Показана неполнота научных теорий, построенных на фундаменте материализма и случайности. Обосновано присутствие во Вселенной генетического Кода Вселенной. Рассмотрена альтернативная гипотеза возникновения и развития материального мира, в основу которой положена первичность информации и вторичность энергетических процессов.
Приведённый ознакомительный фрагмент книги Взгляд со стороны. Естествознание и религия предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Информация и Вселенная
Ощущений глаз и ушей недостаточно для определения законов вещей, усилий сердца и мысли недостаточно для установления истины… Только тот, кто постиг Высшую гармонию и овладел взаимным отзвуком саморазвивающихся явлений, только тот способен на это.
Чем может быть задана программа? Например, при нарезании резьбы на токарном станке — передаточными числами шестерён, иначе — отношением числа зубьев ведущих шестерён к ведомым. Носителем программы в рассматриваемом примере будут шестерни. Отсутствует программа — и резьбу, посредством которой стыкуются друг с другом детали, организуя новое качество в виде узла, выполнить будет невозможно. На входе — информация, управляющая процессом изготовления резьбы, на выходе — готовое изделие.
В связи с этим вспоминается давний случай, который поведал мне один знакомый. Не известно по каким причинам, то ли от износа станка, то ли от износа оснастки, но у токаря появился брак. Отдел технического контроля (ОТК) проверял отсутствие брака при приёмке нарезанной токарем резьбы двумя калибрами. Через один калибр резьба должна проходить, а через другой — не проходить. У нашего токаря она проходила через два калибра. Для получения премии нужно было выполнять месячный план по количеству и качеству деталей. Умельцем-токарем был найден оригинальный выход из, казалось бы, безвыходного положения. После точных ударов молотком по резьбе, она застревала на одном калибре и проходила через другой калибр.
Похожую картину можно наблюдать и среди физиков-теоретиков. Придумана оригинальная, элегантная, математически красивая гипотеза, но вот незадача — гипотеза не стыкуется с экспериментом. А диссертацию во что бы то ни стало нужно защитить. Что делать? Оказывается, выход есть: нужно «стукнуть молотком» по теории — добавить несколько частиц и симметрий, откорректировать появившиеся подгоночные константы, и всё будет в порядке. «ОТК», в лице физиков-экспериментаторов на Большом адронном коллайдере (БАКе), проверить работоспособность гипотезы в ближайшие годы не сможет — кишка тонка у нынешнего коллайдера. А к тому времени, когда появится более мощный агрегат, в кармане уже будет диплом доктора и аттестат профессора. И не по такому ли принципу в настоящее время идёт массовое изготовление современных теорий, которые будет невозможно никогда экспериментально проверить?
Непонятно, почему подавляющее большинство учёных считает, что природа, в отличие от человека, умеет создавать «детали с резьбой» без программ. При этом, как ни странно, чисто случайно появилась не только наша планета, но и неисчислимое количество других объектов во Вселенной. Начиная от элементарных частиц до живых организмов. А все физические законы — простая фиксация итогов бессмысленного перебора природой случайных комбинаций.
Наш далёкий предок, изготавливая каменный топор или копьё, выполнял указанную работу в виде определённой последовательности действий, то есть следуя определённой программе, а не тупо колотил камнем о камень в надежде, что из этого само собой должно появиться орудие труда.
Мы пытаемся выставить природу, благодаря которой появились на свет, тупой мартышкой, барабанящей по клавишам механизма случайностей. При этом уверены, что природа, в отличие от человека, не имеет цели и потому сама не знает, что делает.
Удивительно, да и только, — абсолютно случайно, эволюционируя непонятно каким образом из пустоты, из ничего вдруг появляется кварк-глюонная плазма, из неё образуется неживая материя, и в итоге возникают живые организмы. При этом один из видов до такой степени эволюционировал, что возомнил себя повелителем природы. Реализация Божьего замысла, описанного в Библии (Быт 1:1–30) выглядит проще и понятнее, чем труд её величества случайности в лице госпожи мартышки.
Развивая информационные технологии, человек успешно продвигается на пути создания искусственного интеллекта. Научился клонировать высших животных, пытается проникнуть в святая святых — создать живую клетку. Но ни одному учёному никогда не приходило в голову испробовать путь, который он навязал природе — творить случайным образом.
Предположение о том, что развитие Мироздания происходит не случайным образом, а по изначально существующей программе, в настоящее время для многих учёных не вызывает никакого сомнения. Тем не менее официальная наука не спешит отказаться от гипотезы случайного возникновения и развития Вселенной. Это, по-видимому, связано с тем, что, признавая изначальную запрограммированность Вселенной, придётся одновременно согласиться и с тем, что Вселенная имеет Творца или Божественное начало.
До сих пор не существует единой теории атомного ядра — основного элемента, из которого состоит всё вещество во Вселенной. Не совсем ясно, что управляет притяжением разноимённых и отталкиванием одноимённых электрических зарядов. Совершенно неизвестно истинное предназначение незримо обитающей во Вселенной тёмной энергии. К тому же никто достоверно не знает, существует ли вообще такая энергия.
В соответствии с квантовой теорией, в реальном пространстве всегда есть неустранимые неопределённости физических полей, которые не могут обратиться в нуль. С ними связана ненулевая средняя энергия. Для многих теорий поля рассчитываемая плотность энергии вакуума оказывается бесконечной. В такие теории учёные вынуждены вводить специальные процедуры устранения бесконечностей.
Теоретическая физика объясняет присутствие в вакууме энергии рождающимися из ничего и исчезающими в никуда, виртуальными частицами. Вакуум как бы кипит, и это кипение нельзя устранить без нарушения законов квантовой механики. Частицы рождаются и аннигилируют в вакууме на отрезках времени, позволяемых соотношением неопределённостей Гейзенберга.
Интенсивность флуктуационных процессов изменяется при взаимодействии с внешними полями и приводит к поляризации вакуума. В результате каждая элементарная частица оказывается одетой в шубу виртуальных частиц и составляет с ней одно целое — наблюдаемую элементарную частицу.
Явления флуктуаций вакуума, как и постоянные взаимопревращения элементарных частиц друг в друга, заставляют задуматься: а действительно ли мир состоит из описываемых математическими уравнениями дискретных элементов?
Разогнав две одинаковые частицы в ускорителе и столкнув их, мы можем получить не две, а три одинаковые частицы. Третья частица возникает из энергии столкновения. Физическая теория рассматривает её как вероятностную динамическую функцию, как взаимодействие, связанное с непрерывным превращением энергии.
Частицы предстают перед нами не как реальные объекты, но как сгустки энергии. Проводя измерение, мы разрушаем изначальное взаимодействие и создаём новое взаимодействие, которое изменяет саму частицу. Из-за этого частицы, непрерывно превращаясь одна в другую или иные формы энергии, не имеют и не могут иметь постоянных характеристик. Кварки, которые, по предположению учёных, являются последней ступенью дробления материи, в свободном состоянии вообще ненаблюдаемые. Силы, действующие между кварками, не уменьшаются с расстоянием, и для разъединения кварков требуется невообразимо большая энергия.
Если частица распадается на какие-либо частицы, нельзя сказать, что продукты распада содержались в ней в виде составных частей. В определённом смысле взаимопревращения частиц можно сравнить со взаимопревращениями чисел друг в друга.
Рассмотрим равенство 4 = 1 + 3. Как видим, превратилась четвёрка в единицу и тройку. Возможно превращение и тройки в четвёрку при «поглощении» ею единицы. Но в реальности состоит ли наша четвёрка из единицы и тройки? Не вмещает ли она бесконечный набор чисел? И где истина — в математическом равенстве или в нашем умозаключении? Существуют ли реально в природе числа?
Математика вводит нас в заблуждение. Реальный мир — это не математика. Математический формализм — метафизические концепции и интерпретации физических процессов. Все физические законы и теории носят исключительно описательный характер. Классическая механика описывает механическое движение материальных тел и происходящие при этом взаимодействия между ними, но самой природы описываемых явлений не касается. Квантовая механика описывает не микрообъекты сами по себе, а проявление их свойств в микромире, не касаясь природы этих явлений. И ни одна физическая теория не отвечает на вопрос, откуда всё это произошло?
Согласно современным представлениям учёных, весь материальный мир построен из элементарных частиц и античастиц, связанных разного вида взаимодействиями. Количество обнаруженных элементарных частиц измеряется сотнями. Видов фундаментальных взаимодействий между частицами известно всего четыре: гравитация, электромагнетизм, сильное взаимодействие и слабое взаимодействие.
Гравитация притягивает друг к другу объекты, обладающие массой. С помощью электромагнетизма твёрдые тела становятся прочными и, несмотря на гравитацию, не проваливаются сквозь землю — одноименно заряжённые электроны в атомах на границах веществ отталкиваются друг от друга. Сильное и слабое взаимодействия управляют процессами на субатомном уровне. Удерживая вместе протоны и нейтроны, сильные ядерные силы формируют ядра атомов. Слабое взаимодействие управляет радиоактивным распадом и отвечает за основной источник энергии Солнца. Без слабого взаимодействия наше светило перестало бы существовать. И каждый из этих видов сил характеризуется своей константой.
Мы живём в точно настроенной и выверенной Вселенной. Если температура Солнца станет меньше 5 500 градусов Цельсия, Земля замёрзнет, — при большей температуре всё живое будет сожжено. При уменьшении массы Юпитера количество летящих из космоса комет к Земле стремительно возрастёт, и жизнь на Земле будет уничтожена. Астрономы считают, что влияние Юпитера и Сатурна на Землю привело к удлинению её эллиптической орбиты и повлияло на наклон оси. Луна также способствует наклону Земли и устойчивости климата. При отсутствии наклона испаряемая в океанах влага будет мигрировать к северу и югу, и континенты покроются льдом. И это мизерная часть «случайностей» в Солнечной системе, благодаря которым на Земле существует жизнь.
Знакомство с общепризнанной, увенчанной Нобелевской премией Стандартной моделью приводит к однозначному выводу: Вселенная организована таким образом, чтобы в ней могла существовать жизнь. Даже незначительное изменение численного значения одной из примерно 20 констант, входящих в Стандартную модель, полностью лишает Вселенную атомов. Изменение массы электрона всего на 0,2 % изменит время жизни звёзд настолько, что для эволюции живых организмов не хватит времени. Отклонение константы сильного взаимодействия всего на одну десятитысячную в ту или другую сторону сделает невозможным образование атомов углерода, а значит, и зарождение органической жизни будет невозможным.
Такая точная настройка Стандартной модели порождает много вопросов. Один из них — случайны ли наблюдаемые значения фундаментальных констант? И могло ли больше дюжины стабильных и взаимосвязанных друг с другом констант появиться случайным образом в момент или после Большого взрыва, по мере образования элементарных частиц и атомов?
Если Вселенная развивается случайным образом, должны меняться во времени и фундаментальные константы. Учёные решили получить ответ на данный вопрос путём прямого измерения фундаментальных постоянных в различных областях Вселенной. Для измерения была выбрана одна из физических постоянных — постоянная тонкой структуры α, или постоянная Зоммерфельда. Данная константа является скалярной величиной, получена опытным путём и равная примерно 1/137. Она характеризует силу электромагнитного взаимодействия и определяет все основные свойства и характеристики объектов микромира: размеры электронных орбит в атомах, энергию связи между элементарными частицами и атомами, следовательно, все физические и химические свойства вещества.
Безразмерная α образована из комбинации других фундаментальных констант: элементарного электрического заряда е, приведённой постоянной Планка ћ, скорости света в вакууме с и диэлектрической проницаемости свободного пространства ε0. Она также может быть образована и в терминах других фундаментальных физических констант. Её численное значение не зависит от выбранной системы единиц, поэтому она хорошо подходит для ответа на поставленный вопрос.
Большинство экспериментальных данных подтверждают неизменность постоянной α. Исследования, проведённые в 2016 г. учёными из Института астрономии при Кембриджском университете и из Центра астрофизики и суперкомпьютерных вычислений в Технологическом университете Суинберна в Австралии, показали, что постоянная тонкой структуры в галактике за последние 8,5 миллиарда лет не изменилась[14].
Астрофизики из семи стран под руководством Майкла Вильчинского из Университета Нового Южного Уэльса в Австралии установили, что физическая константа α за последние 13 миллиардов лет — а это соответствует возрасту Вселенной 800 миллионов лет — сохранила своё значение с точностью до пятого знака после запятой. Но, когда учёные рассмотрели полученные результаты совместно с другими измерениями константы, они заметили пространственные вариации постоянной на уровне статистической значимости[15]. Это указывает на то, что расхождение между современными и прошлыми значениями постоянной тонкой структуры зависит не от количества прошедшего времени, а от пространственного положения тех точек, где были сделаны замеры.
Неизменность константы подтверждает Стандартную модель. Однако существуют теории, в отличие от Стандартной модели, допускающие изменение фундаментальных констант во времени. Но здесь важно другое. Известно, будь α всего на 4 % больше, производство углерода внутри звёзд стало бы невозможным, следовательно, и зарождение жизни на нашей планете не произошло бы.
Если константа стабильна, наша Вселенная изначально была запрограммирована на возникновение жизни. Если же она изменяется — однородности и изотропности Вселенной нет, и человечество возникло в тот момент, когда возможно его существование. И нам отведён небольшой отрезок жизни во времени и крохотная часть пространства Вселенной с наблюдаемыми в настоящее время параметрами.
В первые моменты существования горячей и плотной Вселенной количество частиц и античастиц было одинаковым. Из этого следует, что Вселенная вообще не могла образоваться, — аннигиляция частиц и античастиц должна была превратить её в электромагнитное излучение. Но, как известно, Вселенная почти полностью образована из материи.
Факт существования нашей Вселенной в форме вещества (барионов) и отсутствие сколь-либо значимого количества антивещества указывают на существенную неполноту современных знаний. Некоторые учёные полагают, что для описания современной картины микромира следует предположить существование дополнительных полей и взаимодействий.
Для объяснения наблюдаемого с ускорением расширения Вселенной космология вводит гипотетический вид энергии — тёмную энергию с отрицательным давлением (антигравитацией). Её доля составляет примерно 70 % от всей энергии Вселенной, но из-за низкой плотности (≈10–29 г/см3) экспериментально обнаружить тёмную энергию не представляется возможным.
Если тёмная энергия связана с ускорением Вселенной, возникает закономерный вопрос: почему ускорение Вселенной началось именно с конкретного момента времени? Начнись ускорение раньше, звёзды и галактики не успели бы сформироваться, и для возникновения жизни не осталось бы никаких шансов.
Не исключено, что для расширения Вселенной не требуется обязательное присутствие в пространстве тёмной энергии. Силы гравитации могут уступить место антигравитационным силам при переходе до величин, сопоставимых с наблюдаемой Вселенной. Примером может служить неожиданное изменение сил притяжения на силы отталкивания при попытке сблизить друг с другом нуклоны в атомном ядре на расстояние меньше 0,5 Ферми.
Только 5 % во Вселенной составляет обычная материя, и она хорошо изучена. Об оставшихся 95 %, которые приходятся на тёмную энергию и тёмную материю, мы не знаем практически ничего. Павел Кроупа, профессор из Института астрономии имени Аргеландера при Боннском университете в Германии, изучая движение карликовых спутников галактики, пришёл к выводу, что, если работают законы Ньютона и есть тёмная материя, там, где она есть, по законам Ньютона её быть не должно[16].
Если Большой взрыв вызвал расширение Вселенной, должно было возникнуть сильное неоднородное распределение вещества, а этого не наблюдается. Непонятно, как в однородной Вселенной образовались неоднородности, явившиеся причиной образования галактик.
Теоретически модель Большого взрыва хорошо разработана, имеет строгое математическое обоснование и подтверждена многочисленными опытами. Но она не включает в себя гравитацию и не даёт ответа на вопрос, что такое тёмная материя, если её существование реально. Также неизвестно, почему у нынешних фундаментальных физических констант именно такие значения. Эти проблемы вызвали к жизни альтернативные теории. Среди них — теория струн, петлевая квантовая гравитация, причинная динамическая триангуляция и другие теории. К сожалению, ни одна из них не находит экспериментального подтверждения.
Первая попытка объединения квантовой теории с гравитацией была предпринята при жизни Эйнштейна. В 1914 г. финский физик-теоретик Гуннар Нордстрём, повысив на единицу размерность пространства и применив теорию электромагнетизма Максвелла к пятимерному миру, объединил гравитацию с электромагнетизмом. Впоследствии немецкий физик Теодор Калуца пересмотрел идею Нордстрёма о скрытой размерности и сделал её скрученной. Для этого он применил ОТО к пятимерному миру и получил электромагнетизм. Шведский физик Оскар Клейн усовершенствовал идею Калуцы по объединению гравитации с электромагнетизмом и из уравнений Эйнштейна с изящностью вывел уравнения Максвелла.
Это была победа! Учёные вместе с Эйнштейном ликовали. Но пятое измерение рождало бесконечное множество решений во времени. В дополнение к этому решения оказались нестабильными. В итоге очередная теория потерпела неудачу. Смертельный нокаут она получила в 30-е гг. с открытием сильных и слабых ядерных взаимодействий, о которых и не подозревала.
Теории струн для описания всех известных элементарных частиц потребовалось уже десять измерений пространства, включая известные нам четыре. Идея теории струн состояла в том, что колеблющуюся струну планковских размеров можно представить как возбуждённое состояние пространства, обладающее энергией. Струна была фундаментальна, не имела структуры, а элементарные частицы рождались из возбуждённых мод струн.
В теории струн закон движения определяет законы сил, в то время как в других теориях движение частиц и фундаментальные силы — два разных понятия. В отличие от свободных констант, струнная константа связи — это физическая степень свободы. И вместо того, чтобы быть параметром законов, она становится параметром, отмечающим решения. Из-за этой особенности поведение струны фиксируется не теорией, а особым многомерным миром, в котором она живёт[17].
Проквантовав пространство, теория струн попыталась таким образом объединить квантовую механику и ОТО. Но это привело к непредсказуемым последствиям. Появилась ландшафтность, указывающая на существование до 10500 вариантов различных миров, среди которых, возможно, находится и наблюдаемый нами мир. Доказать правильность теории стало невозможно, как и опровергнуть. Теория стала нефальсифицируемой. Взяв уверенный и многообещающий старт, она так и не доковыляла до финиша.
Объясняя устройство мира, некоторые учёные под давлением неопровержимых фактов включают в свои теории информационную сущность.
Член Нью-Йоркской академии наук А. М. Хазен сформулировал закон иерархического синтеза действия энтропии информации, представив информацию в виде физической переменной. По Хазену, в природе происходит самопроизвольный синтез информации. В основе теории синтеза информации лежат случайности.
Суть закона состоит в следующем. Информация есть устранённая неопределённость в достижении цели. Она передаётся с помощью сигналов — носителей информации. Сигналы сами по себе никакой информации не несут и требуют расшифровки. Природе, в отличие от человека, не требуется расшифровка значения сигналов для получения информации, так как она не имеет цели.
Развитие в природе происходит самопроизвольно, «над ней» никого нет. Но, чтобы использовать понятие информации для описания фундаментальных процессов в Мироздании, необходимо отделить её от цели. Хазен осуществил это с помощью энтропии, используя энтропию как меру неопределённости, следовательно, и как меру информации. Он предположил, что если неопределённость в процессах создания и развития Вселенной характеризовать энтропией как физической переменной, то устранение этой неопределённости будет задавать качественно и количественно информацию как физическую переменную этих процессов.
Свой закон учёный сформулировал следующим образом: в природе происходит процесс синтеза информации, использующий запоминание случайного выбора в данных условиях. Цепочка случайность — условия — запоминание — новые случайности — новые условия — запоминание и т. д. превращает в природе сигналы в информацию[18].
Взяв за основу второе начало термодинамики и закон Хазена, украинский учёный-философ О. А. Базалук создал новейшую теорию эволюции мира под названием «Эволюционирующая материя».
Суть теории в том, что, согласно второму началу термодинамики, энтропия при эволюции растёт. Но этот рост происходит с иерархическим участием изменения признаков, относительно которых определяется энтропия.
Исходя из закона Хазена, материя эволюционирует созидательно, проявляя себя в иерархическом структурировании. При этом созидательность возникает в результате и на основе стремления систем к максимуму беспорядка. Максимальный детерминизм в природе одновременно будет являться максимальным хаосом элементов предыдущего уровня иерархии. Всё во Вселенной подчинено принципу матрёшки: последовательной вложенности одного состояния материи в другое и образованных ими систем[19].
Крайне сложно усмотреть принцип матрёшки, наблюдая, как из невзрачного на вид семечка вырастает огромное дерево. Но если вложенность друг в друга состояний материи заменить вложенностью наследственных программ, весь процесс развития дерева становится более понятным.
Науке неизвестно, каким образом Вселенная пришла в состояние с низкой энтропией в начале своего развития, на последних стадиях которого мы живём. Квантовая физика указывает на тот факт, что в соответствии со вторым началом, чтобы задать начальные условия для создания Вселенной необходима невообразимая для нашего ума точность. Цифру, которую вывел британский физик и математик Роджер Пенроуз, «…нельзя даже полностью выписать в обычной десятичной системе исчисления: она представляла бы собой"1"с последующими 10123 нулями! Даже если бы мы были в состоянии записать"0"на каждом протоне и каждом нейтроне во Вселенной, а также использовали бы для этой цели все остальные частицы, наше число, тем не менее, осталось бы недописанным»[20].
Нам практически ничего не известно о фундаменте, на котором построена Вселенная. Экспериментальных доказательств, что информация возникает самопроизвольно в процессе образования физических объектов, у науки нет. В то же время твёрдо установлено, что изначально присутствующая в живом организме генетическая информация, закодированная последовательностью нуклеотидов ДНК, управляет развитием и функционированием всех форм жизни.
Мы подробно рассмотрели закон Хазена и научно-философскую модель Мироздания, предложенную Базалуком в связи с тем, что концепция случайности — это философия, фундамент, на котором стоит официальная наука. Требуется непоколебимое мужество для исследователя, чтобы открыто выступить против аксиомы, которая провозглашает случайность возникновения и развития материального мира.
Неудивительно, что закон иерархического синтеза информации недвусмысленно указывает на первоисточник — эволюционную теорию Дарвина. И Дарвин, и Базалук использовали одну и ту же идею, основа которой — запоминание случайного выбора в данных условиях.
Главными факторами эволюции по Дарвину являются изменчивость и отбор. Отбором дарвинизм объясняет механизм образования новых видов, и отбор выступает ведущим фактором эволюции. Случайные полезные изменения в виде мутаций запоминаются и передаются по наследству, в то время как особи, получившие вредные изменения, отмирают, превращаясь в хаос.
У Базалука материя эволюционирует путём случайного выбора из существующего хаоса с последующим запоминанием. Тем не менее учёный в своей монографии отметил: «Образование из точки сингулярности именно такой Вселенной неслучайно. Это строго обусловленный процесс; но вот кем или чем он обусловлен?»[21].
Генетика доказала несостоятельность классической теории Дарвина для объяснения наследственности. Новейшие исследования указывают на то, что изменения в организме происходят необязательно за счёт мутаций. Система адаптивного иммунитета бактерий и архей CRISPR/cas, имеющая огромное распространение в природе, работает в соответствии с эволюционной концепцией Ламарка, отвергнутой классическим дарвинизмом. «Да сохранит меня небо от глупого ламарковского"стремления к прогрессу","приспособления вследствие хотения животных"», — резко отозвался Дарвин о трактате Ламарка «Философия зоологии»[22].
Отбор, как один из многочисленных факторов, присутствует в эволюции живых организмов, но дарвинизм, в основу которого положена случайность, исчерпал себя и не имеет перспектив для дальнейшего развития.
В противовес Дарвину известный шведский цитогенетик Антонио Лима-де-Фариа в разработанной им эволюционной теории считает биологическую эволюцию продолжением предбиологической эволюции. С позиций глобального эволюционизма биологическая эволюция рассматривается учёным как продолжение общей эволюции материи, ею определяется и постоянно с нею связана невидимыми нитями. По теории Лима-де-Фариа, в природе не существует случайных процессов. «Эволюция — это процесс, внутренне присущий строению Вселенной… — утверждает учёный. — Естественный отбор — это некая произвольная система, некая абстракция, а не физический механизм. Как таковой, он не может быть механизмом эволюции»[23].
Любопытно, но монография, всё содержание которой направлено на критику естественного отбора по Дарвину, одной из первых была переведена в 1991 г. на русский язык.
Революционную теорию направленной эволюции выдвинул доктор физико-математических наук Уральского федерального университета (УрФУ) А. В. Мелких. Исследования о направленной эволюции учёный представил на научной конференции «Развитие жизни: вопросы эволюции и развитие организмов». Конференция состоялась в Ереване в 2019 г. В работе конференции приняли участие учёные из России, Франции, Италии, Венгрии, Японии, Ирана и США. Доклад Алексея Мелких прозвучал как разорвавшаяся бомба.
Эволюция жизни по теории учёного, определяется не спонтанным естественным отбором, а процессами квантовой механики в клеточном ядре. Именно по такому принципу и происходит взаимодействие «кирпичиков» белков и ДНК.
Теория направленной эволюции в формулировках учёного базируется на трёх ключевых принципах.
Первый заключается в том, что эволюция априорно направлена. То есть существует априорная информация, в соответствии с которой происходят направленные изменения генома. Геном — совокупность всех генов организма, его полный хромосомный набор. В процессе направленной эволюции отбор и случайные мутации играют второстепенную роль.
Второй принцип гласит, что случайность в эволюции является следствием неопределённости в окружающей среде. Присутствие случайности в генетических процессах часто рассматривается в качестве доказательства дарвиновского (ненаправленного) характера эволюции. Однако случайность может быть просто следствием неопределённости в окружающей среде и самом организме. При этом эволюция остаётся одновременно направленной.
Третье: квантовая механика играет важную роль во всех генетических процессах, делая эти процессы в высокой степени управляемыми. Мотивация использования квантовой механики для моделирования эволюции основана на том, что все операции с генетическим материалом (ДНК, РНК, белки) не могут быть объяснены на основе классической механики.
Одна из основных проблем молекулярной биологии — парадокс Левинталя. Суть его в том, что белок, который первоначально возникает в виде линейной молекулы, должен каким-то образом найти свою естественную (нативную) конформацию (пространственную конфигурацию). Только в этой конформации он способен выполнять свои функции. Однако для достаточно длинных белков число возможных конформаций экспоненциально велико и не может быть перебрано за время жизни Вселенной[24].
По теории учёного есть невидимая сила, направляющая изменение видов по определённому пути, или, проще говоря, эволюция изначально запрограммирована. Взаимоотношения между видами также априорно запрограммированы, и только таким образом можно объяснить эволюцию сложной биосферы. Учёный из УрФУ говорит о программировании Вселенной и утверждает, что эволюционный Код априорно заложен в физических объектах. Но откуда он взялся, учёный объяснить не может.
Основные положения теории направленной эволюции опубликованы в журналах Origin of Life and Evolution of Biospheres, Biosystems, Progress in Biophysics and Molecular Biology.
Другой участник конференции, профессор Токийского университета Кунихико Канеко в результате наблюдений над многоклеточными организмами пришёл к следующему выводу: «Если мы говорим не о простом воспроизводстве, а о развитии, то путь один — это сотрудничество. <…> Клетки начинают сообщаться друг с другом, разделять свои функции, свою деятельность. Тогда появляются сложные организмы, с большим разнообразием клеток»[25].
По убеждению Хазена и Базалука, природа не имеет цели, эволюционной программе взяться неоткуда, поэтому информация возникает самопроизвольно из окружающего хаоса. Вопреки их мнению, доктор химических наук действительный член Российской академии естественных наук Л. А. Блюменфельд утверждает: «…живая материя, её компоненты и объекты, ею изготовленные, имеют смысл. Нельзя спросить: для чего кристалл NaCl имеет кубическую симметрию? Однако можно спросить: для чего молекула гамма-глобулина построена так, а не иначе? И получить ответ: для того, чтобы осуществлять функции иммунной защиты и предотвращать гибель организма, уменьшая вероятность гибели вида»[26].
В основу своего закона Хазен положил запоминание случайного выбора в данных условиях. Как известно, для выполнения этого закона динамическая система должна иметь не менее двух устойчивых состояний, из которых осуществляется выбор. При этом для запоминания выбранное состояние должно быть абсолютно устойчивым.
Доктор физико-математических наук И. Л. Розенталь показал, что даже небольшое изменение фундаментальных постоянных приводит к качественному изменению структуры Вселенной и делает невозможным образование атомов, звёзд и галактик. Соответственно этому реализованный в нашей Метагалактике набор фундаментальных постоянных — весьма резкая флуктуация[27].
Мы живём в мире с редчайшим сочетанием значений фундаментальных постоянных, принципы формирования которых науке неизвестны. И утверждать, что при образовании Вселенной был выбран один из многих вариантов, нет никаких оснований.
Крайне трудно поверить, что у природы нет цели, и она развивается самопроизвольно. Все объекты во Вселенной запрограммированы на стремление к состоянию с минимальной энергией. В соответствии с принципом экономии энергии (принципом наименьшего действия) происходит образование любого устойчивого связанного состояния, которое всегда сопровождается выделением энергии. И наоборот, чтобы разрушить составное тело, нужно затратить энергию.
По мере углубления в микромир увеличивается порог энергии и стабильность объектов повышается. Для их разрушения нужно затрачивать всё больше и больше энергии. Молекулу проще разрушить, чем атом; атом проще разрушить, чем ядро атома. При энергиях ниже порога разрушения все объекты данного уровня становятся неделимыми, то есть неразрушаемыми.
Принцип наименьшего действия совместно с фундаментальными физическими константами не допускает в природе ни бесконтрольного хаоса, ни вариантов спонтанного выбора при образовании сложных объектов. Этот принцип, впервые сформулированный французским учёным Пьером Мопертюи в средине XVIII в. и обобщённый ирландским математиком Уильямом Гамильтоном в начале XIX в., играет ключевую роль в теоретической физике. На этом принципе построена ОТО и впервые выведены законы движения, которые не получались из анализа результатов экспериментов. Как оказалось, движение тел в пространстве происходит таким образом, чтобы действие, которое зависит от траектории движения, было минимальным. Тела при отсутствии действующих на них сил двигаются по прямым линиям, то есть по кратчайшему пути.
Реализация принципа наименьшего действия возможна только при условии информационной связи между движущимся объектом и средой, в которой происходит движение. Не зная заранее свойств среды, невозможно выбрать кратчайший путь движения в этой среде. Из этого следует, что пространство-время, в котором происходит движение тел, указывает телам, как им двигаться.
Согласно ОТО, гравитационное поле есть искривление четырёхмерного пространства-времени. И то, что мы принимаем за силу притяжения, нужно рассматривать как особенность геометрических свойств пространства-времени. По выражению американского физика-теоретика Джона Уилера, «пространство-время руководит движением материи, а материя указывает пространству-времени, как искривляться». В искривлённом пространстве-времени энергия и импульс эволюционируют в ответ на поведение пространства.
Геометрия пространства отличает прямую линию от искривлённого пути и, следовательно, может осуществить принцип наименьшего действия. В купе со временем пространство отличает ускоренно движущиеся частицы от частиц, движущихся с постоянной скоростью и, по-видимому, управляет движением с учётом внешних сил, вызывающих это движение.
Эффекты ОТО до недавнего времени были достоверно проверены исключительно в масштабах Солнечной системы. В 2018 г. Томас Коллетт из Института космологии и гравитации Портсмутского университета в Великобритании и его коллеги опубликовали результаты исследования, которые подтвердили искривление пространства в галактических масштабах[28].
Предполагаемая запрограммированность Вселенной неминуемо порождает вопрос о носителе информации. По гипотезе Алексея Мелких это могут быть квантовые поля. Свойства Вселенной были закодированы до Большого отскока, когда Вселенная находилась в чисто квантовом состоянии[29].
Квантовая теория Большого отскока, вытекающая из циклической модели Вселенной, где циклы расширения и сжатия сменяют друг друга, не может объяснить, каким образом наблюдаемое в настоящее время расширение Вселенной может перейти в сжатие. Большой отскок не вписывается в общепринятую теорию Большого взрыва, предполагающую возникновение Вселенной из сингулярного состояния (см. «Генетический Код Вселенной»).
Невозможность избежать сингулярности в космологических моделях, предлагаемых ОТО, доказали выдающиеся физики современности Роджер Пенроуз и Стивен Хокинг. Согласно теореме Хокинга, если любой вариант решения уравнений ОТО повернуть назад во времени, мы обязательно придём к сингулярности[30].
По предположению учёных из Нижегородского университета, время имеет информационную природу, поскольку каждое изменение квантового состояния — это событие, а не только причинности. Квантовое состояние системы — это информация во времени и в пространстве. Информация о квантовом состоянии является дискретной, и квантовые системы генерируют информацию каждый раз, когда происходит процесс[31].
Природа информации в квантовых процессах учёным неизвестна, и нет оснований утверждать, что квантовые системы генерируют информацию. По-видимому, не следует и очеловечивать информацию, наделяя квантовые системы источниками дискретной информации.
На дискретных носителях не всегда располагается дискретная информация. Нотная запись музыки — один из примеров этому. Дискретность нейронов не говорит о том, что нейронная сеть нашего мозга работает по принципу цифровой обработки сигналов. Генетический код живых организмов, помимо кодонов, которые можно сопоставить с дискретной информацией, одновременно несёт и аналоговую информацию.
Квантовая физика описывает элементарные частицы набором дискретных значений физических величин — квантовыми числами. К примеру, спин (собственный момент импульса элементарной частицы) в физических теориях наделён конкретными числовыми значениями и подходит для использования в качестве квантового бита информации. Но правильно ли считать предполагаемое вращение частицы вокруг своей оси дискретной информацией?
Частицы и их характеристики дискретны в теоретической физике, но не в природе. Информация, управляющая материальным миром, и информация, используемая человеком в информационных технологиях, также не похожи друг от друга, как человек на человекоподобного робота.
Мы полагаем, что и движение в пространстве, осуществляемое по кратчайшему пути с минимальными энергетическими затратами, и квантовую запутанность, позволяющую одновременно «следить» за состоянием связанных частиц вне зависимости от расстояния, можно объяснить исключительно обменом информацией между частицами и средой. Такое предположение наводит на мысль о существовании во Вселенной фундаментального информационного поля.
Идея информационного поля не нова, и по этой теме можно отыскать немало различного рода публикаций. К сожалению, достоверные экспериментальные данные, подтверждающие или опровергающие существование информационного поля, отсутствуют.
Доктор философии, профессор кафедры информатики и прикладной математики Тверского государственного технического университета (ТвГТУ) В. Б. Гухман в курсе лекций по философии информации отметил, что, по его мнению, гипотеза информационного поля обладает научной привлекательностью. Если человек творит информацию, «так почему же бессознательная (как мы считаем) мать-природа за"срок"своего бытия не могла сотворить и сохранить свою внутреннюю информацию на доступных ей и неизвестных нам носителях, если жалкий человек смог это сделать за космический"миг"своего существования?!»[32]
За последнее время теоретическая физика достигла невероятных высот, гигантски продвинулся вперёд математический формализм, но проблема интерпретации квантовой механики практически не сдвинулась с места. Несмотря на огромный прогресс в науке, никто не знает, что стоит за формализмом, предсказания которого прекрасно подтверждают эксперименты.
Существующие теории скрытых параметров объясняют, как выглядит предполагаемая реальность, лежащая в основе формализма квантовой механики. Значения скрытых параметров нельзя определить экспериментально. Они не влияют на собственные величины энергии системы, но определяют результат измерения других параметров системы, описываемых в квантовой механике.
В 1964 г. физик-теоретик Джон Белл предложил эксперимент, в котором любая альтернативная теория, если она соблюдает принцип локальности, предсказывает отличный от квантовой теории результат. По теореме Белла, если исходить из положений квантовой теории, неравенства могут нарушаться. Вне зависимости от реального наличия в квантово-механической теории скрытых параметров, влияющих на любую физическую характеристику квантовой частицы, можно провести серийный эксперимент, статистические результаты которого подтвердят либо опровергнут наличие скрытых параметров в квантово-механической теории.
Проведённые эксперименты по проверке теоремы Белла показали: если верить квантовой механике, предположение о локальном реализме, свойственном классической механике, нужно отвергнуть.
С подобным утверждением согласны не все учёные.
Сотрудник Института проблем управления имени В. А. Трапезникова (ИПУ РАН) П. В. Куракин полагает, что исходные допущения теоремы Белла, вопреки распространённому мнению, рассматривают не общий случай, а только очень узкий класс теорий со скрытыми параметрами. По мнению учёного, «теории с параметрами, эволюционирующими во"внутреннем времени", не попадают под действие этой теоремы»[33].
Категоричен в своих выводах доктор физико-математических наук А. Ю. Хренников. Широко известный в научном мире специалист в области информатики и информационных технологий уверен: «…неравенства Белла нет. Оно выведено для ложных предположений, когда данные, которые собрали в трёх разных экспериментах, пытаются"засунуть"в одно неравенство, которое вывели при условии, что эксперимент один»[34].
Достоверность теоремы Белла на основе возможности супердетерминизма поставил под сомнение и лауреат Нобелевской премии по физике Герард 'т Хоофт[35].
По нашему глубокому убеждению, квантовая запутанность служит прямым доказательством скрытых параметров. Любое материальное явление должно иметь физический смысл. Отсутствие физического смысла указывает на то, что явление либо отсутствует в действительности, либо не нашло адекватного истолкования. Скрытые параметры, по-видимому, следует рассматривать как информационную составляющую физического процесса, присутствие которой невозможно установить опытным путём. Многочисленные эксперименты с элементарными частицами свидетельствуют, что пространство непосредственно участвует во всех происходящих событиях квантового мира и оказывает влияние на результаты экспериментов.
Для объяснения феномена квантовой телепортации учёные рассматривают телепортацию неотделимо от классического канала связи, который имеет конечную скорость передачи информации, и, таким образом, исключают мгновенную передачу информации о квантовом состоянии частицы. Введение в эксперимент классического канала связи позволило убрать скрытый параметр — информационный канал пространства. Следует подчеркнуть, что подобные приёмы в теоретической физике не редкость.
Появление чисто квантовых компьютеров, обладающих достаточной мощностью, а также изобретение математических приёмов, позволяющих моделировать природные информационные процессы, возможно, полностью разрешит вопрос о скрытых параметрах. При этом наука получит ответы на многие неразрешённые проблемы, накопившиеся в фундаментальной физике.
Квантовые компьютеры, в отличие от классических, созданных по классическим законам физики, могут с молниеносной быстротой решать задачи случайного порядка, практически недоступные обычному компьютеру.
В классических компьютерах единицей измерения информации является бит. Он может принимать только два значения (в двоичной системе счисления это «0» и «1»). Биты в конкретный момент времени находятся только в одном состоянии.
В квантовых компьютерах информация зашифрована в кубитах (приставка «ку» происходит от английского слова quantum — квант), и количество возможных состояний компьютера — число 2 в той степени, сколько заложено в нём кубитов. Если, например, кубитов 100, квантовый компьютер находится одновременно в 2100 состояниях, а это больше, чем атомов во Вселенной. При этом он работает параллельно сразу на всех этих уровнях. Профессор Лю Чаоян, один из руководителей разработки квантовых компьютеров в Китае, заметил, что создание квантового компьютера — это гонка не между странами, а между человечеством и природой.
В 1919 г. Google объявила о том, что её квантовый компьютер (с 53-кубитовым процессором) за 3 минуты 20 секунд выполнил расчёт, на который самому мощному в мире суперкомпьютеру «Саммиту» от американской компании IBM понадобилось бы примерно 10 тысяч лет. Но здесь следует иметь в виду, что квантовый компьютер решал задачу не с практическим содержанием, а искусственно созданную на перебор случайных чисел[36].
Неразрешимые проблемы, касающиеся понимания основ квантовой механики, на наш взгляд, связаны с игнорированием информационных свойств Вселенной. Принцип соответствия, впервые озвученный Нильсом Бором, в некоторой мере позволяет объяснить необычное поведение частиц в микромире. Он показывает, что в природе нет явных границ как между явлениями, так и между теоретическими описаниями природных явлений. Нам неизвестно, где прекращается действие квантового мира и начинается действие макроскопического мира, в котором все объекты имеют свойства. На этот вопрос ни квантовая механика, ни классическая физика ответа не даёт.
По-видимому, принцип соответствия указывает на то, что квантовый мир — это зона между информационным и материальным мирами. И в этой области, соприкасающейся одновременно с двумя разными мирами, мы наблюдаем проявление как материальных, так и информационных свойств Вселенной.
В теоретической физике квантовый мир представлен квантово-полевыми объектами. В современном представлении поле — безграничная и непрерывная динамическая физическая реальность, ответственная за взаимодействие объектов. С полями неразрывно связаны кванты. Они существуют только при наличии полей и представляют волны локального изменения напряжённости, распространяющиеся по соответствующим полям и состоящие из движения. Кванты полей переносят взаимодействия и обладают энергией. Гипотетически можно предположить, что благодаря такой особенности, поля могут выполнять роль посредников между информационным и материальным мирами.
Как известно, для хранения информации не требуется источник энергии. Такое отличительное свойство информации позволяет хранить её на любом, в том числе и нематериальном носителе. При этом на одном носителе могут быть расположены различные информационные программы.
Простейшим примером расположения двух программ на одном носителе служит всем известный радиоприёмник. В передающем устройстве на определённой несущей частоте записывается информация в виде звуковых частот и в таком виде распространяется по эфиру. Антенна радиоприёмника улавливает модулированные звуковой частотой высокочастотные сигналы, и после обработки радиоприёмником информация воспроизводится в заданной форме.
В настоящее время не существует ясного представления, что есть информация в широком смысле слова. Сущность информации наиболее точно охарактеризовал основоположник кибернетики Норберт Винер: «…информация есть информация, а не материя и не энергия. Тот материализм, который не признаёт этого, не может считаться жизнеспособным в настоящее время»[37].
Одним из удивительных свойств информации является то, что, будучи нематериальной, она может влиять на энергетические процессы. Проиллюстрируем это примером.
Представим систему: источник информации — информация — биологический усилитель — атомная бомба. Предположим, что оператор, который в рассматриваемой системе является биологическим усилителем, по команде «Уничтожить объект!» нажимает кнопку и приводит в действие взрывное устройство атомной бомбы.
Сопоставив нулевую энергию информации, поступившую на вход биологического усилителя, и усилие мускулов, необходимое, чтобы привести в действие взрывное устройство на выходе, можно утверждать, что биологический усилитель имеет бесконечный коэффициент усиления (энергию носителя информации мы не учитываем, поскольку в рассматриваемом примере она не оказывает никакого влияния на действия оператора). Предположение, что живая система представляет собой биологический усилитель с гигантским коэффициентом усиления, впервые выдвинул немецкий физик и математик Паскуаль Йордан.
В рассматриваемом усилителе можно выделить два каскада усиления. В первом каскаде нейроны мозга, получив извне информацию, сформировали на выходе сигнал, обладающий определённой энергией. Поскольку сама информация не обладает энергией, первый каскад усиления имеет бесконечно большую величину. Рассматривая второй каскад усиления, мы видим, что на его вход подаётся энергетический импульс, и его коэффициент усиления имеет конечное и вполне определённое значение.
В первом каскаде биологического усилителя информация, поступившая на вход, привела к образованию на выходе энергии. В данном примере энергия из ничего не возникла — закон сохранения энергии как бы не нарушен. Но рассматриваемый информационно-энергетический процесс не вписывается в классическую физику, поскольку начало нестабильности в системе положила нематериальная сущность — информация.
Представим, что во Вселенной имеется определённая структурированная информация, записанная на нематериальном носителе — геометрии пространства. Информация и геометрия пространства не обладают энергией. Также существует космический информационный усилитель, похожий на биологический, но не требующий использования известных физике источников энергии, а его вход рассчитан на приём информации с геометрии пространства.
При поступлении структурированной информации на вход такого информационного усилителя на выходе появится энергия:
Е = к · Еи,
где Е — энергия на выходе информационного усилителя;
к — коэффициент усиления информационного усилителя (равен бесконечности);
Еи — энергия, поступившая на вход информационного усилителя (равна нулю).
Уравнение представляет собой математическую неопределённость в виде произведения бесконечно малой величины на бесконечно большую величину. Данная неопределённость, в зависимости от начальных условий, может принять любое значение от нуля до бесконечности. В таком случае не возникает ли теоретическая возможность с помощью нематериальной сущности получать неограниченное количество энергии?
Рассмотрим с информационной стороны процесс образование атомного ядра. Известно, что в атомном ядре нуклоны проявляют свойства, которые отсутствовали у них в свободном состоянии, — между нуклонами начинают действовать специфические ядерные силы. Полного представления о ядерных силах у учёных до настоящего времени нет. Из-за огромной сложности расчёта ядерных взаимодействий теоретическая физика так и не смогла создать единую теорию атомного ядра.
По закону сохранения квантовой информации нуклоны должны содержать одну и ту же информацию, независимо от их месторасположения. Но если при образовании атомного ядра у нуклонов появляются новые свойства, логично предположить, что у них возникает и новая информация. В то же время нельзя исключить и альтернативное предположение: в момент образования атомного ядра новая информация не возникает — нуклоны её откуда-то получают.
Варианты получения нуклонами новой информации теоретическая физика не рассматривает. Не касается она и событий, которые могут происходить за время, меньшее, чем планковское (≈5,4·10–44 с) и на расстояниях меньше планковских (1,6·10–35 м), то есть в областях от 0 до ≈10–44 секунды и от 0 до ≈10–35 метра. С позиций теоретической физики в этих диапазонах величин может происходить всё что угодно, следовательно, и явления, не связанные с материальными процессами. Поскольку ниже границы планковских величин физические законы, описывающие материальный мир, не работают, можно предположить, что в этом диапазоне величин Вселенная имеет не материальную, а информационную природу.
В таком случае стоит ли безапелляционно отвергать Божественную (информационную, по сути) концепцию возникновения Вселенной, рассматривая её на пространственно-временных интервалах, где Вселенная не подчиняется ни одному из известных физических законов? И когда учёный с мировым именем, нобелевский лауреат В. Л. Гинзбург категорически заявил, что все рассуждения креационистов — бред, противоречащий науке, это вызывает удивление[38]. Категоричность в науке — не лучший способ установления истины.
Для нас непонятно, как может возникнуть противоречие между научным и религиозным воззрениями, если они рассматривают Мироздание с несовместимых друг для друга сторон. Главное различие между наукой и религией, по словам Макса Планка, состоит в том, что наука преимущественно пользуется разумом, а религия — верой[39]. Религию не интересуют физические законы и теории, объясняющие устройство материального мира. Сфера её интересов — духовное совершенствование человека.
Чем ближе физика подходит к истокам Мироздания, тем дальше она отдаляется от привычного для нас материального мира. «Мне кажется, я смело могу сказать, что квантовой механики никто не понимает. <…> Если сможете, не мучайте себя вопросом"Но как же так может быть?", ибо в противном случае вы зайдёте в тупик, из которого ещё никто не выбрался, — предупреждает нас лауреат Нобелевской премии Ричард Фейнман. — Никто не знает, как же это может быть»[40].
А. В. Мелких утверждает, что Вселенная запрограммирована. По теории учёного, сложнейшие механизмы, обеспечивающие стабильность атомов и определяющие строение вещества, имеют информационную природу, что полностью исключает их случайное возникновение. Тот факт, что современная наука не располагает никакими свидетельствами, указывающими на возможность образования физического вещества из альтернативных атому элементов, говорит в пользу выводов учёного.
Теория известного цитогенетика Лима-де-Фариа объединяет неживую и живую материю в одно целое. Наблюдаемое сходство в принципах построения неорганического вещества и живой материи может служить подтверждением теории учёного:
— физические тела и живые организмы состоят из одних и тех же частиц — нейтронов, протонов и электронов;
— многоуровневая иерархия строения наблюдается как в объектах неживой материи, так и в живых организмах;
— активность различных генов в клетках делает клетки непохожими друг на друга — количественный состав нуклонов и электронов, образующих атомы, определяет свойства химических элементов;
— межклеточные контакты обеспечивают клеткам общение друг с другом, чем достигается устойчивость живого организма, — фундаментальные взаимодействия обеспечивают стабильность составных объектов неживой материи.
Предположив, что Вселенная запрограммирована, при переходе с одного уровня организации материи на другой, можно ожидать появление изменений и на информационных уровнях. Из этого следует: законы, применимые для микромира, могут оказаться неэффективными или даже неприменимыми на других уровнях строении материи, и наоборот. Подобно тому, как невозможно построить наглядную модель современного круизного лайнера с отображением всех его агрегатов и механизмов, нельзя создать единую теорию, которая в состоянии описать все происходящие во Вселенной процессы.
Механика Ньютона не работает в микромире и, вероятнее всего, в масштабах, сопоставимых с наблюдаемой Вселенной. Закон сохранения энергии за уши втянут в квантовый мир и, по-видимому, неприменим и для таких объектов Вселенной, как чёрные дыры. Учёными не найдено ни одного способа вывести из физики элементарных частиц значение космологической константы (физической постоянной, характеризующей свойства вакуума), сопоставимое с полученным в космологии. Значение космологической постоянной, предсказываемое квантовыми теориями поля, на много порядков превосходит полученное в космологии и создаёт проблему космологической постоянной.
Универсальная теория, описывающая Вселенную на всех пространственно-временных масштабах, у теоретической физики отсутствует. Попытки объединить две частные теории — квантовую механику и ОТО — в одно целое, предпринимаемые на протяжении столетия, не дали ощутимых результатов. Главная проблема объединения в том, что ОТО работает на непрерывном пространстве, в то время как квантовая механика описывает объекты дискретной природы. Это порождает между ними непримиримые разногласия при описании материального мира на разных уровнях его организации.
В соответствии с ОТО, частица, обладающая массой, должна искривлять пространство. В то же время принцип неопределённости Гейзенберга утверждает, что местонахождение частицы в конкретный момент времени неизвестно.
Согласно квантовой механике, чем больше мы сообщаем энергии частице, тем сильнее «рассеяние» этой частицы в пространстве. В ОТО энергия эквивалентна массе, и чем больше получает частица энергии, тем больше становится её масса в конкретной точке пространства. И в некоторый критический момент должен произойти гравитационный коллапс частицы (катастрофически быстрое сжатие под действием сил гравитации) в микроскопическую чёрную дыру. Эксперименты на ускорителях показали, что при столкновении частиц высоких энергий микроскопические чёрные дыры не образуются.
Две самые авторитетные физические теории вступают в противоречие и при описании чёрных дыр. Образование чёрных дыр в пространстве следует из решений уравнений Эйнштейна. Стивен Хокинг показал, что чёрная дыра, окружённая квантовыми полями, испускает частицы и испаряется. Гигантские размеры информации, накопленные с поглощённым веществом, исчезают при испарении чёрной дыры, что несовместимо с квантовой механикой.
Однозначного решения проблема парадокса чёрной дыры не имеет, но некоторые учёные полагают, что излучение Хокинга получено в определённом приближении, и к нему есть квантовые поправки. Они вносят существенный вклад в эффект, полученный Хокингом, следовательно, парадокса чёрной дыры нет[41].
По мнению известного учёного Ф. А. Цицина, «ЧД [чёрная дыра]… является"чёрным ящиком", на входе которого — аккрецируемая масса (энергия, заряд…); внутри которого действуют не известные нам физические законы; на выходе — должно наблюдаться по меньшей мере хокинговское излучение, но не исключены и на много порядков превышающие его феномены антиколлапса — выбросы всего того, что поступило на входе (с неизвестным перераспределением свойств, неизвестными временными сдвигами, неизвестным распределением выбросов по направлениям…). Возможные масштабы феноменов антиколлапса характеризуются тем, что в центральной планковской сингулярности ЧД заключено и таким образом не подчиняется нашей фундаментальной физике практически всё вещество этого объекта (а масса — кроме полевой)»[42].
Современные физические теории привязывают начало рождения Вселенной к планковским величинам. И все характеристики первоначального состояния Вселенной определяют исключительно из этих величин. До сих пор у теоретической физики нет ответа на вопрос, от решения которого зависит полнота космологической модели Вселенной. Это вопрос происхождения пространства и времени. По мнению некоторых исследователей, они родились вместе с материей, с энергией и являются результатом Большого взрыва.
Резонно предположить, что до Большого взрыва уже существовала никому не известная Первооснова, включающая в себя всё сущее. И эта независимая от материи Сущность, постоянно существующая, вполне могла не только положить начало процессам образования Вселенной, но и управлять в дальнейшем развитием этих процессов.
Приведённый ознакомительный фрагмент книги Взгляд со стороны. Естествознание и религия предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
14
Kotuš S., Murphy M. et al. High-precision limit on variation in the fine-structure constant from a single quasar absorption system, 2016. https://arxiv.org/abs/1609.03860.
15
Wilczynska M., Webb J. et al. Four direct measurements of the fine-structure constant 13 billion years ago. — Science Advances, 2020. https://www.science.org/doi/10.1126/sciadv.aay9672.
16
Тунцов А. Карлики рушат законы механики, 22.04.2009 г. https://www.gazeta.ru/science/2009/04/22_a_2977764.shtml.
17
Смолин Ли. Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует: Пер. с англ., 2006. http://www.rodon.org/sl/nsfvtsunichzes/.
18
Хазен А. М. Закон иерархического синтеза действия-энтропии-информации и категории философии, 2008. https://cyberleninka.ru/article/n/zakon-ierarhicheskogo-sinteza-deystviya-entropii-informatsii-i-kategorii-filosofii.
19
Базалук О. А. Современная теория эволюции (модель «Эволюционирующая материя»), 2011. (Философия и Космология). https://cyberleninka.ru/article/n/sovremennaya-teoriya-evolyutsii-model-evolyutsioniruyuschaya-materiya.
20
Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики: Пер. с англ. — М.: Едиториал УРСС, 2003. https: www.litmir.me/br/?b=219364.
21
Базалук О. А. Мироздание: живая и разумная материя (историко-философский и естественнонаучный анализ в свете новой космологической концепции). — Днепропетровск: Пороги, 2005. https://salik.biz/doc/215-mirozdanie-zhivaja-i-razumnaja-materija.html.
23
Лима-де-Фариа А. Эволюция без отбора. Автоэволюция формы и функции: Пер. с англ. — М.: Мир, 1991. https://elar.urfu.ru/bitstream/10995/1760/1/1130179.pdf.
24
Мелких А. В. Теория направленной эволюции, 04.2019. https://www.researchgate.net/publication/332555630_Teoria_napravlennoj_evolucii.
25
Sputnik Armenian: Учёный из Токио представит японскую модель развития жизни на форуме в Ереване, 2019. https://ru.armeniasputnik.am/society/20190329/17861135/mezhdunarodnyj-forum-v-yerevan-uchenyj-iz-tokio-predstavit-yaponskuyu-modtl-razvitiya-zhizni.html.
26
Блюменфельд Л. А. Информация, термодинамика и конструкция биологических систем. — Соросовский образовательный журнал, 1996, № 7. https://www.evolbiol.ru/docs/docs/blumenfeld1996.pdf.
28
Collett T., Oldham L. et al. A precise extragalactic test of General Relativity. http://www.spacetelescope.org/static/archives/releases/science_papers/heic1812/heic1812a.pdf.
29
Мелких А. В. Теория направленной эволюции, 04.2019. https://www.researchgate.net/publication/332555630_Teoria_napravlennoj_evolucii.
30
Википедия: Теоремы Пенроуза — Хокинга о сингулярности. https://ru.wikipedia.org/wiki/Теоремы_Пенроуза_ — _Хокинга_о_сингулярности.
31
Кабалдин Ю. Г., Кретинин О. В. Время как информация, 28.04.2011. https://cyberleninka.ru/article/n/vremya-kak-informatsiya.
33
Куракин П. В. Скрытые параметры и скрытое время в квантовой теории, 2004. https://www.keldysh.ru/papers/2004/prep33/prep2004_33.html.
34
Хренников А. Ю. Неравенство Белла и возможные интерпретации его нарушения. https://mipt.ru/education/chair/theoretical_physics/upload/04b/2008–11–19-arpg9k4hktm.PDF.
35
Stanford Encyclopedia of Philosophy: Bell’s Theorem, 13.03.2019. https://plato.stanford.edu/entries/bell-theorem/.
36
Arute F., Arya K. et al. Quantum supremacy using a programmable superconducting processor. — Nature, 2019. https://www.nature.com/articles/s41586–019–1666–5.
38
Expert.ru: Виталий Гинзбург про константы и бога, 22.05.2008. https://expert.ru/russian_reporter/2008/19/ginzburg.
39
Макс Планк. Религия и естествознание. — Вопросы философии, 1990, № 8. http://vivovoco.astronet.ru/VV/PAPERS/ECCE/PHIL2.HTM.
40
Фейнман Р. Характер физических законов: Пер. с англ., 2-е изд. исп. — М.: Наука, 1987. (Б-ка «Квант», № 62).