Всё об искусственном интеллекте за 60 минут

Питер Дж. Бентли, 2020

Жить в современном мире, не взаимодействуя с искусственным интеллектом и не подвергаясь его воздействию, практически невозможно. Как так получилось? И что будет дальше? Меняют ли роботы наш мир к лучшему или создают еще больше проблем? Ответы на эти и другие вопросы, а также историю развития ИИ – от истоков и мотивации его зарождения до использования умных алгоритмов – вы найдете на страницах книги Питера Дж. Бентли, эксперта в области искусственного интеллекта и известного популяризатора науки. Для широкого круга читателей. В формате PDF A4 сохранен издательский макет.

Оглавление

Из серии: Быстрая наука

* * *

Приведённый ознакомительный фрагмент книги Всё об искусственном интеллекте за 60 минут предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

01. Путешествие в тысячу миль начинается с первого шага

Я с уверенностью предсказываю, что в ближайшие десять или пятнадцать лет в лаборатории появится нечто, совсем не похожее на робота из научной фантастики.

КЛОД ШЕННОН (1961)

Представьте, что вас окружают здания и статуи в классическом стиле. Вы прогуливаетесь по мощеным улицам красивого греческого острова и любуетесь видами. Зной спал, уступив место приятной прохладе. Лавки с фруктами и рыбой закрылись, а вслед за ними исчезли шум и суета повседневной жизни. Только звуки ваших собственных шагов отдаются эхом между богато украшенными домами. На углу улицы глаз выхватывает неожиданное движение. Но там никого нет. Вы пристально вглядываетесь.

Каменная статуя — она двинулась! В изумлении вы подходите ближе, чтобы рассмотреть ее. Вам кажется, будто она дышит, будто ее грудь вздымается и опускается. Вы продолжаете смотреть на статую, и ее голова поворачивается влево, а затем вправо. Вы понимаете, что эта статуя не единственная — двигаются все статуи вокруг, кажется вам. Переминаются с ноги на ногу, жестикулируют — словно ведут молчаливый каменный разговор. Они медленно оживают с наступлением ночи? Приглядевшись, вы замечаете, что во всех статуях, похоже, скрыты механизмы со стрекочущими винтиками и колесиками. Вы на острове каменных роботов.

Античные роботы

Место действия — греческий остров Родос 2400 лет назад, (еще до того, как там возвели гигантскую статую Гелиоса, бога солнца, — Колосс Родосский). Этот удивительный остров славился своими механическими изобретениями, в том числе выполненными из мрамора в натуральную величину автоматонами. Древнегреческий поэт Пиндар посетил Родос и рассказал о нем в стихотворении:

Ожившие фигуры стоят,

Украшая каждую городскую улицу,

И камень дышит,

А мраморные ноги движутся.

Может показаться невероятным, что еще до образования Римской империи, в 400 году до нашей эры, существовали такие технологии. Но многие подобные античные изобретения документально подтверждены.

Приводимые в движение водой или собственным весом рычащие механические львы, поющие металлические птицы и даже механические люди, играющие вместе в ансамбле. Утверждали, что у царя Соломона, правившего, по одной из версий, с 970 по 931 год до нашей эры, был механический золотой лев, который поднимал лапу, чтобы помочь царю подняться на трон, и орел, который водружал корону на его голову. В древнекитайских текстах встречается история о механическом человеке, подаренном царю Му-вану мастером Ян Ши. Архит Тарентский, основатель математической механики, философ и друг Платона, живший с 428 по 347 год до нашей эры, сконструировал механического голубя — летающего деревянного робота, приводившегося в движение паром. Герон Александрийский (10–70) написал целую книгу о создании автоматонов и о том, как может быть использована гидравлика, пневматика и механика. Герон также сконструировал первый механический кукольный театр, представлявший собой небольшое архитектурное сооружение. Куклы управлялись сложной системой нитей разной длины и исполняли в рамках спектакля различные номера, в том числе танцевальные.

Увлечение механической «жизнью» продолжалось и в Средние века. Бесчисленные умельцы создавали механические чудеса, предназначенные для развлечений. К XVIII веку изобретатели автоматизированных фабричных машин, сделавших возможной промышленную революцию, подняли это занятие на новый уровень. Удивительные паровые механизмы внезапно заменили людей в таком трудоемком процессе, как ткачество, для которого раньше всегда требовались обученные рабочие, и машины теперь могли создавать более тонкую ткань быстрее, чем люди когда-либо прежде. И хотя это повлекло за собой сокращение рабочих мест, появились целые новые отрасли промышленности, поскольку громадные машины нуждались в постоянном уходе и обслуживании.

Шли десятилетия, и машиностроение развивалось все стремительнее. Поезда, автомобили, самолеты и фабрики со сложным оборудованием стали обычным явлением. Вместе с зависимостью от автоматических машин росло и очарование роботами и их сходством с живыми существами, проникавшее в литературу и кино. Вероятно, это не случайность, что в двух самых ранних научно-фантастических фильмах, «Метрополис» (1927) и «Франкенштейн» (1931), речь идет о сумасшедших изобретателях, создающих жизнь.

В XX веке ученые пытались понять суть жизни в том числе путем создания ее аналогов. Возможно, они считали, что если смогут сотворить нечто движущееся и ведущее себя как живое существо, то им удастся раскрыть секреты, лежащие в основе жизни. Это было началом искусственного интеллекта и роботов в том виде, в каком мы знаем их сегодня.

Рождение ИИ и робототехники

Одни из первых автономных роботов, созданных, чтобы помочь нам понять биологические системы, сконструировал в конце 1940-х годов в Великобритании, в Бристоле, нейрофизиолог Грей Уолтер. Он назвал их Элмер и Элси. Роботы Уолтера напоминали черепах и были уникальны, поскольку не следовали какой-либо заданной программе.

Примерно в то же время, когда Уолтер создавал своих экспериментальных роботов, он состоял в клубе молодых британских ученых, известном как Ratio Club. Нейробиологи, инженеры, математики и физики регулярно встречались, чтобы выслушать приглашенного докладчика, а затем обсудить свои взгляды на кибернетику — науку об общих закономерностях процессов управления и связи как в машинах, так и в живых организмах. Ratio Club был в числе первых клубов, посвященных роботам и ИИ. Большинство его членов стали выдающимися учеными в своих областях. Одного из увлеченных математиков звали Алан Тьюринг.

УИЛЬЯМ ГРЕЙ УОЛТЕР (1910–1977)

Грей Уолтер стал пионером в разработке роботов с собственным разумом. (Он также стоял у истоков такой технологии, как электроэнцефалография, или ЭЭГ, применяющейся для изучения человеческого мозга.) Его механические черепашки могли реагировать на изменения окружающей среды, двигаться к свету и обходить различные препятствия. Они даже находили дорогу к зарядной станции, когда заряд их батарей оказывался на исходе. Уолтер утверждал, что эти простые роботы обладают эквивалентом двух нейронов и, если добавить к ним больше «клеток», можно добиться более сложного поведения. Ученый попробовал достичь этого, создав усовершенствованную версию робота-черепахи, которую назвал Корой. Он обучил Кору реагировать на полицейский свисток, подчиняясь условному рефлексу, — подобно собакам Павлова, выделяющим слюну при звуке колокольчика. Поначалу Кора не реагировала на свист, но после того как он стал сопровождаться вспышкой света, робот быстро научился связывать два раздражителя и впоследствии откликался на свист без дополнительных стимулов.

К 1950 году Тьюринг уже внес огромный вклад в зарождавшуюся тогда область компьютерных технологий. В его ранних работах представлено фундаментальное математическое доказательство того, что ни один компьютер не в силах предсказать, сможет ли он прекратить вычисления для какой-либо конкретной программы, или, другими словами, что некоторые проблемы не поддаются вычислению. Тьюринг участвовал в разработке самых первых программируемых компьютеров, а его секретная работа в Блетчли-парке[1] помогла декодировать зашифрованные сообщения во время Второй мировой войны.

Как и многие пионеры компьютерных технологий, Тьюринг интересовался интеллектом. Что это? Как можно создать его искусственный аналог? И если кому-то удастся сконструировать компьютер, который будет думать так же, как живые существа, как его создатель узнает об этом? Тьюринг решил, что необходим метод оценки способности машины думать. Он назвал его «Игра в имитацию», но более известен этот метод как тест Тьюринга.

Тест Тьюринга стал важным критерием для ИИ, но также вызвал и много критики. Хотя он способен дать некоторое представление о возможности ИИ вдумчиво отвечать на письменные запросы, он не позволяет оценить другие его способности, такие как прогнозирование и оптимизация или управление роботом и распознавание изображений.

Почти все пионеры компьютерной эры задумывались об ИИ, Тьюринг не был единственным. В США Джон фон Нейман, математический гений, который в 1945 году описал, как сконструировать первые программируемые компьютеры, работал с Тьюрингом над интеллектуальными компьютерами. Последний проект фон Неймана был посвящен самовоспроизводящимся машинам, которые, как он надеялся, смогут выполнять большинство функций человеческого мозга и воспроизводить самих себя. К сожалению, в 1953 году фон Нейман умер от рака, не успев завершить этот проект.

ТЕСТ ТЬЮРИНГА

Опросчик может взаимодействовать с двумя собеседниками — каждый из них в отдельной комнате — и задавать им любые вопросы, печатая их: «Пожалуйста, напишите стихотворение о мосте через Форт» или «Что получится, если к 34 957 прибавить 70 764?» Затем опрашиваемые вводят свои ответы. Через некоторое время опросчику сообщают, что один из его собеседников на самом деле компьютер. Если компьютер не удается отличить от реального человека, значит, компьютер прошел тест.

Еще один гений, Клод Шеннон, создавший теорию информации и криптографии, придумавший термин «бит» для обозначения минимальной единицы измерения количества информации в двоичной системе счисления, тоже был глубоко вовлечен в процесс развития ИИ на его самых ранних стадиях. Шеннон сконструировал роботизированную мышь, которую можно было научить находить выход из лабиринта, и написал компьютерную программу, игравшую в шахматы. В последние годы своей жизни он создал и другие удивительные вещи, например робота, который мог жонглировать мячиками. В 1955 году Шеннон вместе с Джоном Маккарти, Марвином Мински и Натаниэлем Рочестером предложил организовать летнюю конференцию, чтобы собрать ученых для обсуждения ИИ. Дартмутская конференция прошла летом 1956 года и длилась шесть недель. Она стала первым в истории мероприятием, посвященным изучению (и введению термина) ИИ. В результате многодневных обсуждений удалось сформулировать несколько ключевых идей, которые призваны были доминировать в этой новой области исследований на протяжении многих последующих десятилетий.

Предложение Летнего исследовательского проекта по искусственному интеллекту в Дартмуте 31 августа 1955 года

ДЖОН МАККАРТИ, МАРВИН Л. МИНСКИ, НАТАНИЭЛЬ РОЧЕСТЕР И КЛОД Э. ШЕННОН

Мы предлагаем провести двухмесячное исследование искусственного интеллекта, рассчитанное на десять человек, летом 1956 года в Дартмутском колледже в Гановере, штат Нью-Гэмпшир. Исследование должно основываться на предположении о том, что каждый аспект обучения или любые другие свойства интеллекта могут быть описаны настолько точно, что удастся сконструировать машину для его моделирования. Будет предпринята попытка выяснить, как заставить такую машину использовать язык, выделять главные признаки и создавать концепции, решать различные типы задач, свойственных пока только человеку, и самосовершенствоваться. Мы считаем, что можно добиться значительного прогресса в достижении одной или нескольких из этих целей, если тщательно отобранная группа ученых поработает над этим вместе в течение лета.

Взлеты и падения ИИ

Оживление, вызванное ИИ, быстро росло после проведения Дартмутской конференции. Новые идеи, касающиеся логических функций, процесса принятия решений, планируемого поведения и даже моделирования нейронов, наполняли исследователей оптимизмом. Некоторые из них полагали, что проблема машинного перевода будет решена очень скоро благодаря достижениям в таких областях, как теория информации, например, и формулированию правил, описывающих, как слова объединяются в предложения в естественных языках. Другие исследователи концентрировались на изучении того, как работают нейроны, каким образом мозг использует нейронные сети, чтобы обучаться и делать прогнозы. Уолтер Питтс и Уоррен Мак-Каллок разработали одну из первых искусственных нейронных сетей; Марвин Мински сконструировал искусственную нейронную сеть SNARC. (см. главу 5). Однако к началу 1960-х годов даже очень опытные и умные исследователи делали слегка нереалистичные прогнозы, учитывая состояние технологий на тот момент.

Теоретически это возможно — построить мозг, который смог бы воспроизводить сам себя на конвейере и осознавать свое собственное существование.

ФРЭНК РОЗЕНБЛАТТ (1958)

Благодаря такому воодушевлению росло также финансирование, и исследователи лихорадочно работали над проектами машинного перевода и искусственных нейронных сетей. И все же ажиотаж оказался слишком велик. К 1964 году спонсоры в США (Национальный исследовательский совет) начали беспокоиться из-за отсутствия прогресса в области машинного перевода. Консультативный комитет по автоматической обработке текстовой информации изучил проблему. Казалось, исследователи недооценили многозначность слов — тот факт, что их значение зависит от контекста. В результате в 1960-х годах ИИ допускал весьма досадные ошибки. Так, при переводе с английского на русский и обратно «с глаз долой — из сердца вон» превратилось в «слепой идиот».

Уже на нашем веку машины могут превзойти нас по общему уровню интеллектуального развития.

МАРВИН МИНСКИ (1961)

В отчете Консультативный комитет заключил, что машинный перевод хуже человеческого и к тому же значительно дороже. После публикации этого отчета Национальный исследовательский совет, уже потратив к тому моменту 20 миллионов долларов, прекратил финансирование исследований в области машинного перевода в США. Что касается исследования нейросетей, они тоже постепенно сходили на нет, поскольку ученые отчаянно пытались заставить простые нейронные сети делать что-то полезное. Последней каплей стала книга Марвина Мински и Сеймура Пейперта «Перцептроны», опубликованная в 1969 году, в которой были описаны многие ограничения модели простого нейрона. Это положило конец исследованиям нейронных сетей.

Однако вскоре все стало еще хуже. В 1972 году по заказу парламента Великобритании, пытавшегося оценить прогресс исследований в области искусственного интеллекта, математик сэр Джеймс Лайтхилл подготовил отчет. Выводы были неутешительными: «Большинство исследователей, начавших работать в этой области около десяти лет назад, признаются, что тогда они испытывали своего рода наивный оптимизм, который теперь считают неуместным… успехи в создании роботов общих типов не привели к достижению грандиозных целей». Отчет вызвал резонанс по всему миру. Управление перспективных исследовательских проектов Министерства обороны США сократило финансирование работ, касающихся ИИ, поскольку осознало, что обещанные результаты в такой области, как распознавание речи, не достигаются. В Великобритании финансирование исследований ИИ прекратили во всех университетах кроме трех: Эссекского, Сассекского и Эдинбургского. Идея ИИ и создания интеллектуальных роботов была полностью дискредитирована. Так наступила первая зима ИИ.

Несмотря на нежелательность своей деятельности, несколько исследователей ИИ продолжали работу в течение следующего десятилетия. Имевшиеся к тому моменту наработки не канули в Лету; многие достижения стали частью массовых компьютерных технологий. В конце концов к 1980-м годам в области исследований ИИ наметился новый прорыв — экспертные системы. Эти новые алгоритмы ИИ включили в себя знания людей — экспертов в различных системах, основанных на правилах, — и могли выполнять такие задачи, как идентификация неизвестных молекул или диагностика заболеваний. Для подобных целей разрабатывались новые языки ИИ, например Prolog и LISP, а для эффективной работы этих языков проектировались специализированные компьютеры. Вскоре экспертные системы были внедрены во многие отрасли промышленности и бизнес начал процветать. Так исследования ИИ снова получили финансирование.

Мы можем рассчитывать на создание компьютера с потенциалом, соответствующим потенциалу человеческого интеллекта, примерно к 2017 году.

ДЭВИД ВАЛЬЦ, пионер ИИ в области построения логических выводов (1988)

В Японии на создание компьютера пятого поколения выделили 850 миллионов долларов. Целью этого проекта стала разработка суперкомпьютеров, которые могли бы запускать программное обеспечение экспертных систем и выполнять такие сложные задачи, как поддержание разговоров и интерпретация изображений. К 1985 году на разработку отдельных систем в рамках ИИ было выделено более миллиарда долларов, а Управление перспективных исследовательских проектов потратило 100 миллионов долларов на финансирование 92 проектов в 60 учреждениях. Исследования ИИ возобновились, и вместе с ними вернулся ажиотаж.

Но продолжался очередной взлет недолго. Мощность обычных компьютеров быстро превысила мощность интеллектуальных систем, и компании, занимавшиеся аппаратным оборудованием для ИИ, обанкротились. Затем выяснилось, что экспертные системы крайне сложны в обслуживании и подвержены серьезным ошибкам при неправильном вводе данных. Обещанные возможности ИИ вновь не были реализованы. Промышленность отказалась от этой новой технологии, и финансирование опять прекратилось. Наступила вторая зима ИИ.

Возрождение

И снова, несмотря на то что тема ИИ оказалась не в чести, исследования продолжались. Однако поскольку в 1990-х годах даже сам термин «искусственный интеллект» ассоциировался с неудачей, его часто пытались замаскировать под интеллектуальные системы, машинное обучение, современные эвристические методы.

Достижения продолжались, но они «поглощались» другими технологиями. И вскоре началась тихая революция, принесшая с собой более продвинутую нечеткую логику (см. главу 9), новые, более мощные, типы нейронных сетей, более эффективные оптимизаторы и все более результативные методы машинного обучения. Робототехника тоже начала активно развиваться, особенно с появлением более легких и более емких батарей нового поколения. Облачные компьютеры позволили производить большой объем вычислений без существенных затрат, и каждый день генерировалось так много данных, что у ИИ было множество примеров для обучения. Поначалу медленно, но все смелее и решительнее ИИ и робототехника отвоевывали утраченные позиции. Снова росло всеобщее возбуждение, однако на этот раз его сопровождал страх.

К 2029 году компьютеры будут обладать интеллектом, сопоставимым по уровню с человеческим.

РЭЙМОНД КУРЦВЕЙЛ, изобретатель и футуролог (2017)

Мы не должны быть уверены в нашей способности постоянно удерживать суперинтеллектуального джина в бутылке.

НИК БОСТРОМ, руководитель Института будущего человечества в Оксфорде (2015)

Прошлый, 2019, год стал летом для исследований ИИ: тысячи ИИ-стартапов по всему миру продемонстрировали новые способы применения ИИ. Все крупные технологические компании (Apple, Microsoft, Google, Amazon, Weibo, Huawei, Samsung, Sony, IBM — список кажется бесконечным) инвестировали десятки миллиардов долларов в исследования ИИ и робототехники. Впервые продукты на базе ИИ стали доступны широкой публике: домашние станции, распознающие голоса, телефоны, распознающие отпечатки пальцев и лица, камеры, распознающие улыбки, автомобили, в которых автоматизирован ряд водительских задач, роботы-пылесосы. Незримо ИИ помогает нам и еще сотнями различных способов: в медицинских сканерах, выявляющих болезни, в оптимизаторах, составляющих расписание курьеров, в автоматизированных системах контроля качества на фабриках, в системах обнаружения мошенничества, уведомляющих о подозрительных операциях и блокирующих карту, в мультиварках, готовящих идеальный рис. Даже если мы вновь решим не называть ее ИИ в будущем, эта технология слишком широко распространилась, чтобы исчезнуть.

Большинство руководителей понимают, что искусственному интеллекту под силу изменить почти все аспекты ведения бизнеса. Благодаря этой технологии к 2030 году мировая экономика может вырасти на 15,7 триллиона долларов.

PRICEWATERHOUSECOOPERS[2] (2019)

За всю историю ИИ никогда еще не было так много ожиданий, исследователей, денег и истерии, связанных с ним, как сейчас. Несмотря на все взлеты и падения его популярности, прогресс в исследованиях ИИ никогда не прекращался. Сегодняшний день — это кульминация тысяч лет усилий, вложенных в одни из самых удивительных технологий, что когда-либо были созданы людьми. Если и нужно определять золотой век ИИ, то он, несомненно, сейчас. Потрясающие интеллектуальные технологии не просто помогают нам — они раскрывают саму суть интеллекта и в то же время ставят перед нами важные философские вопросы о том, что мы можем позволить этим технологиям делать. Наше будущее тесно связано с умными устройствами, и мы должны уметь ориентироваться на минном поле рекламной шумихи и неуместных ожиданий, одновременно учась принимать ИИ и роботов в нашу жизнь.

Успешное создание ИИ станет важнейшим событием в истории человечества. К сожалению, оно может оказаться последним, если мы не научимся избегать рисков.

СТИВЕН ХОКИНГ (2014)

Каждая глава этой книги представит вам наиболее необычные изобретения в области ИИ на настоящий момент и расскажет, что они могут значить для нашего будущего. Добро пожаловать в мир искусственного интеллекта и робототехники!

Оглавление

Из серии: Быстрая наука

* * *

Приведённый ознакомительный фрагмент книги Всё об искусственном интеллекте за 60 минут предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

1

Особняк, расположенный в городе Милтон-Кинс. Здесь в годы Второй мировой войны находилось главное шифровальное подразделение Великобритании — Правительственная школа кодов и шифров. — Здесь и далее примеч. переводчика.

2

PricewaterhouseCoopers — международная сеть компаний, предлагающих услуги в области консалтинга и аудита.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я