1. Книги
  2. Прочая образовательная литература
  3. Сергей Баранов

Общие вопросы физиологии человека

Сергей Баранов
Обложка книги

Книга «Общие вопросы физиологии человека» посвящена принципам работы организма. Рассмотрены ключевые аспекты: функционирование нервной, эндокринной, сердечно-сосудистой, дыхательной, пищеварительной и других систем. Автор объясняет механизмы регуляции процессов, адаптацию к условиям среды и взаимодействие систем для поддержания гомеостаза. Издание предназначено для широкого круга читателей и специалистов в области медицины, биологии и смежных наук.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Общие вопросы физиологии человека» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА

В нашем организме нервная система играет ключевую роль. Она делится на две основные части: периферическую — это нервные волокна и узлы, и центральную — это спинной и головной мозг.

Основные функции ЦНС

Центральная нервная система (ЦНС) — это главный дирижер нашего организма. Она контролирует все наши системы, приспосабливаясь к изменениям окружающей среды и нашим внутренним потребностям.

У высших животных, включая нас, людей, главной частью ЦНС является кора больших полушарий мозга. Она управляет самыми сложными аспектами нашей жизни, такими как мысли, чувства, речь и память.

Методы исследования функций ЦНС постоянно улучшаются. Это включает удаление и раздражение (на пациентах и животных), регистрацию электрических сигналов и изучение условных рефлексов.

Новейшие методики позволяют нам лучше понять мозг. Компьютерная томография помогает видеть изменения в его структуре и функциях. Инфракрасная тепловая съемка показывает активность различных участков мозга. А изучение магнитных колебаний открывает новые понимания его работы.

Функции и взаимодействие нейронов

Кирпичиками, из которых строится нервная система, являются нейроны, другими словами — нервные клетки.

Нейроны: основные архитекторы передачи информации

Нервные клетки, или нейроны, играют важную роль в нашем организме. Они передают сигналы от одной части тела к другой, позволяя им взаимодействовать. Внутри нейронов происходят различные процессы обработки информации, которые определяют наши реакции на внешние и внутренние стимулы.

Нейроны выполняют три основные функции: принимают входные сигналы, обрабатывают их и передают дальше. Для этого у них есть особые структуры: дендриты, которые получают сигналы, и аксоны, через которые сигналы передаются дальше. Начальный сегмент аксона и аксональный куполок играют ключевую роль в передаче нервных импульсов.

Вот как примерно выглядит весь процесс: дендриты собирают информацию, аксон передает эту информацию другим нейронам или к исполнительным органам, таким как мышцы или железы. Именно благодаря этим процессам мы можем реагировать на окружающий мир и поддерживать работу организма.

Разнообразие нейронов

Среди нейронов есть три важные группы: афферентные, эфферентные и промежуточные. Афферентные нейроны, также известные как чувствительные или центростремительные, передают информацию от рецепторов к Центральной Нервной Системе (ЦНС). Их тела располагаются в спинномозговых узлах и узлах черепных нервов, а их длинные дендриты контактируют с рецепторами на периферии. Аксон афферентных нейронов входит в спинной мозг через задние рога.

Эфферентные нейроны, также известные как центробежные, передают информацию от верхних слоев нервной системы к нижним или от ЦНС к органам-исполнителям. Они имеют разветвленную сеть коротких дендритов и один длинный аксон.

Промежуточные нейроны, или интернейроны, обеспечивают связь между различными нейронами, включая афферентные и эфферентные. Они передают нервные сигналы как в горизонтальном (например, в пределах одного сегмента спинного мозга), так и в вертикальном направлении (например, между разными сегментами спинного мозга). Благодаря многочисленным ветвям своего аксона, промежуточные нейроны способны одновременно приводить в состояние возбуждения большое количество других нейронов.

Эксцитация и ингибиция на уровне синапсов

Синапсы играют ключевую роль в передаче сигналов между нейронами. Существует два основных типа синапсов: возбуждающие (эксцитационные) и тормозящие (ингибиторные).

Возбуждающие синапсы способствуют передаче электрических импульсов от одного нейрона к другому. Когда возбуждающий сигнал достигает синапса, он вызывает деполяризацию постсинаптической мембраны, что повышает вероятность генерации нового импульса.

Тормозящие синапсы, наоборот, уменьшают вероятность генерации импульса. При поступлении ингибирующего сигнала происходит гиперполяризация постсинаптической мембраны, что снижает её возбудимость.

Баланс между эксцитацией и ингибицией важен для нормального функционирования нервной системы. Нарушение этого баланса может привести к различным неврологическим расстройствам, таким как эпилепсия, депрессия и шизофрения.

Таким образом, понимание механизмов эксцитации и ингибиции на уровне синапсов позволяет глубже разобраться в работе мозга и найти подходы к лечению неврологических заболеваний.

Взаимодействие между нейронами и эффекторными органами происходит через особые структуры, называемые синапсами (от греч. «контакт»). Эти структуры формируются на концах отростков нейронов, которые соединяются с телом или отростками других нейронов. Чем больше синапсов на поверхности нервной клетки, тем чувствительнее она к различным стимулам и тем больше её влияние на функции организма. Особенно много синапсов в высших отделах нервной системы, где нейроны выполняют наиболее сложные функции.

Анатомия синапса включает три основных компонента:

— Пресинаптическая мембрана, образующаяся за счёт утолщения мембраны конечного отростка аксона.

— Синаптическая щель, представляющая собой промежуток между нейронами.

— Постсинаптическая мембрана, утолщённая поверхность следующего нейрона.

Во многих случаях передача сигнала от одного нейрона к другому происходит через химические реакции. В предсинаптической области контакта находятся маленькие пузырьки, содержащие вещества, называемые медиаторами или посредниками. Среди них могут быть ацетилхолин (в некоторых клетках спинного мозга и вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон и в гипоталамусе), а также различные аминокислоты и другие вещества. Когда нервные импульсы достигают окончаний аксонов, синаптические пузырьки высвобождают медиаторы, которые попадают в синаптическую щель.

Существуют два типа синапсов: возбуждающие и тормозящие. Возбуждающие синапсы активируются, когда медиаторы, такие как ацетилхолин, связываются с особыми макромолекулами постсинаптической мембраны, вызывая её деполяризацию. Это проявляется в кратковременном (около 1 мс) изменении мембранного потенциала в сторону деполяризации, известном как возбуждающий постсинаптический потенциал (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг критического порога, который обычно составляет не менее 10 мВ. Действие медиатора быстро заканчивается (через 1—2 мс), после чего он либо разлагается на неактивные компоненты (например, ацетилхолин разлагается ферментом холинэстеразой на холин и уксусную кислоту), либо реабсорбируется обратно предсинаптическими окончаниями (например, норадреналин).

В тормозных синапсах содержатся медиаторы, которые вызывают тормозные реакции, например, гамма-аминомасляная кислота. Эти медиаторы воздействуют на постсинаптическую мембрану, усиливая выход ионов калия из клетки и увеличивая поляризацию мембраны. Это приводит к кратковременному изменению мембранного потенциала в сторону гиперполяризации, известному как тормозящий постсинаптический потенциал (ТПСП). В результате нервная клетка подавляется, и для её стимуляции требуется больше усилий, чтобы достичь критического уровня деполяризации.

Возникновение импульсного ответа нейрона

На поверхности тела и дендритов нервной клетки находятся как возбуждающие, так и тормозящие синапсы. В разные моменты времени некоторые из них могут быть неактивны, тогда как другие оказывают воздействие на соседние участки мембраны. Изменение общего мембранного потенциала нейрона происходит в результате сложного взаимодействия (интеграции) локальных возбуждающих постсинаптических потенциалов (ВПСП) и тормозящих постсинаптических потенциалов (ТПСП), которые вызываются всеми активированными синапсами.

Когда одновременно действуют возбуждающие и тормозящие синапсы, их эффекты складываются или вычитаются. Нейрон возбудится только в том случае, если сумма возбуждающих постсинаптических потенциалов окажется выше суммы тормозящих, превышая определенный порог (примерно 10 мВ). Только тогда возникает действительный потенциал действия клетки.

Важно отметить, что возбудимость нейрона зависит от его размера: чем меньше клетка, тем выше ее возбудимость.

С появлением действительного потенциала действия начинается передача нервного импульса вдоль аксона к следующему нейрону или рабочему органу. Так реализуется эффекторная функция нейрона. Нервный импульс является основным средством коммуникации между нейронами.

Таким образом, передача информации в нервной системе осуществляется двумя механизмами: электрическим (ВПСП, ТПСП, действительный потенциал действия) и химическим (медиаторы).

Особенности функционирования нервных центров

Свойства нервных центров тесно связаны с передачей нервных импульсов через синапсы, которые соединяют различные нервные клетки.

Особенности передачи возбуждения через нервные центры

Нервный центр — это совокупность нервных клеток, необходимых для выполнения определенной функции. Эти центры реагируют на внешние раздражители от связанных с ними рецепторов соответствующими рефлекторными реакциями. Клетки нервных центров также могут отвечать на раздражители в крови (гуморальные влияния). В организме деятельность нервных центров строго согласована и координирована.

Передача возбуждения от одного нейрона к другому через синапс в большинстве случаев происходит химическим путем с использованием медиатора. Медиатор содержится только в пресинаптической части синапса и отсутствует в постсинаптической мембране. Поэтому передача нервного импульса возможна только в одном направлении — от пресинаптической мембраны к постсинаптической, а обратное направление невозможно. В рефлекторной дуге нервные импульсы движутся от афферентных нейронов к вставочным, а затем к эфферентным нейронам.

Важной особенностью передачи возбуждения через синапсы является замедленное проведение. Синаптическая задержка — это время от приближения нервного импульса к пресинаптической мембране до появления потенциалов в постсинаптической мембране. В большинстве центральных нейронов это составляет около 0.3 миллисекунды. После этого требуется еще время на развитие возбуждающего постсинаптического потенциала (ВПСП) и потенциала действия. Весь процесс передачи нервного импульса через один синапс занимает примерно 1.5 миллисекунды. При утомлении, охлаждении и других воздействиях длительность синаптической задержки может увеличиваться. Если для реакции требуется участие большого числа нейронов, суммарная задержка проведения по нервным центрам может составить доли секунды и даже целые секунды.

Во время рефлекторной активности проходит неопределенный промежуток времени от момента воздействия внешнего раздражителя до возникновения ответной реакции организма. Этот интервал, известный как скрытое или латентное время рефлекса, в основном зависит от продолжительности передачи сигналов через синапсы. Величина латентного времени рефлекса является важным показателем функционального состояния нервных центров. Измерение латентного времени простой двигательной реакции человека на внешний сигнал широко применяется для оценки функционального состояния центральной нервной системы.

Суммирование эксцитации

При одиночном афферентном воздействии, идущем от рецепторов к нейронам, в пресинаптической области синапса выделяется небольшое количество нейромедиатора. Это вызывает постсинаптический потенциал, который обычно представляет собой местное, слабое деполяризующее воздействие на мембрану нейрона. Чтобы общее возбуждение на всей мембране нейрона достигло порога для возникновения потенциала действия, необходимо суммировать множество таких подпороговых постсинаптических потенциалов. Только в результате этой суммации нейрон может дать ответную реакцию. Процесс суммирования может быть пространственным или временным.

Пространственное суммирование происходит, когда несколько импульсов поступают в один и тот же нейрон через разные пресинаптические волокна одновременно. Одновременное возбуждение синапсов в разных участках мембраны нейрона увеличивает общую амплитуду суммарного постсинаптического потенциала до пороговой величины. Это приводит к возникновению ответного импульса нейрона и осуществлению рефлекторной реакции. Например, чтобы вызвать ответ двигательного нейрона спинного мозга, обычно требуется одновременная активация 50—100 афферентных волокон от соответствующих периферических рецепторов.

Временное суммирование происходит при активации одного и того же афферентного пути серией последовательных раздражений. Если интервалы между поступающими импульсами достаточно короткие и предыдущие постсинаптические потенциалы нейрона не успевают полностью затухнуть, последующие постсинаптические потенциалы накладываются друг на друга. Это продолжается до тех пор, пока деполяризация мембраны нейрона не достигнет критического уровня для возникновения потенциала действия.

Таким образом, даже слабые раздражения через определенное время могут вызывать ответные реакции организма, например, чихание и кашель в ответ на незначительные раздражения слизистой оболочки дыхательных путей.

Изменение ритма: ответный разряд нейронов

Ответный разряд нейрона формируется не только под воздействием характера раздражителя, но и в зависимости от функционального состояния самого нейрона — его мембранного потенциала, возбудимости и лабильности. Нейроны обладают удивительной способностью изменять частоту передачи импульсов, что называется трансформацией ритма.

При повышенной возбудимости нейрона, например, после употребления кофеина, частота импульсации увеличивается — это называется мультипликацией ритма. Наоборот, при низкой возбудимости, например, при усталости, ритм уменьшается, так как несколько поступающих импульсов должны суммироваться, чтобы преодолеть порог возникновения потенциала действия. Эти изменения в частоте импульсации могут усиливать или ослаблять реакции организма на внешние раздражители.

При ритмических воздействиях активность нейрона может согласовываться с ритмом поступающих импульсов, что называется усвоением ритма. Умение усваивать ритм обеспечивает согласованную работу множества нервных центров при выполнении сложных двигательных действий, что особенно важно для поддержания темпа циклических упражнений.

Невидимые следы

После того, как раздражитель перестает действовать, нервные клетки или центры сохраняют активное состояние на некоторое время. Время, в течение которого это происходит, разнится в зависимости от места в организме: в спинном мозге это всего лишь несколько секунд или минут, в головных центрах мозга — десятки минут, часы, а иногда и дни, а в коре больших полушарий это может длиться даже несколько десятков лет.

Удержание кратковременного состояния возбуждения в нервном центре обеспечивается импульсами, циркулирующими по замкнутым цепям нейронов. Сохранение скрытых следов на длительный срок является гораздо более сложной задачей. Предполагается, что долгосрочное сохранение следов в нервных клетках происходит за счет изменений в структуре белков, составляющих клетку, а также перестройки синаптических контактов.

Кратковременная память, связанная с краткосрочными импульсными последействиями (длительностью до 1 часа), лежит в основе кратковременной памяти, в то время как формирование долгосрочной памяти связано с долгосрочными следами, происходящими за счет структурных и биохимических изменений в клетках.

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я