных точек небесной сферы, в которых орбита какого-либо небесного тела пересекается с некоторой условной плоскостью, выступающей как система отсчёта, а также геоцентрическая проекция этой точки на небесную сферу. Таковой плоскостью для планет Солнечной системы и Луны является плоскость эклиптики. Для отслеживания ИСЗ обычно используют экваториальную систему координат и, соответственно, плоскость небесного экватора.. Поскольку таких точек две, различают...
Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.
Гравитомагнети́зм , гравимагнети́зм, иногда гравитоэлектромагнети́зм — общее название нескольких эффектов, вызываемых движением гравитирующего тела.
Неинерциа́льная систе́ма отсчёта — система отсчёта, движущаяся с ускорением или поворачивающаяся относительно инерциальной. Второй закон Ньютона также не выполняется в неинерциальных системах отсчёта. Для того чтобы уравнение движения материальной точки в неинерциальной системе отсчёта по форме совпадало с уравнением второго закона Ньютона, дополнительно к «обычным» силам, действующим в инерциальных системах, вводят силы инерции.
В релятивистской физике координатами Риндлера называется важная и полезная координатная система, представляющая часть плоского пространства-времени, также называемого пространством Минковского. Координаты Риндлера были введены Вольфгангом Риндлером для описания пространства-времени равномерно ускоренного наблюдателя.
Подробнее: Координаты Риндлера
Светово́й ко́нус (изотропный конус, нулевой конус) — гиперповерхность в пространстве-времени (чаще всего в пространстве Минковского), ограничивающая области будущего и прошлого относительно заданного события. Образуется изотропными векторами в пространстве-времени, то есть, ненулевыми векторами нулевой длины.
Орбита Лиссажу — квазипериодическая орбитальная траектория, по которой тело может двигаться вокруг точки Лагранжа в рамках задачи трёх тел без включения двигателей. Орбиты Ляпунова вокруг точек Лагранжа являются кривыми, лежащими в одной плоскости с двумя главными телами в системе трёх тел. Орбиты Лиссажу, напротив, включают участки как в этой плоскости, так и в перпендикулярной к ней, и следуют кривым Лиссажу. Гало-орбиты также включают компоненты в перпендикулярной плоскости, но гало-орбиты, в...
Теоре́ма промежу́точной оси́, или теоре́ма те́ннисной раке́тки в классической механике — утверждение о неустойчивости вращения твёрдого тела относительно второй главной оси инерции. Является следствием законов классической механики, описывающих движение твёрдого тела с тремя различными главными моментами инерции. Проявление теоремы при вращении такого тела в невесомости часто называют эффектом Джанибекова, в честь советского космонавта Владимира Джанибекова, который заметил это явление 25 июня...
Подробнее: Эффект Джанибекова
Гравитацио́нный ра́диус (или ра́диус Шва́рцшильда) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы, на которой находился бы горизонт событий, создаваемый этой массой (с точки зрения ОТО), если бы она была распределена сферически-симметрично, была бы неподвижной (в частности, не вращалась, но радиальные движения допустимы), и целиком лежала бы внутри этой сферы. Введен в научный обиход немецким ученым Карлом Шварцшильдом в...
Двойной пульсар — пульсар, имеющий второй компонент, часто представляющий собой нейтронную звезду или белый карлик. По крайней мере в одном случае (PSR J0737-3039) второй компонент также является пульсаром. Двойные пульсары являются одними из некоторых объектов, позволяющих физикам проверять выводы общей теории относительности вследствие сильных гравитационных полей в окрестности таких объектов. Хотя объект-компаньон пульсара обычно сложно или невозможно наблюдать напрямую, его наличие можно установить...
Комплекс задач о взаимодействии многих тел достаточно обширный и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на...
Подробнее: Взаимодействие многих тел
Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением.
Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.
Астродинамика — раздел небесной механики, изучающий движение искусственных космических тел: искусственных спутников, межпланетных станций и других космических кораблей.
Теоре́ма об измене́нии коли́чества движе́ния (и́мпульса) систе́мы — одна из общих теорем динамики, является следствием законов Ньютона. Связывает количество движения с импульсом внешних сил, действующих на тела, составляющие систему. В качестве системы, о которой идёт речь в теореме, может выступать любая механическая система, состоящая из любых тел.
Пертурбация (возмущение орбиты) — отклонение небесного тела от орбиты под влиянием иных сил, кроме гравитационного притяжения центра масс системы, таких как другие небесные тела или сопротивление среды.Изучение пертурбаций началось в древности, вместе с первыми попытками расчёта движений небесных тел, но до XVII века их природа оставалась загадкой. Исаак Ньютон попытался применить разработанные им законы движения и гравитации для анализа возмущения орбит, но столкнулся со значительными трудностями...
Система небесных координат используется в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере. Таким образом, система небесных координат является сферической системой координат, в которой третья координата — расстояние — часто неизвестна и не играет роли.
Моме́нт ине́рции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).
Архимедова спираль — спираль, плоская кривая, траектория точки M (см Рис. 1), которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV.
Геометри́ческое ме́сто то́чек (ГМТ) — фигура речи в математике, употребляемая для определения геометрической фигуры как множества точек, обладающих некоторым свойством.
Го́мановская траекто́рия — в небесной механике эллиптическая орбита, используемая для перехода между двумя другими орбитами, обычно находящимися в одной плоскости. В простейшем случае она пересекает эти две орбиты в апоцентре и перицентре. Орбитальный манёвр для перехода включает в себя 2 импульса работы двигателя на разгон — для входа на гомановскую траекторию и для схода с неё. Названа в честь немецкого учёного Вальтера Гомана, в 1925 году описавшего её в своей книге. На Гомана оказал большое влияние...
Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
Характеристи́ческая ско́рость орбита́льного манёвра в астродинамике и ракетодинамике — изменение скорости космического аппарата, которое необходимо для выполнения орбитального манёвра (изменения траектории). Является скаляром и имеет размерность скорости. Обозначается в формулах как Δv (дельта-v; произносится как де́льта-вэ́). В случае реактивного двигателя изменение скорости достигается путём выброса рабочего тела для производства реактивной тяги, которая и ускоряет корабль в космосе.
Параметры Стокса — это набор величин, описывающих вектор поляризации электромагнитных волн, введенный в физику Дж. Стоксом в 1852 году. Параметры Стокса являют собой альтернативу описанию некогерентного или частично поляризованного излучения в терминах полной интенсивности, степени поляризации и формы эллипса поляризации.
Внешний вид
объектов , двигающихся с релятивистской скоростью, существенно зависит от формы объекта и способа его наблюдения. Можно выделить два основных способа: одновременное фиксирование положения точек поверхности и фотографирование при помощи ортогонального или проективного отображения.
Кватернионы предоставляют удобное математическое обозначение положения и вращения объектов в пространстве. В сравнении с углами Эйлера, кватернионы позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям (на иллюстрации). В сравнении с матрицами они обладают большей вычислительной устойчивостью и могут быть более эффективными. Кватернионы нашли своё применение в компьютерной графике, робототехнике...