Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 4. Монтаж и сервис тепловых насосов

Юрий Степанович Почанин, 2020

В книге "Монтаж и сервис оборудования по использованию возобновляемых источников энергии", том 4. Монтаж и сервис тепловых насосов" рассмотрены основные элементы оборудования тепловых насосов типа грунт-вода, вода-вода, воздух-вода, воздух-воздух для отопления и для горячего водоснабжения дома, производственных помещений. Предложены оптимальные схемы подключения оборудования тепловых насосов. Рассмотрен монтаж и сервис тепловых насосов. Книга может представлять интерес для школьников, студентов и специалистов, занимающихся установкой и сервисом тепловых насосов.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 4. Монтаж и сервис тепловых насосов предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2 Основные элементы теплонасосных установок

Схематично тепло насосную установку можно представить в виде системы из трех замкнутых контуров: в первом, внешнем, циркулирует теплоноситель, собирающий теплоту окружающей среды, во втором — хладагент (вещество, которое испаряется, отбирая теплоту тепло датчика, и конденсируется, отдавая теплоту теплоприемнику, в третьем — теплоприемник (вода в системах отопления и горячего водоснабжения, рис.9.

Рис.9 Контуры теплонасосной установки

Основными элементами теплового насоса являются: испаритель, компрессор, конденсатор и дроссель (регулятор потока), соединенные трубопроводом, в котором циркулирует хладагент — вещество, способное кипеть при низкой температуре и меняющее свое агрегатное состояние с газового в одной части цикла на жидкое — в другой.

1.Хладагент. Эти жидкости еще называют: хладонами, фреонами, хладагентами. Они обеспечивают стабильную работу и высокую эффективность теплового насоса, но могут создать экологические проблемы в связи с содержанием вредных веществ при изношенности оборудования или при аварийной ситуации. Принято делить периоды использования некоторых групп рабочих жидкостей на четыре поколения.

Первое поколение характеризуется первоначальными попытками человека создавать новые виды холодильных машин. В процессе поиска оптимума используется все, что попадается под руку, в том числе опасные вещества (токсичные, взрывоопасные, горючие).

Второе поколение рабочих жидкостей представляет собой фреоны (углеводороды с галогена замещенными атомами водорода). Временной отрезок хладагентов второго поколения приходится на 1930-1990-е годы, который иногда называют эрой фреонов. Ключевыми показателями фреонов становятся энергоэффективность и безопасность для человека (в отличие от агентов первого поколения).

Дальнейшее развитие стремительно форсируется открытиями озонового слоя и эффектами его разрушения. Все фреоны, содержащие хлор (основной разрушитель озона) объявляются вне закона, и начинается срочный поиск альтернатив. Типичным представителем синтетических хладагентов третьего поколения является озон безопасный R134a (который, однако, утепляет окружающую среду). Внедрение хладагентов четвертого поколения (с 2010 года) связано с необходимостью не только защитить озоновый слой, но и минимизировать эффекты глобального потепления, за которые ответственны холодильные агенты. Наиболее известным представителем хладагентов четвертого поколения является R1234yf (Opteon™ yf), представляющий собой гидрофторолефин.

Решения Монреальского протокола коренным образом изменили подход к традиционным озон разрушающим хладагентам, и начиная с 90-х годов на одно из первых мест вышел вопрос об опасности изменения климата и сохранения эмиссии парниковых газов, вызванной применением таких хладагентов. По степени озон разрушающей активности озонового слоя Земли галоидопроизводные углеводороды разделены на три группы:

1.хладагентами, с высокой озон разрушающей активностью, являются хлорфторуглероды (ХФУ) R11, R12, R13, R113, R114, R115, R502, R503, R12B1, R13B1 (или по международному обозначению CFC11, CFC12, CFC13 и т. д.) и др.;

2. хладагенты с низкой озон разрушающей активностью — гидрохлорфторуглероды (ГХФУ) R21, R22, R141b, R142b, R123, R124 (или по международному обозначению HCFC21, HCFC22, HCFC141b и т. д.) и др., в молекулах которых содержится водород. Для этих веществ характерно меньшее время существования в атмосфере по сравнению с ХФУ, и, как следствие, они оказывают меньшее влияние на разрушение озонового слоя. Ряд многокомпонентных рабочих тел, предлагаемых в качестве альтернативы ХФУ, содержат в своем составе ГХФУ, например R22;

3. хладагенты, не содержащие атомов хлора — это, фторуглероды ФУ (FC), гидрофторуглероды ГФУ (HFC), углеводороды (НС) и др. считаются полностью озон безопасными. Таковыми являются хладагенты R134, R134a, R152a, R143a, R125, R32, R23, R218, R116, RC318, R290, R600, R600a, R717 и др.

В качестве альтернативы запрещенным к производству хладагентам Монреальским протоколом рассматриваются следующие классы веществ: гидрохлорфторуглероды (ГХФУ), гидрофторуглероды (ГФУ) и природные хладагенты — аммиак, диоксид углерода, вода, углеводороды.

Традиционно, наиболее распространенные рабочие жидкости для тепловых насосов являются: R12 (хлорфторуглерод CFC-12) малая и средняя температуры (макс. 80°C); R114 (хлорфторуглерод CFC-114), высокая температура (макс. 120°C); R500 (фреон R500) средняя температура (до 80° C); R502 (фреон R500,) низкая и средняя температуры (макс. 55°C); R22 (хлорфторуглеводород HCFC-22), применяется практически во всех обратимых и низкотемпературных тепловых насосах (макс. 55°C). CFC (хлорфторуглероды). В связи высокой химической активностью и содержанием в составе этих рабочих жидкостей хлора хлорфторуглероды (CFC) вредны для окружающей среды. Данные рабочие жидкости обладают высоким озон разрушающим потенциалом и способствуют глобальному потеплению. CFC относятся к группе запрещенных хладагентов. Так же тепловые насосы должны обладать высокой энергетической эффективностью, что бы тепловые насосные системы оставались интересны с точки зрения энергосберегающей альтернативы традиционным видам получения энергии. В дополнении к поиску экологически чистых рабочих жидкостей важна модернизация и усовершенствование самих тепловых насосов. Поскольку эффективность тепловой насосной системы больше зависит от конструкции самого теплового насоса и системы распределения энергии, чем от рабочей жидкости, используемой в контуре сжатия.

HCFC (гидрохлорфторуглероды) так же содержат в своем составе хлор, но имеют гораздо более низкий потенциал разрушения озонового слоя чем CFC, около 2-5% от показателей R12. Так же у HCFC в пять раз ниже потенциал способствующего глобальному потеплению. Хладагенты группы HCFC являются, так называемыми переходными рабочими жидкостями. Они предназначены только для модернизации теплонасных систем.

Тепловые насосы заполняются различными безопасными хладагентами. В таблице 2 приведены характеристики хладагента R407C.

Таблица 2 Характеристики хладоагента R407C.

Если тепло отводится водой или воздухом, то различные хладагенты позволяют достичь следующих температур:

R717около+50°С, R502 около+50°С, R22 около+53°С, R134a около+72°С, R142 около+100 °С.

2. Высокопроизводительный испаритель. Испаритель как конструктивный элемент представляет собой емкость, в которой происходит превращение в пар жидкого хладагента. Хладагент, циркулируя по замкнутому контуру, проходит через испаритель. В нем хладагент разогревается и превращается в пар. Образующийся пар под низким давлением направляется в сторону компрессора. Для передачи тепла применяется пластинчатый теплообменник из нержавеющей стали, состоящий из множества наслоенных друг на друга и спаенных металлических пластин. Благодаря большой поверхности теплообменника и незначительной вместимости имеющаяся тепловая энергия может быстро переноситься от источника тепла к хладагенту. Теплообменник работает по принципу противотока с целью оптимального использования энергии. Пластинчатый теплообменник имеет изоляцию, защищающую от накапливающегося конденсата.

Технология, равномерно распределяющая хладагент через специальную систему впрыскивания по всем пластинам, позволяет добиться существенно лучшего теплообмена и тем самым более высокого коэффициента полезного действия.

3.Компрессор. В компрессоре пары хладагента подвергаются действию давления, и их температура возрастает. Компрессор перекачивает под большим давлением разогретый пар в сторону конденсатора. Обычно, в тепловых насосах используются объемные компрессоры, которые можно разделить на следующие типы: поршневые, роторные, спиральные и винтовые.

Компрессоры, в которых конечное давление перекачиваемой среды достигается в одном процессе сжатия, называются одноступенчатыми компрессорами. Соответственно компрессоры, в которых конечное давление достигается в нескольких последовательных процессах сжатия, между которыми охлаждается хладагент, называются многоступенчатыми компрессорами. Так же существует ряд других классификаций, однако мы рассмотрим 4 основных типа, перечисленных выше, которые чаще всего используются в тепловых насосах.

Поршневые компрессоры. В поршневых компрессорах процесс сжатия происходит в цилиндре, в котором поршень движется в возвратно-поступательном движении, рис.10.

Рис.10 Поршневой компрессор Bristol

Этот тип компрессоров обычно используется в тепловых насосах и холодильных машинах средней и большой мощности. Он применим как к тепловым насосам воздух-вода, так и к геотермальным тепловым насосам.

Преимущества — высокая эффективность, долговечность.

Недостатки — высокий уровень шума и вибраций, высокая стоимость

Роторные компрессоры. В этом типе компрессора процесс сжатия осуществляется с помощью вращающихся элементов, через которые газ протекает непрерывно. Самой распространённой конструкций применяемой в тепловых насосах является эксцентриковые роторные компрессоры с вращающимся поршнем, рис.11.

Рис. 11 Строение роторного компрессора

Усовершенствованная модель имеет два поршня на одном валу. Благодаря этому удалось достичь меньших показателей вибрации и более высокого КПД. Именно такая конструкция используется в большинстве тепловых насосов типа воздух-вода мощностью до 15 кВт как у европейских, так и у азиатских производителей.

Преимущества — компактность и лёгкость, низкий уровень шума, невысокая цена.

Недостатки — низкая надёжность, невысокий КПД.

Спиральные компрессоры. В компрессоре спирального типа сжатие рабочей среды происходит при взаимодействии двух спиралей, рис.12.

Рис. 12 Спиральный компрессор scroll Copeland

Наибольшее распространение в тепловых насосах получила технология Scroll в основу, которой положена конструкция из архимедовых спиралей и вала с эксцентриком, принцип сжатия в котором представлен на рис. 13.

Рис. 13 Принцип сжатия в спиральном компрессоре типа scroll

Как правило, такими компрессорами оснащают тепловые насосы типа грунт-вода или воздушные тепловые насосы средней мощности.

Преимущества — низкий уровень шума, высокая эффективность, долговечность.

Недостатки — высокая цена

Винтовые компрессоры. Принцип работы компрессора данного типа на вращении двух роторов с винтами, рис14. Вращение происходит в различные стороны, за счет чего и происходит сжатие рабочей среды.

Рис.14 Строение винтового компрессора

Такие компрессоры чаще всего используются в теплонасосных установках большой мощности. Часто они применяются в многоступенчатых холодильных агрегатах.

Преимущества — высокая эффективность, надёжность

Недостатки — высокий уровень шумов, применимы только в установках большой мощности.

Область использования основных типов компрессоров для тепловых насосов представлена на рис. 15.

Рис. 15 Область использования основных типов компрессоров для тепловых насосов

Все вышеперечисленные компрессоры уже много лет успешно применяются в тепловых насосах различной мощности и назначения.

4.Предохранительный автомат мотора компрессора. Для внутреннего предохранения компрессор имеет предохранительный автомат мотора, который в качестве термо-предохранителя, защищает катушки мотора от перегрева. Он в случае нарушения самостоятельно отключает компрессор и после требующегося на охлаждение времени, примерно 15-30 мин, включает его.

5. Конденсатор. Конденсаторы в тепловом насосе служат для отвода теплоты при температуре, превышающей температуру окружающей среды или охлаждающего вещества. При этом хладагент переходит из парообразного состояния в жидкое, т.е. конденсируется. В качестве охлаждающих веществ для конденсаторов можно применять как жидкости (особенно воду), так и газы (особенно воздух). Тип охлаждающего вещества, воспринимающего теплоту конденсации, зависит в теплонасосном цикле от способа применения. Использование воздуха или других газов в качестве охлаждающих веществ для конденсаторов имеет смысл лишь тогда, когда газ, используемый для охлаждения, представляет собой вещество, к которому должна подводиться полезная теплота. При использовании жидкостей в качестве вещества, охлаждающего конденсатор, их функцией часто является лишь транспортировка полезной теплоты от конденсатора к месту ее потребления (промежуточные теплоносители).

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 4. Монтаж и сервис тепловых насосов предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я