Современная астрофизика – это быстро развивающаяся наука, которая использует новейшие (и очень дорогие) приборы и суперкомпьютеры. Это приводит к огромному потоку результатов: экзопланеты и темная энергия, гравитационные волны и первые снимки Плутона с близкого расстояния. В результате астрономическая картина мира постоянно меняется. Однако многие фундаментальные особенности этой картины уже сформировались. Мы знаем, что живем в расширяющейся Вселенной, чей возраст составляет немногим менее 14 млрд лет. Нам известно, как формировались и формируются ядра элементов. Мы можем наблюдать разные стадии формирования звезд и планетных систем. Удается даже разглядеть, как в дисках вокруг звезд формируются планеты. Тем не менее остается много вопросов и загадок. Что такое темное вещество и темная энергия? Как взрываются сверхновые разных типов? Как устроены черные дыры? Наконец, есть ли еще жизнь во Вселенной, и какой она может быть?
Приведённый ознакомительный фрагмент книги Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глава 1
Солнце
Солнце — это звезда Главной последовательности, т. е. в ее недрах идет стабильный процесс превращения водорода в гелий путем цепочки реакций, в результате которых четыре протона превращаются в альфа-частицу. При этом выделяется энергия в виде кинетической энергии частиц, квантов электромагнитного излучения (фотонов) и нейтрино. Фотоны также возникают в результате аннигиляции электронов и рождающихся в реакциях позитронов. Нейтрино слабо взаимодействуют с веществом и поэтому свободно покидают недра Солнца. Регистрируя эти частицы, мы можем получить прямую информацию о происходящих в недрах Солнца термоядерных реакциях. Энергия фотонов и кинетическая энергия образующихся частиц нагревают недра звезды, позволяя ей противостоять силам гравитации, которые стремятся сжать звезду.
Солнце имеет радиус около 696 000 км, масса его составляет примерно 2x1030 кг. Температура поверхности составляет 5800 К, а светимость (мощность солнечного излучения) — 3,86x1026 Дж/с. Расстояние от Земли до Солнца составляет примерно 150 млн км, свет проходит его за 8 минут с небольшим. На небе Солнце имеет угловой размер около половины градуса. Возраст Солнца равен примерно 4,6 млрд лет, а полная продолжительность его жизни составляет около 12 млрд лет. В конце своего пути, пройдя стадию красного гиганта и «горения» гелия в ядре, наша звезда станет углеродно-кислородным белым карликом.
1.1. Строение Солнца и условия в недрах
Устойчивость Солнца и его структура определяются выделением и переносом энергии, источником которой являются реакции превращения водорода в гелий. Для обеспечения стабильного протекания термоядерных реакций необходимы достаточно высокая температура и плотность. В центральной части Солнца плотность составляет более 100 г/см³, а температура превосходит 107 K. И плотность, и температура уменьшаются по мере продвижения к поверхности.
Структура Солнца связана с переносом энергии от горячих плотных недр к более холодным и менее плотным поверхностным слоям.
Термоядерные реакции идут в ядре, которое занимает около четверти солнечного радиуса. Вокруг ядра расположена горячая (несколько миллионов градусов) и потому достаточно прозрачная для излучения так называемая лучистая зона, простирающаяся до примерно 70–75 % радиуса Солнца. Перенос энергии в этой области происходит с помощью излучения, при этом в процессе распространения фотоны многократно поглощаются и переизлучаются в случайном направлении. Поэтому от рождения фотона до покидания им Солнца (с учетом всех актов поглощения и излучения) проходит в среднем около 170 000 лет.
Во внешних слоях температура вещества падает (до пары миллионов градусов), и оно становится непрозрачным для излучения. При этом возрастает градиент температуры и начинается перенос энергии в этих слоях за счет конвекции. Конвективная зона занимает внешние 25–30 % звезды, и ее наличие приводит к появлению нескольких видов солнечной активности. Такие образования, как гранулы, солнечные пятна, факельные поля и некоторые другие, обязаны своим происхождением магнитогидродинамическим процессам в конвективной зоне.
Солнце вращается вокруг своей оси, но не как твердое тело, поскольку оно является газовым (плазменным) шаром. Скорость вращения в конвективной зоне различна на разной глубине и разных широтах. Приповерхностные слои в экваториальных областях делают один оборот за 25 дней, а в полярных — за 38 дней. По мере продвижения внутрь Солнца, к границе конвективной и лучистой зон, угловые скорости вращения выравниваются. Лучистая зона и ядро вращаются уже как твердое тело с периодом около 27 дней. Профиль скорости вращения на разных глубинах и широтах, как и многие другие свойства солнечных недр, в настоящее время с достаточной точностью измеряется методами гелиосейсмологии — раздела астрофизики, изучающего колебания Солнца.
Во внутренней структуре Солнца выделяют ядро, зону лучистого переноса энергии и зону конвективного переноса.
Наличие конвективной оболочки приводит к возбуждению колебаний во внешних слоях Солнца. Эти колебания распространяются внутрь и по сути зондируют недра Солнца, отражаясь от глубинных слоев и проявляясь в виде сложных пульсационных движений поверхности (фотосферы) с периодами в несколько минут и более и различными угловыми масштабами.
По характеру этих пульсаций можно определить физические параметры внутренних слоев нашей звезды.
В строении Солнца выделяют три внешние зоны: фотосферу, хромосферу и корону. Фотосфера является видимой поверхностью Солнца (которое представляет собой газовый шар и потому не имеет твердой поверхности). В этом тонком слое толщиной всего лишь около 300 км атмосфера Солнца становится непрозрачной в видимом диапазоне для внешнего наблюдателя. На разных длинах волн непрозрачность достигается на разной глубине: в ультрафиолетовом диапазоне это происходит во внешних слоях фотосферы, где видимая поверхность Солнца имеет более низкую температуру, чуть менее 5000 K, а в видимом и инфракрасном — в нижних слоях фотосферы, где температура несколько выше (более 6500 K).
В спектре фотосферы наблюдается огромное количество линий, позволяющих с высокой точностью определять физические условия и состав вещества. Поэтому долгое время именно фотосфера служила основным источником информации о свойствах Солнца.
Внешние, «атмосферные», слои Солнца подразделяют на фотосферу, хромосферу и корону.
Между фотосферой и самой внешней частью солнечной атмосферы — короной — находится так называемая хромосфера. Ее назвали так из-за того, что на изображениях Солнца во время затмений выглядит как окрашенный ореол вокруг фотосферы. Цвет возникает благодаря эмиссионным линиям (прежде всего, водородным) солнечного излучения. Хромосфера имеет толщину несколько тысяч километров и эффективно нагревается плазменными волнами. Поэтому температура в ней быстро растет по мере удаления от поверхности звезды: от 5000 К (температура верхней фотосферы) до примерно 35 000 К. А на высоте несколько тысяч километров температура резко возрастает до миллиона градусов — температуры короны.
Солнечная корона хорошо видна во время затмения. Она визуально прослеживается на несколько солнечных радиусов и характеризуется очень низкой плотностью (поэтому ее невозможно увидеть на фоне дневного неба), но очень высокой температурой. Вид короны сильно зависит от солнечной активности в данный момент. На больших расстояниях корона постепенно переходит в солнечный ветер.
Стабильность полной светимости Солнца связана со стабильностью его внутренней структуры.
Несмотря на различные проявления поверхностной активности, полная светимость Солнца, в основном приходящаяся на оптический диапазон, крайне стабильна. Это связано со стабильностью внутренней структуры, которая поддерживается за счет равновесия сил гравитации и сил давления (газа и излучения). Однако светимость за пределами видимого диапазона (в радиодиапазоне, ультрафиолете, рентгене, гамма-лучах) может существенно изменяться как в коротком временном масштабе (вспышки), так и в длительном (11-летний цикл активности, а также более долгопериодические изменения). Активность Солнца связана с процессами в самых внешних (конвективных) слоях, а не с основным источником энергии — термоядерными реакциями в ядре. Однако даже такие небольшие вариации в поведении Солнца могут заметно влиять на земной климат.
Солнце состоит в основном из водорода (более 70 % по массе) и гелия. Лишь менее 2 % приходится на более тяжелые элементы. Распределение элементов по радиусу не является равномерным. Во-первых, в ядре происходит синтез гелия, а отсутствие конвекции во внутренних слоях исключает заметное перемешивание вещества и вынос продуктов синтеза во внешние слои. Во-вторых, внутренние слои обогащаются тяжелыми элементами, которые опускаются из внешних слоев.
Солнце более чем на 98 % состоит из водорода и гелия.
По этим причинам фотосферный состав не отражает точного содержания элементов в Солнце. Разумеется, усредненный химический состав Солнца медленно меняется со временем из-за превращения водорода в гелий в ядре.
Солнце образовалось около 4,6 млрд лет назад. Еще чуть более 5 млрд лет Солнце будет оставаться на Главной последовательности. В течение этого времени светимость и радиус будут немного расти, но структура Солнца останется неизменной до ухода с Главной последовательности. Затем, когда запасы водорода в ядре будут исчерпаны, структура и основные параметры (светимость, масса, температура поверхности) нашей звезды начнут сильно меняться.
1.2. Реакции в Солнце. Нейтрино
Источником энергии Солнца являются термоядерные реакции превращения водорода в гелий. Благодаря регистрации выделяющихся при этом нейтрино мы достаточно точно знаем характеристики каждой из этих реакций.
Источником энергии Солнца являются термоядерные реакции синтеза гелия из водорода.
Ядро обычного гелия (4He) — альфа-частица — состоит из двух протонов и двух нейтронов, поэтому для его синтеза необходимы четыре протона — ядра водорода (1H). Но сделать это за один этап невозможно, требуется цепочка из нескольких реакций. Более того, существуют альтернативные каналы реакций, которые вносят разный вклад в энергетику Солнца.
Основной канал называют pp-цепочкой, или pp-циклом, на первом шаге которого в реакцию вступают два протона (p). Однако даже эта реакция идет в недрах Солнца в двух вариантах. Основной (99,76 % случаев) состоит во взаимодействии двух протонов, в результате чего образуется дейтерий (один из протонов превращается в нейтрон), рождаются позитрон и электронное нейтрино. Эти нейтрино имеют низкую энергию, поэтому их удалось детально исследовать лишь недавно, в 2014 г., на установке Borexino в Италии.
В другом варианте (0,24 %) в реакции участвует третья частица — электрон. В этой так называемой pep-реакции также образуются дейтерий и электронное нейтрино (pep-нейтрино). Эти более редкие pep-нейтрино, обнаруженные с помощью Borexino в 2012 г., имеют несколько большую энергию, чем те, которые образуются в pp-цикле.
На следующем этапе дейтерий взаимодействует с еще одним протоном. Образуется изотоп гелия 3He и рождается гамма-квант. У гелия-3 есть несколько возможностей для дальнейших реакций. Реже всего — в ничтожно малой доле случаев — в реакцию вступает протон, образуя на выходе 4He, позитрон и электронное нейтрино (эти нейтрино крайне важны, несмотря на свою редкость, поскольку они имеют самую высокую энергию).
Более 98 % энергии рождается в реакциях протон-протонного (pp) цикла.
Но чаще идут другие реакции. В 84,6 % случаев два ядра гелия-3 взаимодействуют друг с другом, порождая ядро 4He и два протона. В оставшихся 15,4 % начинается другая цепочка реакций: гелий-3 взаимодействует с гелием-4, образуя ядро бериллия-7 (7Be) и испуская гамма-квант. Однако бериллий не является конечным продуктом, он вступает в реакцию или с электроном (99,89 % случаев), порождая литий-7 (7Li) и электронное нейтрино, или с протоном (0,11 %), порождая бор-8 (8B) и гамма-квант. В свою очередь литий-7 захватывает протон и распадается на две альфа-частицы, а бор-8 превращается в возбужденное ядро бериллия-8 с испусканием позитрона и электронного нейтрино (это так называемые борные нейтрино, из всех рождающихся в Солнце в заметном количестве они имеют наибольшую энергию). И, наконец, ядро бериллия распадается на две альфа-частицы.
Среди всех реакций, идущих в ядре Солнца, в пяти испускается электронное нейтрино. Антинейтрино или нейтрино другого типа в pp-цикле не возникают. Проще всего зарегистрировать борные нейтрино, поскольку они имеют высокую энергию и их достаточно много. Сложнее всего — нейтрино от первой (pp) реакции из-за их низкой энергии.
Такие же реакции идут во всех звездах того же типа, что и Солнце, однако из-за разной зависимости скорости реакций от температуры вклад различных каналов у звезд разной массы отличается.
Протон-протонный цикл вносит основной (более 98 %) вклад в энергетику Солнца. Однако есть еще одна цепочка реакций, также ведущая к синтезу гелия из водорода. В Солнце она отвечает менее чем за 2 % энерговыделения, но в более горячих (массивных) звездах этот вариант, называемый CNO-циклом, становится доминирующим.
Свое название CNO-цикл получил благодаря углероду (C), азоту (N) и кислороду (O). Однако эти элементы в реакциях CNO-цикла не расходуются и не синтезируются: на входе мы имеем четыре протона, а на выходе — альфа-частицу (плюс, конечно, нейтрино и энергию). Можно сказать, что углерод выступает в роли катализатора, а азот и кислород принимают участие в промежуточных этапах синтеза.
CNO-цикл отвечает менее чем за 2 % энергетики Солнца, но становится доминирующим в более массивных звездах.
Цикл начинается с того, что обычный углерод-12 (12C) захватывает протон, превращаясь в азот-13 (13N) с рождением фотона. Затем в результате бета-распада азот-13 превращается в углерод-13 с испусканием позитрона и электронного нейтрино.
В результате реакций часть энергии уносится электронными нейтрино, регистрируемыми на Земле.
Углерод-13 снова взаимодействует с протоном с образованием азота-14 и фотона. Азот-14 взаимодействует с протоном, порождая кислород-15 и фотон. В ядре 15O один из протонов в результате бета-распада превращается в нейтрон. Возникает азот-15, и, как во всяком бета-распаде протона, вылетают позитрон и электронное нейтрино. Наконец, азот-15 взаимодействует с протоном с образованием углерода-12 и альфа-частицы. Цикл завершен. Как видим, ядро 12C, использованное в самом начале цикла, возникло снова, а четыре протона превратились в ядро 4He.
У CNO-цикла есть еще несколько вариантов. Один из них идет только при высокой температуре и для Солнца совсем не актуален. Второй все-таки дает ничтожный вклад в энергетику Солнца. При взаимодействии азота-15 с протоном в редких случаях возникает не углерод-12 и альфа-частица, а кислород-16. Кислород захватывает еще один протон, превращаясь во фтор-17. В результате бета-распада фтор-17 превращается в кислород-17 с испусканием нейтрино и рождением позитронов. Кислород-17 снова взаимодействует с протоном, а итогом реакции становятся азот-14 и альфа-частица. Но это еще не конец, ведь цепочка началась с азота-15, который необходимо получить для замыкания цикла. 14N захватывает протон, превращаясь в кислород-15, который в результате бета-распада превращается в исходный 15N.
Нейтрино обладают небольшой (но не нулевой!) массой.
Как видно, в ходе CNO-цикла также рождаются электронные нейтрино, которые, как и нейтрино от pp-реакций, удалось зарегистрировать в подземных нейтринных лабораториях.
Теоретики разработали основные цепочки pp — и CNO-циклов в конце 1930-х гг. В 1946 г. Бруно Понтекорво (Bruno Pontecorvo) отметил, что Солнце должно быть достаточно мощным источником нейтрино. В 1950-е гг. Рэй Дэвис (Ray Davis) начал работать над экспериментом, способным обнаружить солнечные нейтрино. В 1968 г. ему удалось получить важнейший результат: экспериментальный верхний предел на поток нейтрино от Солнца оказался почти в три раза ниже теоретического предсказания. Возникла проблема солнечных нейтрино. Затем на протяжении десятков лет ученые с помощью различных установок научились регистрировать нейтрино, испускаемые в ходе различных реакций, и все они подтверждали наличие дефицита. Окончательно решить проблему удалось в самом начале XXI в. Выяснилось, что расчеты структуры Солнца и процессов в нем были верны. Сюрприз был связан с природой нейтрино.
Нейтринные осцилляции объясняют, почему поток электронных нейтрино на Земле меньше, чем предсказывает стандартная модель Солнца.
На протяжении десятилетий шел спор о том, имеют ли нейтрино массу. Изначальная гипотеза Паули (1930 г.) о существовании нейтральной частицы, которая позволяла объяснить особенности бета-распада (а заодно, в варианте Паули, и свойства атомных ядер), предполагала ненулевую массу. С течением времени эксперименты показали, что есть три типа нейтрино, соответствующих трем лептонам: электронное, мюонное и тау-нейтрино. В минимальной Стандартной модели элементарных частиц, созданной в середине 1970-х гг., все три нейтрино предполагаются безмассовыми (т. е. с нулевой массой). Обнаружение так называемых нейтринных осцилляций в экспериментах Super-Kamiokande («Супер-Камиоканде»), или просто Super-K, и на нейтринной обсерватории в Садбери (Sudbury Neutrino Observatory, SNO) в 2015 г. было отмечено Нобелевской премией по физике. Нейтринные осцилляции свидетельствуют, что на самом деле эти частицы имеют ненулевую массу. Хотя на момент открытия формально можно было объяснить явление нейтринных осцилляций не массой частиц, а «новой физикой», теперь такие объяснения не только выглядят «не элегантными», но и плохо согласуются с новыми экспериментальными данными, также свидетельствующими в пользу ненулевой массы нейтрино.
Феномен нейтринных осцилляций был предсказан в 1957 г. Бруно Понтекорво. С точки зрения наблюдателя, он состоит в том, что после испускания нейтрино любого типа детекторы на разных расстояниях от источника будут регистрировать нейтрино всех трех типов. Строго говоря, это не означает взаимное превращение частиц друг в друга. Нейтрино всегда является суперпозицией трех состояний, одно из которых может проявляться в данный момент. Осцилляции происходят и в вакууме, но наличие вещества может их усиливать (так называемый эффект Михеева — Смирнова — Вольфенштейна, иногда в данном случае говорят о неосцилляторных превращениях одного сорта нейтрино в другой, называя их адиабатическими превращениями сорта (adiabatic flavor conversion), но мы будем называть все превращения осцилляциями, чтобы не усложнять терминологию). Это позволяет решить проблему солнечных нейтрино. Эти частицы рождаются в результате термоядерных реакций в недрах Солнца, и при энергии нейтрино выше нескольких мегаэлектронвольт осцилляции в основном происходят внутри Солнца, а при более низких энергиях — по пути от Солнца до Земли. В результате мы регистрируем лишь около трети электронных нейтрино, возникающих при синтезе гелия из водорода.
1.3. 11-летний цикл активности
Одной из главных особенностей солнечной активности является наличие так называемого 11-летнего цикла. С этим периодом меняется количество солнечных пятен, вспышек, а также всех других проявлений активности, включая потоки радио-, рентгеновского и гамма-излучения. Этот цикл связан с изменением магнитного поля Солнца, полярность (направление) которого меняется с периодичностью около 22 лет. Однако детальные причины такого поведения Солнца остаются неизвестными: существующие модели генерации и эволюции магнитного поля, объясняющие солнечный цикл, нуждаются в проверке и, возможно, модификации и развитии.
Одиннадцатилетняя периодичность в количестве солнечных пятен была установлена в 1840-е гг. Генрихом Швабе (Samuel Heinrich Schwabe). С 1849 г. Рудольф Вольф (Rudolf Wolf) начал регулярные подсчеты солнечных пятен и их групп по разработанной им методике (так называемого числа Вольфа). Кроме того, он использовал архивные данные, чтобы установить, как менялось число пятен и групп начиная с 1749 г. Благодаря работе Вольфа и его последователей у нас есть качественные непрерывные данные по солнечным пятнам на протяжении 24 циклов. Именно это делает ряды наблюдений пятен ценнейшим материалом для изучения поведения Солнца, хотя в последние десятилетия разработаны и более надежные методы мониторинга солнечной активности.
Цикл начинается с минимума в количестве солнечных пятен. Первый цикл отсчитывают с 1755 г., а текущий (24-й) цикл начался в 2009 г. Продолжительность цикла лишь в среднем равна 11 годам, отклонения могут превосходить год (а иногда и два!) в ту или иную сторону.
Активность Солнца меняется с периодичностью около 11 лет.
Сейчас используется несколько методик подсчета солнечных пятен и их групп. Помимо подсчета числа пятен и групп измеряется и их площадь, а с 1946 г. для мониторинга солнечной активности используют также радионаблюдения на частоте 2,8 ГГц (длина волны 10,7 см). Разные методы по-разному определяют момент начала цикла, разброс между ними может составлять несколько месяцев.
Начало 11-летнего цикла солнечной активности принято отсчитывать с минимума.
Цикл — это всплеск солнечной активности, вызванный внутренними процессами, связанными с магнитным полем. Последовательно наступающие циклы могут слегка перекрываться, и это можно установить различными методами. Например, пятна в цикле начинают появляться на широтах ±30–40 градусов, а потом постепенно места появления новых пятен сдвигаются ближе к экватору. Соответственно, вблизи минимумов на Солнце могут присутствовать пятна и старого, и нового циклов.
Среднее (глобальное) магнитное поле на Солнце невелико. По порядку величины оно примерно такое же, как на поверхности Земли. Но локально (например, в пятнах) поля могут достигать величин в тысячи раз больше. Изменения полей порождают индукционные токи, сложная эволюция системы полей и токов в плазме приводит к богатству магнитогидродинамических процессов и многообразию активных явлений на Солнце (и других звездах).
Цикличность солнечной активности связана с изменениями магнитного поля.
Данные наблюдений указывают, что магнитное поле играет ключевую роль во всех проявлениях солнечной активности. В максимуме цикла меняется полярность глобального магнитного поля Солнца, величина поля в это время минимальна. Непосредственно вблизи максимума активности полярность поля может поменяться несколько раз. В минимуме солнечной активности величина глобального магнитного поля достигает максимума. Поэтому полный магнитный цикл составляет 22 года, за это время поле возвращается к прежней конфигурации.
Кроме того, меняется направление магнитного поля в солнечных пятнах. Обычно пятна появляются парами. Пятна в паре соединены линиями магнитного поля. В течение 11-летнего цикла лидирующее пятно в каждой паре в северном полушарии Солнца имеет одну и ту же полярность, а в южном — противоположную. В следующем цикле полярность меняется.
В максимуме цикла солнечной активности существенно возрастает светимость в радио-, ультрафиолетовом, рентгеновском и гамма-диапазонах. Однако полное энерговыделение звезды практически не изменяется.
Кривая интенсивности солнечной активности в цикле несимметрична. В среднем от минимума до максимума проходит около 4 лет, а потом в течение 7 лет активность уменьшается. Но циклы вовсе не одинаковы, они имеют разную форму кривой активности, длительность, уровень активности в минимуме и максимуме. Закономерности в изменении параметров циклов пытаются найти, но этот процесс, к сожалению, затруднен недостатком информации: данные по пятнам охватывают менее трех столетий, по магнитным полям — около века, а детальные данные наблюдений в других диапазонах спектра — всего лишь чуть более полувека.
Однако известно, что на больших промежутках времени активность Солнца претерпевает существенные изменения. Так, в так называемом минимуме Маундера (1645–1715 гг.) на Солнце практически не было пятен, а изучение косвенных данных позволяет установить, что подобные затяжные периоды слабой активности Солнца наблюдались и ранее. Существовали и периоды, когда активность Солнца в среднем была повышена.
Солнечная активность существенно изменяется на длительных временных масштабах.
Вблизи максимума активности возрастает частота появления солнечных вспышек, протуберанцев, корональных выбросов и др. Также возрастает светимость в гамма-, рентгеновском, ультрафиолетовом и радиодиапазонах. Однако полное энерговыделение Солнца при этом изменяется крайне незначительно — менее чем на 0,1 %. Тем не менее повышенная солнечная активность может весьма значительно сказываться на параметрах земной магнитосферы и даже на климате. Кроме того, высокая солнечная активность, сопровождаемая мощными вспышками и корональными выбросами, отрицательно воздействует на космические аппараты, космические и наземные сегменты систем навигации, связи и сигнализации, нарушая их работу (вплоть до полного выхода из строя).
В годы минимумов солнечной активности поток галактических космических лучей во внутренней части Солнечной системы возрастает, поскольку в годы максимумов последствия выбросов вещества Солнца препятствуют их проникновению в эту область. Космические лучи, взаимодействуя с атмосферой Земли, приводят к появлению изотопов 14C и 10Be. Анализ содержания этих изотопов в древних остатках растений и в ледовых отложениях позволяет судить о солнечной активности в далеком прошлом.
Плохое понимание причин существования 11-летнего цикла не позволяет надежно предсказывать солнечную активность более чем на несколько лет вперед.
На протяжении десятков лет продолжаются попытки научиться предсказывать солнечную активность. К сожалению, из-за плохого понимания физических механизмов солнечных процессов пока это делается только с использованием феноменологических методов. В настоящее время поведение цикла можно предсказать с достаточной точностью лишь спустя 2–3 года после его начала. При этом важным оказывается поведение Солнца во время предыдущего цикла.
1.4. Солнечные пятна, протуберанцы и все-все-все
Существует множество образований, связанных с солнечной активностью: пятна, протуберанцы, спикулы, факелы. Важную роль в структуре поверхности Солнца играют гранулы и супергранулы. Вспышки и корональные выбросы также связаны с различными активными процессами.
Поверхность (фотосфера) Солнца состоит из гранул — образований размером около 1000 км, живущих в среднем несколько минут. Своим существованием гранулы обязаны конвективным потокам, приносящим тепло из недр звезды. Центральная (светлая) часть гранулы соответствует восходящему потоку и имеет более высокую температуру. Относительно темные прожилки между гранулами соответствуют нисходящим потокам уже несколько остывшего вещества.
В середине XX в. на Солнце были обнаружены более крупные структуры — супергранулы. Как и гранулы, они связаны с конвективным переносом энергии во внешних частях Солнца.
Супергранулы имеют размеры в десятки тысяч километров и живут около суток. Их изучают, наблюдая скорости движения вещества в хромосфере Солнца.
Солнечная грануляция и сверхгрануляция возникают из-за конвективного перемешивания и переноса тепла во внешних слоях Солнца.
С конвективным переносом тепла связаны и самые известные детали на солнечном диске — пятна. Они наблюдаются как темные области размером от десятков до десятков тысяч километров. В пятнах сильные магнитные поля (достигающие в области тени — самой темной части пятна — нескольких тысяч гаусс) подавляют конвекцию, препятствуя переносу тепла снизу. В результате в области пятна поверхность Солнца имеет температуру около 3000–4000 K. Поскольку поток излучения с единичной площади пропорционален четвертой степени температуры излучающего тела, пятна выглядят намного темнее поверхности.
Крупные пятна иногда могут быть замечены даже невооруженным глазом, особенно если Солнце наблюдается сквозь дымку. Поэтому существуют десятки письменных свидетельств наблюдения пятен в дотелескопическую эпоху. Кроме того, даже после изобретения телескопа пятна успешно наблюдали с помощью камеры-обскуры. Однако именно создание оптических приборов позволило приступить к систематическому изучению этого явления. Количество пятен на протяжении сотен лет служит мерилом уровня активности Солнца.
Пятна на диске Солнца темнее окружающей поверхности, поскольку имеют более низкую температуру. Это объясняется наличием сильных магнитных полей, препятствующих конвекции.
Процесс рождения пятна связан с крупномасштабной конвекцией и занимает несколько дней, а процесс разрушения пятна связан с мелкомасштабной конвекцией и занимает несколько недель. Поэтому можно наблюдать, как группа пятен исчезает за краем Солнца, а через пол-оборота появляется из-за противоположного края. Именно такие наблюдения позволили Галилею и его современникам открыть и измерить период вращения Солнца вокруг своей оси.
Яркие факельные поля компенсируют падение светимости Солнца из-за присутствия пятен.
Активные явления на Солнце в основном возникают благодаря сильным магнитным полям, и многие образования появляются именно в области пятен, где величина полей особенно велика. Поэтому солнечные пятна — и в пространстве, и во времени — являются хорошими индикаторами солнечной активности: их количество отражает общий уровень активности, а местоположение позволяет локализовать активные области на солнечном диске. В максимуме активности наблюдается намного больше пятен, и может показаться, что полная светимость Солнца в этот момент немного падает, поскольку на нем много темных областей. Однако на самом деле это не так: наоборот, в максимуме Солнце излучает на несколько сотых долей процента больше энергии, чем в минимуме. Этот эффект связан с наличием ярких горячих областей — факельных полей.
Факельные поля состоят из небольших магнитных элементов — магнитных трубок диаметром менее 300 км и с индукцией магнитного поля около 1000 Гс (это в несколько тысяч раз сильнее магнитного поля Земли). Магнитное поле подавляет конвекцию, однако более важно, что при этом формируется узкое углубление в фотосфере. Дно его более холодное, но стенки горячие, так как к ним подводится тепло из горячих соседних областей. В результате возникает область с повышенной яркостью. Факельные поля лучше видны, если на них смотреть сбоку, и поэтому на солнечном диске они ярче видны вблизи лимба (на краю). Факельные поля часто связаны с областями солнечных пятен. Яркие факельные поля с лихвой компенсируют уменьшение светимости Солнца за счет большого количества темных пятен.
Протуберанцы могут подниматься над солнечным диском на сотни тысяч километров.
С активными областями связано и образование самых впечатляющих структур в атмосфере Солнца — протуберанцев. Существуют данные о том, что протуберанцы наблюдали во время солнечного затмения еще в XII–XIII вв. С появлением телескопов стали возможны более детальные наблюдения, однако первые несколько веков протуберанцы все равно в основном наблюдали во время затмений на краю солнечного диска. По этой причине часть астрономов связывала их не с Солнцем, а с Луной, и лишь с середины XIX в. окончательно сформировалось правильное понимание о природе протуберанцев как феномена в атмосфере Солнца. С появлением спектральных наблюдений в 1860-е гг. стало возможным наблюдать протуберанцы и вне затмений.
Протуберанцы — это аркоподобные структуры над солнечным диском, хорошо заметные на его краю. Это относительно холодные (5000–10 000 K) и плотные образования из хромосферного вещества, оказавшегося в разреженной горячей (около миллиона градусов) короне. Форма в виде арок объясняется поддерживающим действием магнитного поля. Если протуберанец проецируется на солнечный диск, то его обычно можно заметить как темное волокно при наблюдении в спектральной линии водорода Hα. Гигантские протуберанцы могут иметь размеры сотни тысяч километров.
Менее впечатляющие структуры, возвышающиеся над солнечным диском, — спикулы. Эти короткоживущие «колонны» на несколько минут поднимаются на высоту до нескольких тысяч километров, а потом разрушаются. Одновременно на Солнце существует несколько сотен тысяч таких образований.
Однако, несмотря на большое количество детальных наблюдений, происхождение многих структур на Солнце и детали их эволюции остаются во многом загадкой. Как правило, для объяснения физических механизмов активных процессов на Солнце существуют конкурирующие модели.
1.5. Солнечная корона и затмения
На снимках полного солнечного затмения вокруг темного диска Луны, заслоняющего Солнце, можно увидеть сияние короны. Корона — это самые внешние, крайне разреженные (плотность порядка 10–12 от плотности фотосферы) слои солнечной атмосферы, имеющие высокую температуру (миллионы градусов) и простирающиеся вплоть до расстояний в несколько солнечных радиусов (миллионы километров), где она постепенно переходит в солнечный ветер. Из-за низкой плотности поверхностная яркость короны невелика, и на ярком фоне дневного неба она не видна, поэтому до 1930-х гг. ее можно было наблюдать исключительно во время затмений.
В 1930-е гг. были созданы первые внезатменные коронографы, позволяющие изучать корону постоянно, а не только в редкие моменты затмений. С началом эры космических полетов появилась возможность изучать солнечную корону из космоса, где не мешает фон неба, а также можно проводить наблюдения в ультрафиолетовом и рентгеновском диапазонах, на которые приходится основное излучение горячей короны.
Солнечная корона имеет низкую плотность и высокую температуру.
Средняя температура короны составляет 1–2 млн градусов, однако во время вспышек в ней возникают области с температурой, достигающей 20–40 млн градусов. Условия в короне настолько экстремальны, что астрономы долгое время не могли идентифицировать одну из спектральных линий, открытых еще в XIX в., приписывая ее новому элементу — коронию. Лишь в конце 1930-х гг. удалось установить, что это линия железа, потерявшего 13 электронов.
Наблюдать корону можно либо во время затмений, либо с помощью специальных приборов, либо же из космоса в коротковолновых диапазонах спектра.
Излучение короны в оптическом диапазоне в основном определяется томсоновским рассеянием солнечного света на электронах, рассеянием излучения на пыли и излучением ионов в линиях. В коротковолновом диапазоне основной вклад дают свободно-свободные переходы (так называемое тормозное излучение), а также, возможно, некоторый вклад вносит комптоновское рассеяние на горячих электронах. На корону приходится лишь около одной миллионной доли всего излучения, испускаемого Солнцем, в основном в ультрафиолете и рентгеновском диапазоне, однако корона является мощным источником радиоизлучения.
Вид короны зависит от уровня солнечной активности.
Корона обладает сложной, постоянно меняющейся структурой. Во многом это связано с магнитными полями, конфигурация которых изменяется со временем. Ионизированное вещество движется вдоль магнитных силовых линий. При этом в нижней короне (до высоты в сотни тысяч километров) именно давление магнитного поля является определяющим — там поле полностью контролирует поведение плазмы.
В короне возникают структуры самых разных масштабов. Современные наблюдения позволяют изучать образования размером в сотни километров и более. На разных этапах 11-летнего цикла солнечной активности корона имеет различный вид: в годы максимумов она более симметрична, а во время минимумов корональные структуры в основном сконцентрированы вблизи солнечного экватора, где обычно больше активных областей, а значит, и солнечных пятен.
Наблюдения, проведенные с помощью приборов спутника Yohkoh (1991–2005), позволили изучить структуры и магнитные поля солнечной короны и проследить их эволюцию на протяжении солнечного цикла. Получены прямые данные о пересоединении магнитных полей («замыкании» противоположно направленных силовых линий поля), что приводит к выделению энергии (излучению и нагреву вещества) и ускорению частиц. В настоящее время существует несколько космических проектов, в задачи которых входит изучение структур и процессов в солнечной короне.
Особый интерес представляют корональные дыры и корональные выбросы. Корональные дыры — это области открытых силовых линий магнитного поля, плазма из которых истекает наружу. Температура в корональной дыре падает ниже миллиона градусов, поэтому (а также из-за понижения плотности) в ультрафиолетовых и рентгеновских лучах такая область короны выглядит более темной (существенно, что корональные дыры часто видны как темные области именно в проекции на солнечный диск). Также корональные дыры хорошо заметны при наблюдениях в некоторых спектральных линиях, формирующихся в короне. Можно сказать, что в периоды низкой солнечной активности обе приполярные области являются гигантскими корональными дырами. В годы высокой активности, когда корона обладает большей сферической симметрией, дыры могут возникать на любых широтах. Истекая из корональных дыр, электроны и ионы формируют быструю компоненту солнечного ветра.
Корональные дыры являются одним из основных источников солнечного ветра.
Солнечный ветер — это поток плазмы, истекающий от Солнца. Для Солнца это небольшая потеря (лишь около одной миллиардной доли полной массы за 40 000 лет), но поток заряженных частиц может оказывать серьезное воздействие на тела Солнечной системы — именно он несет ответственность за полярные сияния и появление хвостов у комет. Выделяют две компоненты солнечного ветра: быстрый ветер (со скоростью 700–800 км/с) и медленный (400 км/с). Обе компоненты зарождаются в солнечной короне.
Корональные выбросы вещества впервые наблюдали в начале 1970-х гг. с помощью приборов спутника OSO-7 (Orbiting Solar Observatory). В основном выбрасывается вещество нижней короны. В момент возникновения будущий выброс имеет размер около 10 000 км, что соответствует размеру петли коронального магнитного поля (часто выбросы связаны с так называемыми шлемовидными стримерами — крупными, хорошо заметными петлевидными образованиями, чья форма напоминает прусские военные шлемы). Такие события наблюдаются достаточно часто, и на сегодняшний день зафиксировано более 10 000 корональных выбросов.
Корональные выбросы делят на два основных типа. Так называемые нормальные выбросы похожи на поднимающийся протуберанец с ярким ядром внутри петли (иногда это яркое ядро отсутствует). В них выделяют три части: яркую наружную петлю, темную полость сразу под ней и яркую область ниже. Второй тип выброса имеет вид узкой струи, они обычно связаны с корональными дырами.
Корональные выбросы оказывают большое влияние на космическую погоду.
Типичная масса выброса составляет 1011–1014 кг, около 15 % выбросов имеет меньшие массы. Типичные скорости составляют сотни километров в секунду, но иногда могут отличаться на порядок (в 10 раз) в большую или меньшую сторону. Энергетика выбросов составляет порядка 1029–1032 эрг (1022–1025 Дж), что сравнимо с энергиями солнечных вспышек. Нередко вспышки и выбросы происходят одновременно. Однако корональные выбросы могут быть не связаны со вспышками, и, наоборот, вспышки не обязательно сопровождаются выбросом. Выбросы также хорошо коррелируют с появлением волокон (протуберанцев), которые могут становиться яркими ядрами корональных выбросов. По темпу появления выбросов можно судить об этапе солнечного цикла: в минимуме выбросы появляются раз в несколько дней, а в максимуме — несколько раз в день. Корональные выбросы являются одним из определяющих факторов в так называемой космической погоде, они оказывают серьезное влияние на состояние межпланетной плазмы, магнитосферы планет, а также, разумеется, на работоспособность космических аппаратов.
Появление корональных выбросов коррелирует с общим уровнем солнечной активности.
Детали происхождения корональных выбросов остаются предметом споров. Однако очевидно, что основным источником энергии для большинства вспышек является магнитное поле.
В механизме нагрева короны и эволюции корональных структур остается много нерешенных проблем.
Долгое время нерешенным оставался вопрос о нагреве солнечной короны до высоких температур, в сто раз превосходящих температуру хромосферы и в сотни раз — температуру поверхности. Спутниковые наблюдения прояснили многие аспекты, однако в деталях этот вопрос до сих пор не решен. Тем не менее понятно, что основную роль играют магнитогидродинамические волны (волны в плазме, для существования которых важно присутствие магнитных полей), приносящие энергию от поверхности Солнца. Большое значение в механизме нагрева имеют также магнитные поля, простирающиеся от фотосферы до короны. Наблюдения показывают, что самые горячие области короны обычно связаны со структурами магнитного поля.
Несмотря на обилие космических аппаратов и наземных внезатменных коронографов актуальными остаются и наблюдения короны во время полных солнечных затмений. В частности, речь идет о спектрографии высокого разрешения (в первую очередь в линиях ионизованного железа) и поляриметрических наблюдениях в видимом и ближнем инфракрасном диапазонах. На спутниках наблюдения обычно проводятся в ультрафиолетовом и более коротковолновых диапазонах спектра. Вне затмений наземные коронографы не позволяют получать данные достаточно высокого качества, охватывающие одновременно всю корону. Поэтому «погоня за затмениями» все еще остается актуальным занятием для астрономов, изучающих солнечную корону. Альтернативой этому была бы установка достаточно крупных инструментов, работающих в видимом и ИК-диапазонах на спутниках. Причем лучше, если орбита спутников будет позволять регулярно видеть затмения Солнца Луной (искусственное затмение не позволяет получать часть данных в требуемом качестве). Пока же только наземные наблюдения во время затмений позволяют разом изучать структуру короны от края диска до нескольких радиусов Солнца в диапазоне длин волн от 300 нм до нескольких микрометров. Причем важно проводить многократные наблюдения, поскольку структура короны постоянно меняется, в том числе и в зависимости от уровня солнечной активности.
1.6. Гелиосейсмология
Гелиосейсмология — молодая область исследований, позволяющая изучать внутреннее строение Солнца по наблюдению колебаний его внешних слоев. Процессы во внешней части конвективной оболочки порождают волны, распространяющиеся внутрь. Солнце в ответ на эти возмущения ведет себя как резонирующая полость (для упрощения попробуйте представить себе, что по резонирующей полости не бьют, а сыпят на нее песок). На определенной глубине происходит отражение волны, она возвращается во внешние слои и порождает наблюдаемые колебания. Анализ этих колебаний на разных частотах и пространственных масштабах позволяет восстановить свойства солнечных недр на всех глубинах конвективной оболочки, в лучистой зоне и даже в ядре, где идут термоядерные реакции!
Гелиосейсмология изучает внутреннюю структуру Солнца с помощью анализа колебаний его поверхности.
Наблюдаемые волны возбуждаются турбулентной конвекцией в приповерхностном слое, где скорость этого процесса наиболее высока. Однако в деталях механизма генерации волн остается немало неясностей. Волна, возбужденная вблизи поверхности, начинает распространяться внутрь со скоростью звука. Скорость звука в среде растет по мере погружения вглубь Солнца, поэтому на некоторой глубине волна отражается и движется обратно к поверхности. Поверхность также отражает волны, но по другой причине — из-за скачка плотности. В результате волны оказываются «запертыми».
Существует три основных типа волн. Во-первых, это собственно акустические волны — p-волны (p — pressure, давление). Они в основном присутствуют в конвективной оболочке и верхней части лучистой зоны. Во-вторых, g-волны (g — gravity), для которых важна архимедова сила. Этот тип колебаний в основном сконцентрирован в недрах Солнца, под конвективной зоной, поэтому наблюдать их очень сложно. Наконец, есть просто поверхностные гравитационные волны (не путать с гравитационными волнами в общей теории относительности!), которые обозначают буквой f. Чаще всего обсуждаются акустические p-волны.
Колебания поверхностных слоев измеряются по доплеровскому сдвигу при наблюдениях в спектральных линиях. Впервые это было обнаружено в начале 1960-х гг. Лейтоном и его соавторами (Robert Leighton, Robert Noyers, George Simon). Эти ученые открыли пятиминутные колебания Солнца (названы по продолжительности их периода) с амплитудой скорости несколько сотен метров в секунду и пространственными масштабами порядка тысяч километров. Это самые заметные вертикальные колебания атмосферы Солнца.
Волны возбуждаются вблизи поверхности Солнца турбулентной конвекцией.
Дальнейшие исследования показали, что наблюдаемые осцилляции с периодом около 5 минут — это стоячие акустические волны. Сейчас обнаружены колебания с периодами от 3 до 55 минут. Для их существования должно выполняться условие, сводящееся к комбинации длины волны (в горизонтальном направлении) и ее частоты. По сути, удается построить зависимость скорости звука от глубины.
Типичные периоды наблюдаемых колебаний Солнца составляют от нескольких минут до часа.
На распространение акустических волн влияют магнитные поля. Во-первых, они меняют параметры среды, изменяя и скорость звука. Во-вторых, поскольку вещество Солнца ионизовано, колебания среды с магнитным полем могут приводить к возникновению магнитогидродинамических волн. Из-за этого энергия акустических волн переходит в энергию волн магнитогидродинамических. К тому же магнитные поля могут оказывать влияние и на само возникновение волн, а не только на их распространение. Все это позволяет получать данные о магнитных полях в рамках гелиосейсмологических исследований. Правда, зачастую результаты оказываются зависимыми от выбранных моделей.
Кроме того, на колебания влияет вращение Солнца. В результате оказывается возможным определить, как меняется скорость вращения с глубиной на разных широтах. Также удается получать данные о крупномасштабных потоках вещества в недрах Солнца (например, связанных с конвекцией).
Гелиосейсмологические данные играли важную роль в решении проблемы солнечных нейтрино. Именно анализ данных о солнечных колебаниях позволил подтвердить стандартную модель Солнца, показав, что решение проблемы должно быть связано со свойствами нейтрино, а не с неизвестными отклонениями от модели строения звезды.
Разные волны проникают на разную глубину, что позволяет определять условия в недрах Солнца.
Именно гелиосейсмологические данные позволили достаточно точно определить положение так называемой тахолинии — границы между лучистым ядром и конвективной оболочкой. Она залегает на глубине около 0,3 радиуса Солнца. В этом месте резко изменяется значение скорости звука. Видимо, именно эта область играет ключевую роль в работе солнечного динамо — в генерации (усилении) магнитного поля. Вообще же анализ p-мод (мода — тип колебаний) колебаний Солнца позволяет изучать его структуру от самых глубин (0,05 радиуса) до внешних слоев.
Анализ p-мод колебаний позволяет изучать структуру Солнца на глубине от 0,05 до 0,96 радиуса.
Кроме того, гелиосейсмологические данные помогают оценить содержание гелия в конвективной оболочке. Присутствие гелия меняет среднюю молекулярную массу вещества, что, в свою очередь, сказывается на скорости звука. Такие данные весьма важны, поскольку помогают определить начальное содержание гелия в Солнце.
Начиная с запуска спутника SOHO (Solar and Heliospheric Observatory — Солнечная и гелиосферная обсерватория) в 1995 г., основной поток гелиосейсмологических данных получают с помощью космических аппаратов (в настоящее время это в первую очередь спутник SDO — Solar Dynamics Observatory). Однако и наземные наблюдения тоже вносят свой вклад.
Для нужд гелиосейсмологии активно используют спутниковые наблюдения.
Кроме подходов, связанных с изучением глобальных мод солнечных осцилляций, позволяющих анализировать общие, стабильные на заметных временных интервалах характеристики Солнца, существует так называемая локальная гелиосейсмология. Задачей этого подхода является исследование структур под солнечной поверхностью на относительно небольших пространственных и временных масштабах.
Волны могут распространяться вглубь Солнца по разным траекториям. На некоторой глубине произойдет отражение волны и ее возврат к поверхности, которая, в свою очередь, снова отразит волну, начав новый цикл. Испущенные в одной точке, но идущие по разным траекториям волны будут отражаться на разной глубине, а потому и на поверхность выйдут на разных расстояниях от точки генерации. Волна, распространяющаяся под небольшим углом к поверхности, отразится на меньшей глубине и выйдет на поверхность ближе к точке старта. Волна, уходящая вглубь почти по радиусу, до отражения может проникнуть глубже в недра Солнца и вернется к поверхности далеко от места генерации. Обработка данных дает возможность определить, сколько времени требуется волне для распространения от одной точки поверхности до другой. Из одной точки в другую волна может попасть разными путями: распространяясь вблизи поверхности и совершив много циклов отражения или совершив один цикл с отражением на большей глубине. При этом чем глубже уйдет волна, тем быстрее она проделает свой путь (на большей глубине скорость звука выше!). Измерение времени распространения в зависимости от пройденного пути, в свою очередь, позволяет решить обратную задачу по определению параметров в недрах (прямой задачей был бы расчет наблюдаемой картины при известных параметрах недр).
Такая методика позволила, в частности, обнаружить крупномасштабные подповерхностные потоки вещества, существующие вокруг активных областей. Локальная гелиосейсмология также позволила выяснить структуру подповерхностных потоков вещества в областях супергранул и под солнечными пятнами.
Локальная гелиосейсмология позволяет изучать внутреннюю структуру в локализованных областях, таких как пятна и супергранулы.
Подобно тому как недра Земли удается «просветить» благодаря мощным землетрясениям или подземным ядерным взрывам, недра Солнца зондируются сейсмическими волнами, возникающими при очень мощных солнечных вспышках. Это также входит в сферу интересов (и методов) гелиосейсмологии.
Дальнейшим развитием методов, разработанных для изучения Солнца, стала астросейсмология, но в этом случае изучаются колебания других звезд. Хотя мы не видим звездные диски в деталях, благодаря спутниковым наблюдениям (с помощью аппаратов CoRoT, MOST, Kepler) удается получать данные о колебаниях звезд (и обычных, и гигантов). Эти данные помогли существенно пополнить запас наших знаний о структуре и эволюции звезд.
1.7. Солнечные вспышки и их опасность
В 1859 г. впервые наблюдалась солнечная вспышка, которая до сих пор считается самой мощной из всех достоверно известных. Ее называют событием Каррингтона, в честь английского астронома-любителя Ричарда Каррингтона (Richard Carrington), который (как и Ричард Ходжсон (Richard Hodgson)) заметил яркую белую вспышку на Солнце, произошедшую 1 сентября 1859 г. Это был период высокой солнечной активности, с 28 августа по 2 сентября на Солнце были отмечены крупные группы солнечных пятен. Вспышка сопровождалась корональным выбросом, который достиг Земли 2 сентября (для этого ему понадобилось чуть менее 18 часов, т. е. скорость его составила более 2300 км/с). В результате были отмечены сильные магнитные возмущения, полярные сияния наблюдались даже на низких широтах (например, на Кубе), и функционирование телеграфных сетей было серьезно нарушено.
Самая мощная из достоверно известных солнечных вспышек наблюдалась в 1859 г.
С тех пор столь мощные вспышки, сопровождаемые гигантскими корональными выбросами, не были зарегистрированы (возможно, сравнимое событие произошло на Солнце в июле 2012 г., но выброс вещества не попал в Землю). Однако анализ отложений в ледяных кернах, а также изучение годичных колец деревьев позволяют аргументированно предположить, что мощные солнечные вспышки происходили и ранее (например, в I тыс. н. э.). Как бы то ни было, и в наше время солнечные вспышки являются самыми мощными транзиентными (т. е. происходящими время от времени) явлениями в Солнечной системе. Такие события являются потенциально опасными, поскольку они способны оказывать губительное влияние (в том числе необратимое) на электрические и электронные системы и устройства, наземную инфраструктуру и космические аппараты.
Основное излучение испускается вспышкой в хромосфере в видимом, ИК — и УФ-диапазонах электромагнитного спектра. Кроме того, несколько процентов энергии вспышки может уходить в рентгеновский диапазон. Радиосветимость Солнца (на этот диапазон обычно приходится крайне малая доля полной светимости) может во время вспышки возрастать на несколько порядков. Наконец, значительная энергия переходит в движение вещества и в ускорение частиц (последнее наблюдается в том числе по увеличению числа солнечных космических лучей и падению числа галактических космических лучей — так называемый эффект Форбуша).
Максимальная энергия хорошо изученных солнечных вспышек составляет более 1032 эрг (1025 Дж). Основная классификация вспышек по энергетике основана на потоке рентгеновского излучения от них и включает пять групп: А (самые слабые), затем В, С, М и Х (самые мощные). Внутри группы мощность обозначается цифрами. Так, С1 в 10 раз мощнее В1, а Х4 в два раза мощнее вспышки Х2. При этом мощность коронального выброса, а также светимость в видимом диапазоне лишь в среднем коррелируют с параметрами рентгеновского излучения. Самые мощные из наблюдавшихся за последние десятилетия (когда стали доступны прямые рентгеновские наблюдения и другие способы детального изучения вспышек) имеют обозначения > Х20. Например, вспышка, которой приписывают класс Х28, наблюдалась 4 ноября 2003 г., а событие Каррингтона предположительно можно оценить как вспышку класса X40–X45, хотя, конечно, точно восстановить энергетику этого события невозможно по причине отсутствия достоверных данных (рентгеновских наблюдений в то время не существовало).
Максимальная энергия известных солнечных вспышек составляет чуть более 1032 эрг.
Типичная длительность основной фазы вспышки составляет несколько минут. В это время наблюдается излучение в жестком рентгеновском диапазоне (тормозное излучение), а также в радиодиапазоне (гиросинхротронное излучение). Примерно в это же время происходит и мощная вспышка в видимом диапазоне (подобная той, что наблюдали Каррингтон и Ходжсон). Вещество начинает двигаться наружу, попадая в солнечную корону. Там оно постепенно (на протяжении десятков минут) остывает, излучая в мягком рентгеновском, жестком ультрафиолетовом и, наконец, видимом диапазонах. В случае мощных вспышек заброс вещества в верхние слои приводит к появлению коронального выброса. Чем мощнее вспышка, тем больше вероятность того, что она сопровождается выбросом.
Слабых вспышек, разумеется, больше, чем мощных. Однако их число с уменьшением энергии вспышки растет не очень быстро (дифференциальный рост числа вспышек в малом интервале энергий происходит медленнее, чем спадает квадрат энергии: dN/dE ~ E-α, где α < 2). Эта зависимость, построенная по данным наблюдений, тянется от энергий, превосходящих 1032 эрг, до энергии менее чем 1024 эрг. В результате оказывается, что в мощных вспышках суммарно выделяется немного больше энергии, чем в слабых. В частности, это означает, что слабые вспышки не могут являться эффективным механизмом нагрева солнечной короны.
Вспышки чаще происходят вблизи максимумов солнечной активности, поскольку места локализации этих событий связаны с активными областями на Солнце (крайне редко вспышки классов М и Х происходят в местах, где нет крупных пятен). Нередко мощные вспышки связаны с эруптивными протуберанцами, которые приводят к выбросам вещества. Однако зависимость числа вспышек от уровня активности слабее, чем для числа пятен. В минимумах количество вспышек падает не столь сильно, как количество активных областей.
Вспышки коррелируют с другими типами солнечной активности.
Мощные вспышки порождают динамические процессы в солнечной атмосфере. Одним из наиболее впечатляющих феноменов являются так называемые мортоновские волны, получившее свое имя в честь Гейла Мортона (Gail Moreton), который вместе с коллегами открыл и изучил их в конце 1950-х гг. Это явление получило также колоритное название «солнечные цунами»: в результате вспышки крупномасштабная ударная волна в короне порождает движение в более низких слоях. Мортоновские волны наиболее хорошо наблюдаются в хромосфере в спектральных линиях (например, в Hα), их скорость составляет около 1000 км/с. Вспышка также вызывает сейсмические волны во внешних слоях Солнца.
Во время вспышки выделяется энергия, запасенная в магнитном поле. В механизме этого процесса остается пока много неясного.
Источником энергии вспышек является магнитное поле, сосредоточенное в основном в солнечной короне. В области пересоединения температура может возрастать до десятков миллионов градусов. Кроме того, частицы ускоряются до высоких энергий, достигающих несколько мегаэлектронвольт. К сожалению, микрофизика начала вспышек остается за пределами наблюдательных возможностей, поэтому для построения моделей в основном используются глобальные свойства вспышек, что приводит к неопределенностям в теоретических сценариях. При компьютерном моделировании одной из проблем является невозможность охватить в расчетах очень разные масштабы: от относительно небольших в фотосфере до очень больших в короне, куда уходят магнитные поля. Соответственно, в физике солнечных вспышек есть ряд нерешенных вопросов. А это, в свою очередь, не позволяет прогнозировать появление сильных вспышек с достаточной точностью.
Вспышки и сопровождающие их выбросы представляют опасность для приборов и людей на космических аппаратах, находящихся за пределами земной магнитосферы. При разработке кораблей для межпланетных пилотируемых полетов даже обсуждаются специальные защитные помещения, позволяющие переждать периоды повышенной радиации, когда аппарат попадает в зону влияния коронального выброса. Кроме того, увеличенная светимость Солнца в жестком УФ-диапазоне во время возросшей активности служит причиной разогрева верхних слоев земной атмосферы (так называемой термосферы). В результате этого космические аппараты на низких околоземных орбитах тормозятся о «вспухшую» атмосферу и без корректировки могут даже преждевременно сойти с орбиты (наиболее известной иллюстрацией является американская орбитальная станция Skylab «Небесная лаборатория»).
Мощные вспышки часто сопровождаются корональными выбросами вещества. Попадание выброса в Землю приводит к сильным магнитным бурям, полярным сияниям и сбоям электронных систем.
Вспышка 13 марта 1989 г. привела к отключению систем электроснабжения в Канаде (влияние вспышек наиболее велико вблизи магнитных полюсов Земли). Событие относилось к классу Х5–Х15, т. е. это одна из самых мощных вспышек за историю серьезных наблюдений. Кроме того, она сопровождалась мощным корональным выбросом в сторону Земли. С тех пор были сделаны соответствующие выводы, что привело к изменениям в устройстве систем электропередач, трубопроводов и другой наземной инфраструктуры.
Данные наблюдений показывают, что звезды типа Солнца могут порождать мощные вспышки.
Могут ли на Солнце происходить гораздо более мощные вспышки? Есть косвенные данные по анализу содержания изотопов в образцах различных возрастов. Они свидетельствуют в пользу того, что наша звезда может давать вспышки на порядок-два мощнее известных, и происходит это примерно раз в 1000 лет. Более подробную статистику удается собрать, наблюдая звезды, похожие на Солнце.
Наилучшую статистику удалось собрать по результатам работы спутника Kepler («Кеплер»), который изучал более 100 000 звезд с целью поиска экзопланет транзитным методом. Мощные вспышки проявляют себя как увеличение яркости звезды. Среди звезд, исследованных Kepler, есть немало объектов, похожих на Солнце как по массе, так и по другим параметрам. Среди этих параметров особое значение имеет темп вращения: чем быстрее вращается звезда, тем выше ее активность.
Возможно, примерно раз в 1000 лет на Солнце происходят вспышки в десятки раз мощнее, чем те, которые наблюдались за последние пару веков.
Наблюдения показали, что на звездах вроде Солнца вспышки с энергией 1034 эрг происходят раз в 800 лет, а 1035 эрг — раз в 5000 лет. Однако есть еще несколько вопросов, которые пока не имеют четкого ответа. По всей видимости, для мощной вспышки необходимо в одной области сформировать очень большое магнитное поле, чтобы получить большой магнитный поток. Этот процесс требует времени. По оценкам, для подготовки к вспышке с мощностью 1035 эрг на Солнце потребуется около 40 лет, а это больше продолжительности солнечного цикла. Поэтому в настоящее время представляется маловероятным, что Солнце в его современном состоянии может производить вспышки с энерговыделением более 1034 эрг (а это почти в сто раз больше вспышек Х20–Х30). Но даже вспышки таких энергий потенциально опасны для различной техники.
Очень важно понимать, что столь мощная вспышка не может произойти «на пустом месте». Потребуется время для роста активной области, а кроме того, наибольшая опасность связана с мощным корональным выбросом, а он может пройти мимо Земли. Поэтому, несмотря на то что мощные вспышки представляют вполне реальную опасность, они, по всей видимости, являются наибольшей угрозой для технических устройств, происходят относительно редко и к ним можно успеть подготовиться.
1.8. Эволюция Солнца и жизнь на Земле
Солнце — очень стабильный саморегулирующийся объект. Гравитация уравновешена давлением, связанным с выделением энергии в недрах. При увеличении энерговыделения Солнце немного расширилось бы, что привело бы к падению плотности и температуры в недрах, а тем самым и к падению энерговыделения. Если же, наоборот, энерговыделение уменьшилось, то Солнце бы немного сжалось, увеличив в центральных частях температуру и плотность, стимулируя тем самым термоядерный синтез.
Энергия передается из недр наружу очень медленно, весь процесс занимает многие десятки тысяч лет. Поэтому внезапное временное исчезновение источника энергии в центре сказалось бы на внешних слоях не сразу. Это добавляет стабильности на коротких временных масштабах.
Более того, даже если бы вдруг термоядерные реакции полностью прекратились, резких изменений не произошло бы даже за миллион лет. Это связано с тем, что Солнце обладает дополнительным источником энергии: просто сжимаясь, оно может поддерживать светимость на текущем уровне на протяжении примерно 30 млн лет (это так называемое время Кельвина — Гельмгольца). Разумеется, Солнце не оставалось бы весь этот период абсолютно неизменным: оно становилось бы меньше, изменялись бы его температура и светимость. Однако такая простая оценка показывает, что серьезные изменения нашей звезды возможны лишь на очень большом временнóм масштабе.
Солнце — очень стабильный источник излучения как на коротких, так и на длительных временных масштабах.
Иногда это характерное время называют ядерным, оно соответствует существенному исчерпанию водорода в ядре Солнца. Полное время жизни Солнца составляет около 12 млрд лет, и более 80 % этого времени оно проводит на Главной последовательности, «пережигая» водород в гелий. Это стабильное состояние, однако небольшие изменения происходят с Солнцем и в этот период. Поскольку условия для существования жизни на Земле заданы достаточно жестко, даже небольшие изменения параметров Солнца на масштабе миллиард лет могут иметь серьезные последствия.
Самым главным вопросом в контексте долговременной эволюции и появления жизни на Земле является так называемый парадокс тусклого молодого Солнца. В 1950-е гг. стало окончательно ясно, что светимость Солнца на стадии Главной последовательности возрастает. Ключевые работы на эту тему опубликовали в 1958 г. Фред Хойл (Fred Hoyle) и Мартин Шварцшильд (Martin Schwarzschild). Сейчас мы знаем, что к моменту окончательного формирования Земли солнечная светимость составляла около 70 % от современной. В 1961 г. Альфред Рингвуд (Alfred Ringwood) отметил, что этот факт должен существенно влиять на ранний климат Земли. В 1972 г. Карл Саган (Carl Sagan) и Джордж Мулен (George Mullen) сделали эту проблему широко известной. В 1975 г. с легкой руки Роджера Ульриха (Roger Ulrich) появился сам термин «парадокс тусклого молодого Солнца» (faint young Sun paradox).
4,5 млрд лет назад светимость Солнца составляла 70 % от современной.
Проблема заключается в том, что у нас есть надежные данные о существовании жидкой воды на поверхности Земли миллиарды лет назад. Однако добиться этого при столь низкой светимости Солнца непросто. Обсуждались самые разные гипотезы, но на сегодняшний день однозначного решения нет. Большинство исследователей склоняется к тому, что причиной теплого климата 3–4 млрд лет назад был парниковый эффект. Наиболее подходящими парниковыми газами считаются метан, углекислый газ и аммиак.
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других