С каждым днем появляется все больше научных фактов, подтверждающих, что видовой состав нашего микробиома – невидимой микробной экосистемы, обитающей в организме каждого из нас, – играет ключевую роль в состоянии здоровья человека. «Эффект микробиома» – это первая книга, в центре внимания которой – активно появляющиеся сегодня научные данные о том, как на формирование микробиома влияет способ появления человека на свет. Тони Харман и Алекс Уэйкфорд задают важные вопросы о потенциальных отдаленных последствиях таких ставшими обычными вмешательств в роды, как кесарево сечение или применение синтетического окситоцина, и делятся с читателями новой информацией о том, как искусственное вскармливание влияет на видовое разнообразие микробиома младенцев. В книге содержится информация от экспертов из разных стран, в том числе акушерок, разработчиков глобальной политики в сфере здравоохранения, профессионалов в области педиатрии, иммунотоксикологии и генетики. Книга предназначена для родителей, акушерок и других специалистов в области здравоохранения.
Приведённый ознакомительный фрагмент книги Эффект микробиома предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глава 1
Что такое микробиом человека?
История эволюции жизни
Мы хотим рассказать историю, которая начинается с рождения. Чтобы понимать, какое место занимает рождение в летописи всей жизни, необходимо обратиться в прошлое, ко времени зарождения жизни на Земле.
Четыре с половиной миллиарда лет назад появилась планета Земля. В течение следующих полумиллиарда лет метеориты непрерывно бомбардировали новую планету. После окончания метеоритного обстрела поверхность планеты начала постепенно охлаждаться и стабилизироваться. Сформировалась земная кора, создав горячий скалистый рельеф, первые твердые породы Земли. Планета продолжала охлаждаться, образовались облака, производившие большие объемы дождевой воды, которая впоследствии стала океанами. Начала формироваться суша, и примерно в это же время появилась жизнь.
Около трех с половиной миллиардов лет назад в крайне токсичных условиях окружающей среды появились первые одноклеточные микроорганизмы. Эти живые микробы, например бактерии, не просто выживали, но процветали. С тех самых пор бактерии успешно от края до края колонизируют нашу планету. Образцы бактерий находят на вершинах самых высоких гор, на дне самых глубоких океанов и даже высоко в атмосфере.
По-видимому, первоначально возникли простые бактериальные клетки, вскоре после этого (или даже до того) на сцене появились другие одноклеточные организмы, археи. Бактерии и археи — прокариоты, похожие друг на друга одноклеточные создания, имеющие мембрану и клеточную стенку, но не содержащие истинного ядра. Возможно, они эволюционировали от одного и того же предшественника. Однако генетически они отличаются друг от друга. Наряду с бактериями и археями есть третья группа — эукариоты. Практически все живые организмы, окружающие нас сегодня, от растений до всех животных, относятся к этой категории. Эукариотические клетки имеют более сложное строение по сравнению с прокариотическими: у них есть ядро и энергетические центры — митохондрии.
В этой точке истории эволюции начали происходить интересные вещи, в частности, живые организмы начали становиться крупнее, их можно было увидеть невооруженным глазом. Около шестисот миллионов лет назад произошли резкие изменения: сначала появились простейшие, многоклеточные, затем рыбы, протоамфибии; тогда же сформировались и высшие растения. Четыреста миллионов лет назад случился еще один скачок, ознаменовавший возникновение насекомых и земноводных; в растительном мире — покрытосеменных. Рептилии появились около трехсот миллионов лет назад, а млекопитающие — через сто миллионов лет после этого. Затем возникли птицы, и лишь шестьдесят миллионов лет назад сформировались приматы. Виду Homo sapiens (человек разумный) только около пятидесяти тысяч лет. Другими словами, человеческая история занимает 0,004 % истории нашей планеты.
Какова роль бактерий в эволюции?
На протяжении всех этапов развития жизни — от микробов до появления вида Homo sapiens — на Земле всегда присутствовали бактерии. За миллиарды, миллионы, тысячи и сотни лет бактерии стали частью всех других форм жизни.
Другими словами, издавна все виды живых существ плотно взаимодействовали с бактериями, сливались с ними для образования новых форм жизни. То же относится и к людям. Мы в процессе эволюции сблизились с бактериями до такой степени, что они стали ощутимо присутствовать в наших телах и даже в наших клетках. Если проникнуть в клетку (или органеллу клетки) любого животного или растения, то там мы повстречаем бактерии.
По словам микробиолога доктора Марии Домингез Белло из университета Нью-Йорка, «наши собственные клетки действительно представляют собой объединение бактерий и других предшествующих клеток. В наших клетках присутствуют бактериальные компоненты, а именно митохондрии — это бывшие бактерии, которые проникли в другие клетки».
Получается, что митохондрии (элементы каждой клетки человека) — это потомки бактерий. Каждую митохондрию можно назвать прапраправнучкой отдельно существующей бактерии. Когда-то одна из таких свободно живущих бактерий слилась или была поглощена другой клеткой. Такая клетка получила преимущество, так как самостоятельная бактерия стала митохондрией, органеллой, производящей столь необходимую энергию. Митохондрия также извлекла пользу из нового положения, оказавшись в защищенном, богатом питательными веществами доме. Однако бактерии живут не только в заточении человеческих клеток. Триллионы бактерий живут вне клеток, заполняя, покрывая и окружая все наше тело.
То есть наши тела состоят не только из человеческих клеток. Они также полны бактерий. Фактически тело человека — это сложная экосистема, где клетки и микроорганизмы сосуществуют рядом друг с другом. Можно сказать, мы все частично люди, а частично — бактерии. Как говорит доктор Домингез Белло, «когда мы приходим к этому пониманию, каждый индивид начинает восприниматься нами как составная композиция. Мы по большому счету — ходячая экосистема».
Что представляет собой микробиом человека?
Будучи директором программы «Микробиом человека» в университете Нью-Йорка и автором книги «Плохие бактерии, хорошие бактерии» (Missing Microbes), доктор Мартин Блейзер является одним из основных специалистов по микробиому человека в мире. Он описывает микробиом как «все организмы, живущие в теле человека: бактерии, грибы, вирусы и так далее. Это организмы, живущие внутри и на поверхности нашего организма, для них он является домом».
До недавнего времени считалось, что в теле человека живет около ста триллионов бактерий, а клеток человеческого тела десять триллионов. То есть соотношение между микробами и клетками составляет 10:1; ученые говорили, что человек на 90 % состоит из микробов и лишь на 1 % — из человеческих клеток. Общую массу всех бактерий оценивали всего в один килограмм, что примерно равнозначно весу мозга.
Недавно ученые пересмотрели расчеты. Стало известно, что усредненные цифры не работают, так как соотношение бактерий и клеток зависит от размера человека и даже, возможно, от того, что человек только что съел [8]. Соотношение может быть и 100:1 (в 100 раз больше микробов, чем клеток), и 1:1 (равное количество бактерий и клеток). Но какой бы ни была точная пропорция, бактерий в теле каждого из нас предостаточно!
На этом история не заканчивается: тысячи различных видов бактерий, живущих снаружи и внутри нас, вместе несут весомую часть генетического материала.
Напомним, что в организме человека содержится от 20 до 25 тысяч генов, совокупность этих генов известна как геном человека, он заключает в себе все программы роста и развития человеческого организма.
В то же время микробы, населяющие нас, также имеют свой геном. Исследователи проекта «Микробиом человека» посчитали, что «микробный геном состоит примерно из восьми миллионов уникальных кодирующих белки генов, или, другими словами, в нас в 360 раз больше бактериальных, чем человеческих генов» [9]. Если этот расчет верен, то наши бактерии несут в себе в несколько сот раз больше генетического материала, чем наши гены.
Лесли Пейдж, на момент написания книги избранная президентом Королевского колледжа акушерок, так описывает свои чувства относительно того, что мы больше бактериальные, нежели человеческие существа: «Как будто мы обнаружили новый неизведанный ранее мир, и теперь я смотрю на себя по-другому. Я и раньше знала, что на моей коже, в кишечнике живут микроорганизмы, но осознание того, что они несут в себе больше генетического материала, чем мои собственные гены, теперь больше сближает меня с Вселенной».
Где в наших телах находятся бактерии?
Бактерии обитают на тех частях тела, которые контактируют с внешним миром. Снаружи это кожа, внутри — рот, горло, дыхательные пути и легкие, куда некоторое количество микробов попадает при дыхании. Подсчитано, что с каждым вдохом человек вдыхает около 50 бактерий: это 600 в минуту, 36 000 в час и более 860 000 вдыхаемых микроорганизмов в день [10].
Бактерии живут в наших глазах, ушах и носу — во всех тех «окнах», через которые микробы попадают в организм человека и колонизируют его. Исторически считалось, что в норме моча стерильна. Однако последние достижения в секвенировании генов показали, что в моче здорового человека в ограниченном количестве присутствуют микроорганизмы [11]. В почках бактерий быть не должно, но при воспалении мочевого пузыря или мочевыводящих путей микробы поднимаются наверх по мочеиспускательному каналу, попадают в мочевой пузырь и далее могут инфицировать почки. Что касается других органов и тканей, таких как кровь, сердце, печень, поджелудочная железа и яичники, то в этой области все еще продолжаются исследования с целью выяснить, являются ли они в норме стерильными или нет.
Мозг всегда считался стерильным органом, но и здесь в последнее время появляются новые данные. Ученые, изучавшие вопрос, является ли мозг людей с ВИЧ (СПИД) более подверженным инфекциям, обнаружили, что бактерии находились в образце каждого мозга, который они изучали, независимо от ВИЧ-статуса [12]. Никто пока с уверенностью не может описать процесс, как бактерии преодолевают гематоэнцефалический барьер, но их популяции точно есть в мозге.
Возвратимся к перечислению мест обитания бактерий в нашем организме: у женщин во влагалище живет множество бактериальных колоний. Этот влагалищный микробиом чрезвычайно важен, так как он представляет собой резервуар микробов для будущих поколений. Во время беременности плацента также становится местом обитания небольших колоний. Подробнее микробные колонии, представленные во влагалище и плаценте, мы рассмотрим в следующей главе.
Очень важно, что микробы также заселяют каждый сантиметр желудочно-кишечного тракта (или кишечника) человека, все девять метров в длину [13]. (Заметим, что общая площадь поверхностей органов пищеварения составляет площадь футбольного поля.) Желудочно-кишечный тракт человека включает в себя органы, начиная с ротовой полости и расположенные ниже: желудок, тонкий кишечник, толстый кишечник и анус. По сути, это полая трубка, по которой пища перемещается сверху вниз. Внутреннюю поверхность трубки покрывает тонкая слизистая оболочка, состоящая из эпителия (слой эпителиальных клеток), соединенного с рыхлой соединительной тканью (собственная пластинка подслизистой оболочки кишечника), под которой располагается гладкомышечный слой, который помогает пищевому комку перемещаться по кишечнику. Вместе эти слои образуют барьер, отделяющий содержимое кишечника от остальных частей тела [14].
Говоря о кишечном микробиоме, обычно имеют в виду триллионы бактерий, обитающих в конечных отделах желудочно-кишечного тракта, — в толстом кишечнике. Они живут внутри, на поверхности или вокруг его слизистой оболочки. Около 60 % объема каловых масс составляют именно бактерии [15].
Кишечный микробиом — наиболее тщательно изученное бактериальное сообщество из всех, населяющих человека. Во-первых, это связано с тем, что появляются все новые и новые свидетельства о тесной взаимосвязи между кишечником и мозгом: то, что происходит с бактериями в кишечнике, может оказывать влияние на развитие мозга и поведение человека. Во-вторых, как мы увидим в пятой главе нашей книги, желудочно-кишечный тракт также представляет собой один из важнейших органов иммунной системы человека.
Микробом каждого человека индивидуален. По словам доктора Мартина Блейзера, он «настолько же уникален, как отпечатки пальцев». Даже у идентичных близнецов профили микробиоты разные. Это связано с тем, что с самого момента рождения мы постоянно взаимодействуем с разными видами бактерий. Каждый раз, когда мы делаем вдох, откусываем кусок пищи, нюхаем или трогаем что-либо, мы приобретаем новые бактерии. Невозможно увидеть все их бесчисленные множества, но они непрерывно заселяют наш организм, и некоторые из них становятся частью нас.
Какую именно работу выполняют в нашем организме бактерии?
Так же, как и у большинства живых организмов, у людей сложились симбиотические отношения с микробами, живущими на поверхности и внутри наших тел. Другими словами, эти отношения можно считать взаимовыгодными: наши человеческие клетки делают работу, выгодную для бактерий, и наоборот. Это взаимодействие, когда клетки и бактерии работают как команда, приносит пользу всему организму человека. Можно сказать, что человеческие клетки плюс бактерии, вирусы, археи, грибы и простейшие — игроки одной «команды» — человеческого организма.
Поговорка, что в команде работать надежнее, прекрасно описывает микробиом. Микробы помогают органам функционировать и защищают от заболеваний. Взамен человеческий организм служит для микробов домом и обеспечивает их питанием.
По словам профессора Родни Дитерта, вместе «мы сформировали так называемый симбиотический суперорганизм, в котором мы выполняем нужные друг другу функции, и эти функции очень важны для организма в целом».
Кишечные бактерии помогают расщеплять питательные вещества, и, если по каким-либо причинам бактерий недостаточно, «мы можем недополучать некоторых необходимых питательных веществ, потому что они не расщепляются до усвояемых элементов». Также бактерии способны нейтрализовывать токсины из окружающей среды. При отсутствии нужных микроорганизмов, «у нас может не быть некоторой части защиты и беспрерывной линии границ с окружающим миром, которые обеспечивают бактерии».
Наравне с любым человеком, когда-либо жившим на этой планете, каждый из нас представляет собой целостный человеческий суперорганизм. Наше тело — идеальная экосистема, наполненная триллионами бактерий, трудящихся в гармонии с триллионами человеческих клеток.
По крайней мере, это так, пока мы здоровы.
Мы становимся менее здоровыми?
Не обязательно быть ученым или врачом, чтобы заметить, что живущие в развитых странах люди становятся все менее здоровыми. Эта тенденция достигла такого уровня, что в своей книге «Плохие бактерии, хорошие бактерии» (Missing Microbes) доктор Мартин Блейзер пишет, что население планеты находятся «на пороге эпидемии новой чумы».
По данным доктора Блейзера, уровень заболеваемости астмой вырос в 4–5 раз после Второй мировой войны, стремительно распространяются пищевые аллергии. Как один из примеров, в США в 2013 году Центр по контролю и профилактике заболеваний опубликовал исследование, показывающее, что заболеваемость пищевыми аллергиями среди детей выросла приблизительно на 50 % в период между 1997 и 2011 годами [16].
Случаев ювенильного сахарного диабета (диабет 1-го типа) также становится больше. В декабре 2015 года было опубликовано исследование, по данным которого число детей с сахарным диабетом 1-го типа увеличилось на 60 % с 2002 по 2013 год. В отличие от диабета 2-го типа, ювенильный диабет не связан с ожирением. Это аутоиммунное заболевание, при котором иммунные клетки атакуют клетки поджелудочной железы, вырабатывающие инсулин — гормон, который регулирует уровень сахара в крови [17].
Целиакия — еще одно аутоиммунное заболевание, встречающееся все чаще. У людей с целиакией содержащийся в пище глютен вызывает иммунный ответ в виде нападения иммунной системы на клетки тонкого кишечника. По данным доктора Блейзера, в США «целиакией стали страдать в четыре раза чаще с 1950-х годов». По современным подсчетам, это состояние поражает сегодня во всем мире одного человека из ста [18].
Другая растущая тенденция — ожирение.
Вот данные статистики правительства США на момент написания книги:
• две трети взрослого населения имеют избыточный вес;
• одна треть взрослого населения страдает ожирением;
• один из двадцати взрослых имеет высокую степень ожирения;
• одна треть детей в возрасте от 6 до 19 лет имеет избыточный вес;
• один из шести детей от 6 до 19 лет страдает ожирением [19].
Конечно, проблема ожирения касается не только США, сегодня она характерна и для многих других промышленных и развивающихся стран.
Доктор Блейзер также отмечает рост гастроэзофагиальной рефлюксной болезни (ГЭРБ). На сайте Национальной службы здравоохранения Великобритании это заболевание описывается как «состояние, при котором кислое содержимое желудка поднимается в пищевод» [20].
С 1930-х годов, когда это состояние впервые было описано в медицинской литературе, его распространенность заметно увеличилась. По мнению доктора Блейзера, «оно имеет связь с предраковым заболеванием под названием “пищевод Барретта” (впервые обнаруженным в Англии Норманом Барреттом). Эта болезнь является предшественником определенного типа рака пищевода — аденокарциномы, и сегодня это наиболее быстро распространяющийся тип рака в США и многих развитых странах. За последние тридцать лет число случаев увеличилось в шесть раз».
Случаи сложных нарушений развития нервной системы, например расстройства аутистического спектра, также встречаются все чаще. Доктор Блейзер говорит: «Аутизм распространяется со страшной скоростью. Встречались разногласия в диагностике, и в целом диагностика — неточная сфера медицины, но мы считаем, что аутизм вырос с 1950 года по крайней мере в четыре раза. Некоторые оценивают рост еще выше».
Так что же движет этой тенденцией к росту заболеваемости? Является ли это мультифакторным процессом, или есть одна причина, по которой наше общество становится все более больным?
В книге «Плохие бактерии, хорошие бактерии» доктор Блейзер дает простое объяснение растущей волне хронических заболеваний. «Представьте себе, что десять болезней одновременно встречаются все чаще. Каждое состояние может вызывать своя собственная причина, а может быть, есть один общий фактор, ответственный за рост всех этих болезней. Я думаю, этим общим фактором являются изменения в нашем микробиоме. Наш древний микробиом, защищавший нас от многих заболеваний, приходит в упадок, и этот упадок разжигает огонь болезней».
Если тело каждого из нас служит домом для тысяч разного вида бактерий, и если такой уклад существовал испокон веков, то в настоящее время жители развитых стран так или иначе в значительной степени утратили биоразнообразие населяющих их кишечник и другие органы микробов. Другими словами, сегодня в нас и на нас живет меньшее количество разнообразных бактериальных штаммов, чем в былые времена.
Доктор Мария Глория Домингез Белло в апреле 2015 года описала в журнале «Научные успехи» (Science Advances) [21], что члены изолированной группы американских индейцев в Венесуэле имеют самый разнообразный микробиом из всех людей на планете. Случайно обнаруженное с вертолета в 2008 году сообщество яномами последние одиннадцать тысяч лет живет жизнью охотников и собирателей в отдаленных горных районах, не контактируя с внешним миром. Исследователи собрали образцы из ротовой полости, кожи и фекалий тридцати четырех представителей группы, соблюдая при этом осторожность, чтобы самим вступать с яномами в минимальный контакт.
Доктор Домингез Белло и ее коллеги установили, что представители сообщества яномами обладали на 50 % более разнообразной микробиотой, чем типичный американец. Исследователи предполагают, что различные народности начинают утрачивать микробное разнообразие в тот момент, когда их культура становится более «западной». По словам доктора Домингез Белло, «когда мы сравнили наш микробиом с микробиомом изолированных народов, живущих в джунглях Южной Америки, мы подсчитали, что западный человек утратил около трети видов микробов».
Пока трудно с уверенностью говорить о том, чем обернется эта утрата, однако исследование яномами показало, что представители этой группы «обладают гораздо более богатым микробным сообществом, чем мы. И они здоровые».
Если теория доктора Блейзера о потерянных микробах верна, то современные люди, возможно, становятся слабее именно потому, что утратили разнообразие видов микробов, что служило людям защитой от болезней многие и многие поколения. По словам ученого, «очевидно, что разнообразие уменьшается. И эта тенденция опасна, так как именно разнообразие защищает нас».
Закономерно возникает вопрос о причинах утраты. Доктор Блейзер предполагает, что «это, отчасти, следствие современной жизни. Ничто не готовило наш микробиом к чистой воде, меньшим семьям, кесареву сечению и вездесущим антибактериальным средствам. И, конечно, семидесяти годам применения антибиотиков».
Почему антибиотики воздействуют на микробное разнообразие?
За последние несколько десятков лет произошло массивное увеличение объема применения антибиотиков в медицине и животноводстве.
В рамках недавнего исследования, проведенного детской больницей в Филадельфии, ученые рассмотрели истории болезни 65 000 детей с 2001 по 2013 годы с точки зрения применения антибиотиков. Руководитель проекта доктор Чарлз Бейли сообщает, что 69 % детей получали антибиотики в первые два года жизни; в среднем на каждого ребенка приходилось по 2,3 дозы антибактериальных препаратов [22].
Во многих странах обычной практикой стало добавление антимикробных препаратов (включающих в себя антибиотики, противогрибковые и антипаразитарные препараты) в пищу сельскохозяйственным животным. Фермеры применяют эти препараты в огромных количествах, чтобы обезопасить животных от инфекций и вызвать их ускоренный рост. По самым скромным подсчетам, в 2010 году во всем мире животные на фермах употребили 63 151 тонну антибиотиков [23].
В отчете, опубликованном в Соединенном Королевстве в декабре 2015 года, сообщается, что общий объем антибиотиков, применяемых в пищевом производстве, как минимум равен объему, применяемому в медицинских целях, а в некоторых регионах существенно превышает его. Например, в США 70 % антибиотиков, предназначенных для людей, на самом деле дается животным [24]. По данным британской благотворительной организации «Ассоциация почвы», за десять лет (2000–2010) объем применения антибиотиков на фермах в Великобритании вырос на 18 %. Сегодня около 45 % всех выпускаемых антибиотиков используется в животноводстве» [25].
Американский журнал Proceedings of the National Academy of Science прогнозирует массивный рост использования антибиотиков у сельскохозяйственных животных на 67 % к 2030 году. Ожидается удвоение объема в ближайшие пятнадцать лет в таких странах, как Бразилия, Россия, Индия, Китай и ЮАР [23].
Антибиотики — медицинские препараты, которые лечат бактериальные инфекции. Они либо сразу убивают бактерии, либо замедляют их рост, давая, таким образом, возможность иммунной системе побороть инфекцию [26].
Некоторые антибиотики поражают определенный вид патогенных бактерий. Такой тип препаратов называется «антибиотики узкого спектра действия». К ним относится, например, пенициллин, который часто назначают при сифилисе, менингите, пневмонии, абсцессах легкого, а также при септицемии (заражении крови) у детей. Другие антибиотики относятся к препаратам широкого спектра действия, то есть они не различают виды бактерий и поражают как дружественные, так и патогенные. Тетрациклин — один из таких антибиотиков, его назначают при пневмонии и других инфекциях дыхательных путей, кожных инфекциях и акне, а также при инфекциях мочеполовой системы.
До открытия антибиотиков состояние здоровье человека находилось в кризисе. Бактериальные инфекции (например, туберкулез, холера и чума) убили миллионы людей во всем мире. По словам доктора Блейзера, «в XIX веке возникали эпидемии коклюша и скарлатины, и многие дети не выживали. Мы воевали с некоторыми из ужасных патогенных бактерий, вызывающих эти заболевания. К счастью, в XX веке медицина разработала лекарства, которые мы называем антибиотиками, и начало этому положило открытие Александром Флемингом пенициллина».
Первый антибиотик, пенициллин, был случайно открыт шотландским биологом Александром Флемингом в Лондоне в 1928 году [27, 28]. Как гласит легенда, Флеминг, вернувшись из отпуска, открыл одну из оставленных в своей лаборатории чашек Петри, в которой находился стафилококк (бактерия, вызывающая фурункулез, ангину и абсцессы). Он обнаружил там нечто необычное: почти вся поверхность чашки была покрыта колониями бактерии, за исключением одного участка, где росла сине-зеленая плесень. Область, окружающая плесень, была чистой; казалось, что плесень выделяет некое вещество, останавливающее рост бактерий. Флеминг вырастил чистую культуру подавляющей рост бактерий плесени, которую Чарлз Том позже назвал Penicillinum notatum. Это вид грибка, который сегодня называется Penicillinum chrysogenum. Интересно, что свое название пенициллин ведет от латинского слова peniccilus (малярная кисть) из-за своего сходства с этим инструментом.
Плесень Флеминга была в состоянии уничтожить большой набор патогенных бактерий, включая стрептококк, менингококк и дифтерийную палочку, но она оказалась крайне неустойчивой во внешней среде, и произвести ее в больших количествах было трудно. Лишь в 1939 году Говард Уолтер Флори и Эрнст Борис Чейн вместе с коллегами из Оксфордского университета смогли превратить пенициллин в спасающий жизни препарат.
Открытие Флеминга и последующие разработки Флори и Чейна по использованию пенициллина в медицинских целях являются, безусловно, одними из величайших прорывов века, спасших миллионы жизней. Ученым была присуждена Нобелевская премия по медицине в 1945 году [29].
С 1940-х годов фармацевтические компании в США начали работу по производству пенициллина в промышленных масштабах. Их целью стало защитить раненых солдат от смерти в результате инфекционных заболеваний. Требовался высокопроизводительный штамм, способный вырастить большое количество плесени. В результате культура была выделена из плесневой мускусной дыни, купленной на фруктовом рынке в г. Пеория, штат Иллинойс [28]. Этот заплесневевший фрукт перевернул всю систему здравоохранения века.
Антибиотики сегодня
Антибиотики стали основой современной медицины, они ежедневно спасают жизнь и здоровье людей. Их применяют как поддерживающее средство при большом количестве процедур и состояний: для безопасного проведения операций в общей и трансплантационной хирургии, в химиотерапии, в лечении некоторых опасных бактериальных инфекций — и это лишь некоторые сферы применения. Профессор Стефан Эльбе, директор Центра глобальной политики в сфере здравоохранения, считает, что благодаря широкой доступности антибиотиков в последние несколько десятилетий, «мы живем в весьма привилегированный период человеческой истории».
Однако привилегия эта имеет свою цену. Мы все чаще прибегаем к использованию антибиотиков, а в промышленных странах даже злоупотребляем ими. Это злоупотребление привело к угрозе глобальной резистентности к антибиотикам, и эта проблема в настоящее время активно обсуждается в политических и медицинских кругах по всему миру.
Резистентность к антибиотикам означает, что препараты, ранее бывшие эффективными в отношении определенных штаммов бактерий, перестали быть таковыми. Соответственно, некоторые серьезные инфекционные заболевания более не поддаются антибактериальному лечению. В соответствии с точкой зрения, выраженной Майком Тернером в газете «Гардиан» в мае 2014 года [30], основанной на отчете ВОЗ по глобальной резистентности к антибиотикам того же года [31], шесть заболеваний, считавшихся преодоленными в развитых странах, «могут вспыхнуть вновь с удвоенной силой». Речь идет о туберкулезе, гонорее, клебсиелле, тифе, сифилисе и дифтерии. В статье говорится, что «инфекции, бывшие в прошлом излечимыми, такие как туберкулез, сегодня становятся смертельными, другие движутся в том же направлении. И самое ужасающее заключается в том, что проблема уже существует в реальном мире, это не научная фантастика, а современная реальность».
Выбиваем ли мы свою внутреннюю экосистему из равновесия?
В некоторых случаях антибиотики необходимы и могут спасти жизнь, например в случае сепсиса. Иногда врач назначает их при инфекциях, не угрожающих жизни, но в тех случаях, когда они могут помочь излечению. Однако в то время как антибиотики действительно могут помочь справиться с бактериальной инфекцией, они также могут навредить в других частях тела. Например, привести к дисбалансу кишечного микробиома.
Вы могли наблюдать этот эффект у себя, если когда-либо страдали от диареи после курса антибиотиков. Иногда требуется некоторое время, чтобы вернуть систему в исходное состояние. Как говорит доктор Нина Моди, «это ворчит наш микробиом: “Что-то со мной сделали не так”».
Женщинам, возможно, приходилось переживать после применения антибиотиков грибковую инфекцию влагалища, известную в Великобритании как кандидозный кольпит. По данным британского Министерства здравоохранения, это состояние развивается у трети женщин, применявших антибиотики [32]. Курс антибактериальных препаратов может вывести микробиом влагалища из равновесия. Антибиотики широкого спектра действия уничтожают многие виды бактерий по всему организму, в том числе некоторые полезные влагалищные микроорганизмы, держащие под контролем колонии дрожжей во влагалище. При недостатке этих полезных бактерий дрожжи (обычно это грибы кандида) разрастаются, вызывая симптомы кандидозного кольпита. Продаваемые без рецепта популярные препараты легко справляются с этим состоянием, а на сайте министерства здравоохранения также перечислены дополнительные нелекарственные меры для восстановления естественного баланса, например употребление живого йогурта, который полон полезных бактерий.
Хорошим способом объяснить важность микробного разнообразия в организме взрослого человека служит аналогия. Родни Дитерт сравнивает человека с тропическим лесом: «Если убрать половину видов деревьев из очень разнообразного по видам деревьев леса, то для сохранившихся деревьев лес не останется прежним. Появятся пустые места. Динамика взаимодействия между растениями полностью изменится. Из-за изменений в среде обитания могут измениться насекомые и животные, и лес в целом примет совершенно другой вид. В некоторых случаях вид этот может стать совершенно непредсказуемым».
Удаления всего одного вида достаточно для того, чтобы изменилось взаимодействие между всеми оставшимися видами внутри экосистемы. Меняется среда обитания: некоторые виды вымирают, другие, напротив, чрезмерно разрастаются. Баланс сдвигается, экосистема меняется, все выходит из равновесия.
Развивая метафору доктора Дитерта, если убрать из экосистемы широколиственный дуб, на землю будет попадать больше солнечного света. Растения, любящие прохладную тень, вымрут, их место займут более солнцелюбивые. Насекомые, ранее питавшиеся растениями, произраставшими на тенистом лесном покрытии, в поисках новых источников пищи переместятся на другие территории, а за ними и животные, поедающие этих насекомых. Придут новые виды насекомых и приведут за собой других животных. Возможно, новые условия будут подходить лишь одному виду насекомых. Он размножится до размеров, мешающих солнцелюбивым растениям устойчиво существовать на данной территории. Растения погибают, и вся экосистема снова начинает меняться. И все из-за того, что изначально был удален всего один вид деревьев.
Микробы, подобные широколистному дубу в описанной метафоре, Мартин Блейзер называет «ключевыми видами». Это виды, представленные в небольшом количестве, но оказывающие мощный эффект на здоровье всей экосистемы. Согласно доктору Блейзеру, в нашем теле живет ряд таких ключевых видов. Если нарушить стабильность какого-либо из этих видов микроорганизмов, например применяя антибиотики, последствия могут отразиться на всем человеческом суперорганизме.
Подобный процесс может происходить в вашем организме прямо сейчас. Любые действия, которые вы предпринимаете, могут затрагивать внутреннюю микробную экосистему. Выражаясь языком доктора Блейзера, если какой-то фактор нарушает хрупкое равновесие, это может сделать всю систему беззащитной перед агрессивными нападениями. «С каждым микробом, который мы теряем, мы становимся более уязвимыми перед такими заболеваниями, как ожирение, диабет и астма. Эти состояния сокращают продолжительность жизни. Они означают большую восприимчивость к пандемиям. И они, в основном, смертельны. Речь идет о большом риске». Подробнее мы обсудим эту тему в восьмой главе книги.
Потенциально нас может ожидать кризис здравоохранения. Но есть надежда на оптимистичный сценарий. Осознание проблемы — первый шаг на пути поиска решения. В своем интервью для нас доктор Блейзер сказал: «У нас есть инструменты, и, если бы у нас был способ, мы могли бы все исправить».
Хорошая новость заключается в том, что у нас уже есть «способ», о котором говорил доктор Блейзер. Это распространение информации о микроскопических событиях, происходящих в самом начале жизни, и их роли для здоровья человека. Все начинается с рождения.
Вот основные идеи, изложенные в этой главе:
1. Первой формой жизни на Земле были микробы, которые успешно колонизировали всю планету. Все более поздние формы жизни, включая человека, эволюционировали совместно с микробами.
2. Человек представляет собой суперорганизм. Наши тела состоят из триллионов человеческих клеток и триллионов микробов.
3. Микробы, живущие внутри и на поверхности нашего тела и считающие нас своим домом (бактерии, вирусы, археи, грибы и т. д.), в совокупности известны как микробиом человека.
4. Бактерии живут на коже и внутри человека: в ушах, носу, ротовой полости, легких и (что особенно важно из-за связи с мозгом) в кишечнике. У женщин бактерии также населяют влагалище.
5. Присутствие бактерий помогает организму адекватно функционировать и защищает от болезней.
6. Такие аспекты жизни в развитых странах, как диета, образ жизни, использование антибиотиков и антибактериальных средств, а также рост числа кесаревых сечений привели к снижению разнообразия видов бактерий, живущих в наших телах, ориентировочно на треть.
7. По мнению доктора Мартина Блейзера, автора книги «Плохие бактерии, хорошие бактерии», потеря микробного разнообразия может «разжигать» такие все более часто встречающиеся неинфекционные заболевания, как аллергии, астма, диабет, аутоиммунные нарушения, ожирение, некоторые психические заболевания и даже определенные виды рака.
Что такое микробиом?
Приведённый ознакомительный фрагмент книги Эффект микробиома предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других