Никто не хочет переедать. И уж тем более никто не хочет делать это в течение многих лет, становясь все толще и толще, приобретая диабет и сердечно-сосудистые заболевания. И тем не менее треть россиян делает это ежедневно! Почему, даже понимая, что у нас проблемы, мы не можем остановиться? Доктор Стефан Гийанэй, нейробиолог из США, считает, что все дело в эпигенетике. Наш аппетит и выбор продуктов питания «сбивается с пути» древними, хорошо отработанными инстинктивными цепями мозга. Ведь как и 1000 лет назад, он играет по правилам «выживания», которых сегодня больше просто нет. «Голодный мозг» поможет читателю понять, почему и каким образом наш мозг мешает нам похудеть, и распишет способы «обмануть» привычки и инстинкты организма. А по пути расскажет, как этот таинственный орган делает нас теми, кто мы есть.
Приведённый ознакомительный фрагмент книги Голодный мозг. Как перехитрить инстинкты, которые заставляют нас переедать предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
2
Проблема выбора
Стен Гриллнер, исследователь из Каролинского института в Стокгольме, в помещении под своей лабораторией завел аквариум с целой стаей нетривиальных обитателей. Это были длинные, похожие на полуметровых червей создания с жадными круглыми ртами-присосками, внутри которых видны острые как бритва зубы — миноги. Они являются нашими очень далекими родственниками (рис. 6). Миноги и родственные им миксины считаются самыми примитивными представителями ныне живущих позвоночных, животных, которые в ходе эволюции развили у себя позвоночный столб, спинной и головной мозг.[16] Предки миног отделились от нашего общего предка примерно 560 миллионов лет назад. Это произошло до эволюции млекопитающих, динозавров, рептилий, амфибий и рыб. И задолго то того момента, когда наши предки впервые ступили плавником на твердую почву.
Рис. 6. Речная минога, Lampetrafluviatilis, и ее мозг.
Миноги являются нашими самыми дальними родственниками. Если сравнить мозг миноги и млекопитающих, то можно обнаружить общие для всех позвоночных животных принципы строения и элементы — ключевые нервные соединения, которые также лежат в основе человеческого мозга. Исследования Гриллнера доказывают, что внутри крошечного, размером с горошину, мозга примитивных животных находится зачаток человеческого аналитического аппарата.[17]
Если мы хотим постичь собственное пищевое поведение, то нам придется изучить функции мозга, которые участвуют в процессе принятия решений. И лучше всего начать с мозга миноги.
Проблема выбора: как осуществляется принятие решений в сложных условиях
Представьте себе двух роботов, которые стоят на сборочном автомобильном конвейере. Как только мимо робота 1 проезжает дверь, он окрашивает ее в зеленый цвет. За этой дверью следует другая, а робот 1 все продолжает делать одну и ту же работу. Он может выполнять только одно-единственное действие. Робот 1 не потребляет большого количества энергии, потому что выполняет одну задачу, обладает всего одной функцией и ему не нужно принимать решений. Теперь представьте робота 2, который может выполнять два действия: может окрашивать дверь в зеленый цвет или в красный. У робота 2 есть только одна форсунка для краски, и он не может пользоваться двумя цветами одновременно. Поэтому он должен решать, какой краской воспользоваться. Но как робот 2 принимает решение? Эта фундаментальная задача называется проблемой выбора. Она возникает всякий раз, когда несколько опций (зеленая и красная краска) претендуют на один и тот же общий ресурс, иначе говоря, средство выражения (одна форсунка). Чтобы разрешить проблему выбора, роботу 2 нужен селектор — некая функция, которая помогает определить, какой цвет краски выбрать для конкретной двери.
Наши самые древние предки были скорее похожи на робота 1 — простые существа, которым не нужно было решать, что делать. Но так продолжалось недолго. Как только они развили у себя способность выполнять более чем одну функцию, сохранив тот же набор ресурсов и средств выражения, им пришлось начать принимать решения. Те особи, которые принимали наилучшие решения, могли передать свои гены следующим поколениям.[18] Например, миноги могут исполнять несколько разных действий: закрепляться на камне, преследовать добычу, скрываться от хищников, спариваться, давать потомство и плавать в различных направлениях. Многие из этих действий являются взаимоисключающими, потому что для их осуществления требуются одни и те же мышцы. Поэтому минога подобно роботу 2 сталкивается с проблемой выбора и, чтобы ее решить, ей нужен сортирующий аппарат, или селектор.
Согласно мнению специалистов в области вычислительной неврологии и развития искусственного интеллекта эффективный селектор, находящийся в компьютере или в головном мозге, должен обладать определенным набором ключевых параметров.
1. Селектор должен выбирать только одну опцию. При наличии несовместимых опций, таких как «скрыться от преследователя» и «спариваться» селектор должен выбрать одну функцию и позволить соответствующим ресурсам (органам) выполнить заданную программу.
2. Селектор должен выбирать ту опцию, которая подходит для текущей ситуации наилучшим образом. Например, если минога видит опасного хищника, она должна скрыться от него.[19] Минога, которая попытается начать спаривание с опасным хищником, не сможет передать свои гены следующему поколению миног.
3. Селектор должен окончательно выбирать одну из опций. Если одна опция только немного лучше, чем другая, она все равно должна быть выбрана с полной определенностью.
Остальные несовместимые опции должны быть полностью исключены. Минога, которая одновременно пытается спариться и скрыться от преследователя, скорее всего, не оставит после себя многочисленного потомства.
В 1999 году исследователи из Шеффилдского университета опубликовали фундаментальную научную работу. На основе заключений специалистов и данных компьютерного моделирования ученые доказали, что функция осуществления выбора зависит от группы древних структур — базальных ганглиев, расположенных глубоко в человеческом мозге. Сегодня эту идею разделяют большинство неврологов. Чтобы разобраться в работе человеческого селектора, начнем с его упрощенной версии и рассмотрим селектор миноги.
Как миноги решают проблему выбора
Как минога решает, что ей делать? В глубине базальных ганглиев находится стриатум (полосатое тело) — структура, которая отвечает за прием входящих сигналов из других частей мозга.[20] Стриатум получает «заявки» от других участков мозга, каждая из которых представляет собой запрос на определенное действие. Так, например, один участок мозга миноги нашептывает стриатуму: «Спариваться», а другой кричит: «Скрываться от хищника!» и тому подобное. Было бы очень нехорошо, если бы все это происходило одновременно, потому что минога не в состоянии выполнять несколько функций сразу. Чтобы воспрепятствовать одновременной активации всех функций, сигналы от разных участков мозга контролируются мощными ингибиторными связями в базальных ганглиях.[21] Это означает, что базальные ганглии по умолчанию держат все поведенческие функции в отключенном состоянии. Только когда выбор осуществляется в пользу определенной «заявки», базальные ганглии снимают свой строгий ингибиторный контроль и позволяют действию осуществиться (рис. 7), т. е. работают как вышибалы, которые решают, какие функции получат доступ к мышечному аппарату, а какие будут отброшены.
Таким образом себя проявляет первый ключевой параметр селектора: он должен выбрать одну опцию и дать ей доступ к мышечному аппарату.
Большинство заявок на действие поступает из определенного участка мозга миноги, который носит название паллиум, или мантия мозга, и отвечает за планирование. Каждый маленький участок паллиума руководит конкретным вариантом поведения: преследование добычи, прикрепление к камню или бегство от хищника.
Рис. 7. Типовая модель работы базальных ганглиев при осуществлении выбора. (Тенденции развития неврологии. МакХафии и соавт. 28 (2005). — 401).
Участки паллиума выполняют две основные функции. Первая заключается в получении разрешения от базальных ганглиев и исполнении того варианта поведения, на котором специализируется конкретный участок. Например, участок «преследовать добычу» активирует информационный канал, который приводит в действие мускулатуру в таком порядке, какой необходим животному для поимки добычи.
Вторая функция паллиума позволяет собирать необходимую информацию об окружающей обстановке и внутреннем состоянии миноги. На основе полученных данных участок паллиума определяет интенсивность сигнала, который он собирается направить в стриатум[22] (см. рис. 7). Например, если рядом с миногой возникнет хищник, то участок «скрыться от хищника» направит настойчивый запрос в стриатум, в то время как область «вывести потомство» будет посылать слабый сигнал. Если минога голодна и видит добычу, то сигнал «преследовать добычу» будет ярче, чем сигнал «закрепиться на камне».
Каждый маленький участок паллиума стремится реализовать то поведение, за которое он отвечает, и они как бы соревнуются между собой за первенство, так как одновременное выполнение действий не представляется возможным. Интенсивность запроса, исходящего от паллиума, говорит о релевантности какого-то одного типа поведения на текущий момент времени. И в этой ситуации задача стриатума проста: удовлетворить самый настойчивый запрос. Таким образом реализовывается второй ключевой параметр селектора — выбор той опции поведения, которая подходит для текущей ситуации наилучшим образом.
В то же мгновение, когда стриатум отвечает на самый интенсивный сигнал, он отвергает остальные конкурирующие запросы. Таким образом, как только запрос «скрыться от хищника» получает одобрение, другие варианты поведения, например «закрепиться на камне» или «преследовать добычу», немедленно отвергаются. В этом заключается третий ключевой параметр селектора — окончательно принять решение в пользу одной опции, отвергнув все остальные.
Каждый участок паллиума связан с определенной частью стриатума. Паллиум посылает сигнал в стриатум, и затем сигнал из стриатума (через другие части базальных ганглиев) возвращается назад в тот же участок паллиума.
Иными словами, определенный участок паллиума и стриатум связаны замкнутой цепью, которая реализует запрос на конкретное действие (см. рис. 7). Например, существует цепь для преследования добычи, для ускользания от хищника, для прикрепления к камню и так далее. Каждый отдельный участок паллиума без конца нашептывает стриатуму, упрашивая дать добро на исполнение того или иного поведенческого шаблона. А стриатум по умолчанию отвечает на это «нет!» При особых обстоятельствах шепот паллиума превращается в крик, и тогда стриатум исполняет требования настойчивого паллиума и приводит в действие мышцы. Таким образом, минога способна адекватно реагировать на окружающую обстановку с учетом своего внутреннего состояния.[23]
Принимая во внимание все вышесказанное, нам стоит воспринимать отдельные участки паллиума как генераторы сигналов, которые предлагают разные варианты поведения. Каждый отдельный генератор сигналов все время находится в противостоянии с остальными, несовместимыми с ним генераторами. В одно и то же время они пытаются получить доступ к мышцам.
Побеждает тот генератор, чей сигнал на текущий момент является самым сильным. Базальные ганглии оценивают интенсивность сигналов от генераторов, выделяют самый настойчивый, дают генератору доступ к мышцам и отвергают запросы конкурирующих генераторов (см. рис. 7). Минога скрывается от хищника и спасает свою жизнь, чтобы передать свои гены следующему поколению.
Решение проблемы выбора у млекопитающих
Мозг человека, конечно, устроен намного сложнее, чем мозг миноги. Млекопитающих отличает от всех остальных земных созданий нервная система колоссальной сложности. Благодаря ей мы в состоянии принимать разумные решения. Чтобы оценить всю мощь этой системы, достаточно посмотреть на количество энергии, которое она поглощает. Человеческий мозг потребляет одну пятую часть от всего объема затрачиваемой организмом энергии, это особенно примечательно в связи с тем, что на мозг приходится всего 2 процента веса всего тела. Эволюция позволила нам влачить это энергоемкое бремя неспроста — все дело в его исключительной важности с позиции прогрессивного развития. Принятие разумных решений — это мощный эволюционный инструмент, которым человек владеет лучше всех остальных животных.
Так что же общего у мозга миноги и мозга человека разумного? Чтобы ответить на этот вопрос, ученые из Каролинского университета Стен Гриллнер и Маркус Стефенсон-Джонс работали не покладая рук. На основе работ своих предшественников исследователи сравнили анатомию и физиологию базальных ганглиев миног и млекопитающих (на рис. 9 изображены базальные ганглии человеческого мозга). Результат был просто ошеломляющим. Несмотря на то что миногу и млекопитающее животное (в том числе и человека) разделяет пропасть в 560 миллионов лет эволюции, базальные ганглии обоих представителей фауны не отличаются друг от друга. Они состоят из одних и тех же компонентов, которые взаимодействуют между собой схожим образом. Нейронная структура ганглиев, электрические сигналы и их проводимость — все почти идентично. Эти факты позволили Гриллнеру и Стефенсон-Джонсу сделать поразительный вывод: «практически все компоненты базальных ганглиев и связи внутри них сформировались около 560 миллионов лет назад». «Фундаментальная часть головного мозга позвоночных животных использовалась на протяжении всего хода эволюции практически в неизменном виде. Механизм принятия решений является общим для миног, рыб, птиц, млекопитающих и человека», — добавил Стефенсон-Джонс. Наши предки выбили хоум-ран[24] еще 560 миллионов лет назад, и мы до сих пор пользуемся «технологиями», которые были в ходу в доисторические времена.
Рис. 8. Человеческий мозг.
Рис. 9. Базальные ганглии и их части. Стриатум состоит из двух компонентов — хвостатого ядра и путамена.
Минога способна решать разноплановые задачи, но, конечно, не столь многочисленные по сравнению с человеком. Нам необходимо разбираться с тем, что приготовить на ужин, как выплатить ипотеку и выразить свое отношение к Богу. Очевидно, что в нашем мозговом оборудовании есть существенные отличия, которые позволяют нам осознавать окружающий мир и делать свой выбор. Но если диапазон интересов человека настолько отличается от забот миноги, то почему базальные ганглии в обоих случаях так схожи? Гриллнер и Стефенсон-Джонс предлагают этому феномену свое объяснение. Существует эволюционный процесс, который носит название экзаптация. Его можно рассмотреть как противоположность адаптации. При адаптации происходит развитие новых структур, например возникают легкие для дыхания воздухом или развивается четырехкамерное сердце. При экзаптации существующие структуры приобретают новые функции. Например, увеличение влияния базальных ганглиев и расширение границ влияния на принятие решений для того, чтобы решать новые, более сложные задачи. Гриллнер и Стефенсон-Джонс предполагают, что базальные ганглии у ранних позвоночных работали и так достаточно эффективно, поэтому эволюции не нужно было их преобразовывать с целью устранения ошибок. Строительство можно было продолжать на этом надежном фундаменте.
Если говорить о человеческом мозге, то самые многочисленные сигналы в стриатум поступают из коры больших полушарий. Кора развилась из рудиментарного паллиума (такого же органа, который мы сегодня можем найти у миног). Развитие коры мозга позволило перейти на усложненный уровень принятия решений. Конечно, без коры больших полушарий доступно выполнение большинства базовых функций, которыми управляют другие, более древние образования головного мозга.[25] Но вот разобраться с ипотекой или думать о Боге без нее не получится. У людей по сравнению с другими животными кора мозга гипертрофирована. Именно она играет ключевую роль в работе нашего исключительного интеллекта. У миног мантия мозга находится в зачаточном состоянии (рис. 10).[26] Возможно, по этой причине они избавлены от необходимости выплачивать ипотеку.
Рис. 10. Мозг миноги, лягушки, крысы и человека. Темным выделены участки коры головного мозга (или паллиум).
У высших животных запросы в стриатум поступают из коры больших полушарий головного мозга. Это значит, что базальным ганглиям досталась более значительная роль, чем они выполняли в те незапамятные времена, когда мы и миноги отделились от общего предка. Как показали исследования, кора не только посылает запросы к базальным ганглиям, но и принимает обратный сигнал, в точности, как паллиум у миног.[27] Эта двусторонняя связь формирует нейронные цепи, которые исходят из определенных участков коры и снова возвращаются к ним. Каждый из этих участков является генератором сигналов. Нейронные цепи соединяют базальные ганглии с различными частями мозга млекопитающих. Разные участки мозга регулируют не только физическую активность, но и мотивацию, эмоции, мысли, ассоциации и другие многочисленные процессы.
Способность базальных ганглиев обрабатывать сигнал увеличилась в ходе эволюции и процесса экзаптации. Они установили связь с новыми, современными генераторами сигналов, которые обладают усложненным набором опций и отвечают за высшую нервную деятельность. Базальные ганглии в человеческом мозге способны не только принимать решение о том, как двигаться, но и как себя чувствовать, что подумать, что сказать и, возвращаясь к нашей теме, что съесть.
Базальная ганглия отправляется в ресторан
Если разбить поведенческий акт на базовые элементы, то мы сможем подробно рассмотреть этот сложный совокупный процесс. Поведение формируется за счет скоординированной работы нескольких взаимодействующих частей мозга. Чтобы выполнить такую сравнительно простую задачу, как отобедать в ресторане, вы должны сначала обнаружить у себя мотивацию принять пищу. Затем обдумать, где бы вы хотели поесть и спланировать маршрут до этого места. После — привести в движение мышцы таким образом, чтобы добраться до нужного места и отправить еду себе в рот. Это задание намного превышает по сложности обязанности Робота 2, потому что каждый шаг на пути к цели предполагает принятие решения. Каждая из оговоренных выше мотивационных, когнитивных и двигательных задач обрабатывается независимо в разных отделах мозга. Но работа разных отделов мозга настолько хорошо скоординирована, любая операция выполняется так гладко и последовательно, что мы и не подозреваем о наличии у себя в мозге различных «ведомств». Как же мозгу удается принимать слаженные решения?
Мы не можем точно сказать, как это происходит, потому что у нас нет возможности проводить всесторонние инвазивные исследования человеческого мозга. Мы можем проникнуть так глубоко только в мозг животных. Но все же ученые уже разработали убедительную гипотезу на основе экспериментальных данных. Чтобы разобраться в этой гипотезе, я побеседовал с исследователями из Шеффилдского университета Питером Редгрейвом и Кевином Гурни. Они успешно описали функции базальных ганглиев в контексте процесса принятия решений. Вот что они мне рассказали.
Давайте представим, что вы длительное время не принимали пищу. Если рассмотреть вопрос с позиции выживания, то вашему телу требуется энергия, а значит принять пищу сейчас — это самое подходящее действие. Каким образом вы можете решить эту задачу? Сначала должна возникнуть мотивация к еде. Вентральная (нижняя) часть полосатого тела отвечает за отбор наиболее подходящей на текущий момент мотивации или эмоции.[28] «В этой области находятся мотивационные каналы, которые обрабатывают сигналы первостепенной важности», — объяснил мне Редгрейв. «Так вы понимаете, что чувствуете голод, жажду, страх, вожделение, холод или жару». Генераторы сигналов голода, жажды, страха, вожделения, чувства холода и жары посылают конкурирующие сообщения в вентральный стриатум. В настоящий момент генератор сигналов голода посылает самый настойчивый запрос, потому что в вашем теле не осталось энергии (так он расставляет свои ловушки, но об этом позже). Он обходит своих противников, выигрывает соревнование и получает возможность проявить себя в действии. Вы начинаете чувствовать, что проголодались.
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Голодный мозг. Как перехитрить инстинкты, которые заставляют нас переедать предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
16
Технически у миног нет позвоночного столба, но есть спинной и головной мозг. Предполагается, что ранее у миног был позвоночник, но они утратили его в процессе эволюции.
17
Невероятно, но зачатки базальных ганглиев, скорее всего, уже были у предшественников беспозвоночных животных. Ученые обнаружили похожие структуры у мух. Наши предки пользуются мозгом для принятия решений с самых древних времен.
18
Ранние «решения» принимались без участия нейронов и мозга, точно так же сегодня бактерии в состоянии сделать простой выбор. Например, бактерия может двигаться к источнику пищи и прочь — от вредоносных химикатов. Такое поведение называется хемотаксис. Бактерии могут «решить», в каком направлении двигаться на основе информации о состоянии окружающей среды.
19
Для взрослой миноги пища означает рыбу, к которой она может прикрепиться и паразитировать. Своими острыми зубами она отгрызает от хозяина часть плоти, что часто приводит к преждевременной гибели рыбы. Я же говорил, что они просто кошмарные!
20
Стриатум разделяется на два участка: дорсальный (верхний) стриатум и вентральный (нижний) стриатум. Иначе эту область еще называют прилежащее ядро мозга. Они исполняют разные роли в процессе осуществления выбора. Ниже мы обсудим это подробнее.
22
Интенсивность сигнала зависит от силы нервного импульса. «В мозге оценке подвергается волна возбуждения, которая распространяется по нервному волокну», — Маркус Стефенсон-Джонс, выпускник школы Гриллнера.
23
Примечательно, что базальные ганглии осуществляют свою работу тем же способом, который нашел свое отражение в технических системах, разработанных инженерами. Здесь конкурирующие опции сравниваются, чтобы система могла принять оптимальное решение при сложных условиях. Можно говорить об универсальности стратегии осуществления выбора, основанной на конкуренции имеющихся шаблонов.
24
Хоум-ран — удар в бейсболе, при котором бейсбольный мяч в пролетает все поле и вылетает за его пределы.
25
Млекопитающие, например крысы, способны реализовать базовые поведенческие шаблоны даже после полного удаления коры! Они могут продолжать принимать пищу, ходить, спариваться и выполнять простые задачи. Животные сталкиваются с трудностями только в нетипичных, усложненных ситуациях.